THE CLASSICAL MODULAR GROUP AS A SUBGROUP OF GL($2, \mathbb{Z}) \dagger$

by MORRIS NEWMAN

For R. A. Rankin, on the occasion of his 70th birthday

The title is somewhat misleading, since the classical modular group $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ is certainly not a subgroup of $\operatorname{GL}(2, \mathbb{Z})$. What is meant of course are the faithful representations of Γ as a subgroup of $\mathrm{GL}(2, \mathbb{Z})$, where Γ is to be thought of as the free product of a cyclic group of order 2 and a cyclic group of order 3 . No such representation is possible as a subgroup of $\operatorname{SL}(2, \mathbb{Z})$; it is necessary to have matrices of determinant -1 as well.

Thus we seek all matrices A, B of $\operatorname{GL}(2, \mathbb{Z})$ such that A is of period $2, B$ is of period 3 , and the group generated by A and B satisfies

$$
\begin{equation*}
\{A, B\}=\{A\} *\{B\}, \tag{1}
\end{equation*}
$$

the free product of the cyclic group $\{A\}$ of order 2 and the cyclic group $\{B\}$ of order 3 .
It is clear that if (1) holds, then neither A nor B can be scalar. Furthermore, we are at liberty to replace A by $S A S^{-1}$ and B by $S B^{e} S^{-1}$, where S is any element of $\operatorname{GL}(2, \mathbb{Z})$ and $e= \pm 1$. This allows us to choose a specially simple form for A, which facilitates the analysis.

For notational simplicity, the 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

will be written as

$$
[a, b ; c, d] .
$$

We require some preliminary lemmas.
Lemma 1. Let A be any non-scalar element of $\mathrm{GL}(2, \mathbb{Z})$ of period 2. Then A is similar over $\mathrm{GL}(2, \mathbb{Z})$ to $[1, f ; 0,-1]$, where f may be chosen modulo 2 .

Proof. This lemma is well-known in a much more general form. For a convenient reference, see [2, p. 54].

Lemma 2. Suppose that

$$
T=[1,0 ; 0,-1], \quad R=[a, b ;-c,-1-a],
$$

where a, b, c are real numbers such that

$$
b c=a^{2}+a+1, \quad a \geqslant 0, \quad b>0, \quad c>0 .
$$

Then $\{T, R\}$, the group generated by T and R, is just $\{T\} *\{R\}$, the free product of the cyclic group $\{T\}$ of order 2 and the cyclic group $\{R\}$ of order 3 .
\dagger The preparation of this paper was supported by a grant from the National Science Foundation.

Proof. Certainly $\quad T^{2}=R^{3}=I$. We have $T R=[a, b ; c, 1+a], \quad T R^{2}=T R^{-1}=$ $-[1+a, b ; c, a]$. The diagonal elements of $T R$ are nonnegative, and at most one diagonal element may be 0 . The off-diagonal elements of $T R$ are positive. Both observations also hold for $-T R^{2}$. It is then easy to show that the semigroup generated by $T R$ and $T R^{2}$ is free, which in turn implies the truth of the lemma. A detailed proof along these lines of a related result may be found in [1].

Lemma 3. Let $A=[a, b ; c,-a], a^{2}+b c=1$, be any non-scalar element of GL($2, \mathbb{Z}$) of period 2. Suppose that A is similar over $\operatorname{GL}(2, \mathbb{Z})$ to $[1, f ; 0,-1]$. Then f is even if and only if b and c are even.

Proof. Let $S=[x, y ; u, v]$ be an element of $\operatorname{GL}(2, \mathbb{Z})$ such that

$$
\begin{equation*}
S A S^{-1}=[1, f ; 0,-1] . \tag{2}
\end{equation*}
$$

There are four cases.
(i) $A \equiv I \bmod 2$. Then (2) implies that $[1, f ; 0,-1] \equiv I \bmod 2$, so that f is even.
(ii) $A \equiv[1,0 ; 1,1] \bmod 2$. Then (2) implies that $f \equiv y \bmod 2, v \equiv 0 \bmod 2$. But $v \equiv$ $0 \bmod 2$ implies that $y \equiv 1 \bmod 2$, so that f is odd.
(iii) $A \equiv[1,1 ; 0,1] \bmod 2$. Then (2) implies that $f \equiv x \bmod 2, u \equiv 0 \bmod 2$. But $u \equiv$ $0 \bmod 2$ implies that $x \equiv 1 \bmod 2$, so that f is odd.
(iv) $A \equiv[0,1 ; 1,0] \bmod 2$. Then (2) implies that $f \equiv x+y \bmod 2, u \equiv v \bmod 2$. But $u \equiv v \bmod 2$ implies that $1 \equiv x u+y v \equiv u(x+y) \bmod 2$, which in turn implies that $x+y \equiv$ $1 \bmod 2$, so that f is odd.

