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Abstract In 1940 Paul Erdős introduced the ‘rational Hilbert space’, which consists of all vectors in
the real Hilbert space �2 that have only rational coordinates. He showed that this space has topological
dimension one, yet it is totally disconnected and homeomorphic to its square. In this note we generalize
the construction of this peculiar space and we consider all subspaces E of the Banach spaces �p that are
constructed as ‘products’ of zero-dimensional subsets En of R. We present an easily applied criterion for
deciding whether a general space of this type is one dimensional. As an application we find that if such
an E is closed in �p, then it is homeomorphic to complete Erdős space if and only if dim E > 0 and every
En is zero dimensional.
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Let p � 1 and consider the Banach space �p. This space consists of all sequences z =
(z1, z2, . . . ) of real numbers such that

∑∞
i=1 |zi|p < ∞. The topology on �p is generated

by the norm

‖z‖ =
( ∞∑

i=1

|zi|p
)1/p

.

Let R̂ be the compactification [−∞,∞] of R. We extend the p-norm over R̂N by putting
‖z‖ = ∞ for each z ∈ R̂N \ �p.

For the remainder of this note let E1, E2, . . . be a fixed sequence of subsets of R and
let

E = {z ∈ �p : zn ∈ En for every n ∈ N}

be a corresponding subspace of some fixed �p. If we choose p = 2 and En = Q for every n,
then E is called Erdős space E and, if En = R \ Q, then we obtain complete Erdős space
Ec (cf. [9] and [10]). Erdős [9] proved that Erdős space and complete Erdős space have
topological dimension one. We present an easily applied criterion for deciding whether
a general space of the type E is one dimensional. As an application we find that if E is
closed in �p, then it is homeomorphic to complete Erdős space if and only if dim E > 0
and every En is zero dimensional. Other applications are particularly simple models of
complete Erdős space and the Lelek fan.
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Every space under consideration is assumed to be separable metric. A space is called
cohesive if every point has a neighbourhood that contains no non-empty clopen subsets
of the space.

Theorem 1. Assume that E is not empty and that every En is zero dimensional. For
each k ∈ N we let η(k) ∈ RN be given by

η(k)n = sup{|a| : a ∈ En ∩ [−1/k, 1/k]},

where sup ∅ = 0. The following statements are equivalent:

(1) ‖η(k)‖ = ∞ for each k ∈ N;

(2) there exists an x ∈