This completes the proof.
The first theorem we wish to prove is the following.
Theorem 1. Let A, B be non-scalar elements of $\operatorname{GL}(2, \mathbb{Z})$ of periods 2,3 respectively. Suppose that $A \equiv I \bmod 2$. Then $\{A, B\}$, the group generated by A and B, is just $\{A\} *\{B\}$, the free product of the cyclic group $\{A\}$ of order 2 and the cyclic group $\{B\}$ of order 3 .

Proof. By Lemmas 1 and 3, we may assume that an element S of $G L(2, \mathbb{Z})$ exists such that

$$
\begin{gather*}
T=S A S^{-1}=[1,0 ; 0,-1] \tag{3}\\
R=S B S^{-1}=[a, b ;-c,-a-1] \tag{4}
\end{gather*}
$$

where a, b, c are integers such that $b c=a^{2}+a+1$. Since in addition R may be replaced by R^{-1}, and $R^{-1}=[-a-1,-b ; c, a]$, we may assume that in (4) $a \geqslant 0$. Now the similarity $T T T^{-1}=T, T R T^{-1}=[a,-b ; c,-a-1]$ leaves T unchanged, leaves the diagonal elements of R unchanged, but changes the signs of the off-diagonal elements of R. Hence we may also assume that in (4) $b>0, c>0$, since b and c are different from 0 and of the same sign. But now Lemma 2 implies the truth of the theorem, and the proof is concluded.

We must now consider the case when the element of period 2 is not similar over $\mathrm{GL}(2, \mathbb{Z})$ to $[1,0 ; 0,-1]$. Once again, Lemmas 1 and 3 allow us to assume that the
element T of period 2 may be taken as

$$
\begin{equation*}
T=[1,-1 ; 0,-1] \tag{5}
\end{equation*}
$$

and the element R of period 3 may be taken as

$$
\begin{equation*}
R=[a, b ;-c,-a-1], \tag{6}
\end{equation*}
$$

where $b c=a^{2}+a+1$, and $b>0, c>0$ (it may be necessary to replace R by its inverse to achieve the positivity of b and c). We then get the next theorem.

Theorem 2. Suppose that T and R are as given in (5) and (6), respectively. Suppose in addition that in (6)

$$
\begin{equation*}
a \geqslant 0 . \tag{7}
\end{equation*}
$$

Then $\{T, R\}=\{T\} *\{R\}$, the free product of the cyclic group $\{T\}$ of order 2 and the cyclic group $\{R\}$ of order 3 .

Proof. We have $T R=[a+c, a+b+1 ; c, a+1], \quad T R^{2}=T R^{-1}=-[a+c+1, a+b ;$ $c, a]$. Thus the semigroup generated by $T R$ and $T R^{2}$ is free, and the conclusion follows.

The case when $a<0$ cannot be treated completely (indeed, the desired theorem no longer holds) but a partial answer is possible, as in the next theorem.

Theorem 3: Suppose that T and R are as given in (5) and (6), respectively. Suppose in addition that in (6)

$$
\begin{equation*}
a<0,2 a+c \geqslant 0 . \tag{8}
\end{equation*}
$$

Then $\{T, R\}=\{T\} *\{R\}$, the free product of the cyclic group $\{T\}$ of order 2 and the cyclic group $\{R\}$ of order 3.

Proof. Put $U=\left[1,-\frac{1}{2} ; 0,1\right]$ (so that U does not belong to $\mathrm{GL}(2, \mathbb{Z})$, but does belong to $\operatorname{SL}(2, \mathbb{Q})$). Then

$$
\begin{aligned}
U T U^{-1} & =[1,0 ; 0,-1], \\
U R U^{-1} & =\left[a+\frac{1}{2} c, b^{\prime} ;-c,-1-a-\frac{1}{2} c\right],
\end{aligned}
$$

where $4 b^{\prime}=4 a+4 b+2+c$ must be positive, since c is positive and $4 b^{\prime} c=(2 a+c+1)^{2}+3$. But then Lemma 2 implies the result, and the proof is concluded.

Finally, we point out that the desired result is not universally true; for example, if

$$
T=[1,-1 ; 0,-1], \quad R=[-1,1 ;-1,0]
$$

then

$$
T^{2}=R^{3}=(T R)^{2}=I .
$$

In this case $\{T, R\}$ is finite, and is in fact just the dihedral group of order 6.

REFERENCES

1. M. Newman, Some free products of cyclic groups, Michigan Math. J. 9 (1962), 369-373.
2. M. Newman, Integral Matrices (Academic Press, 1972).

Department of Mathematics
University of California
Santa Barbara
California 93106
U.S.A.

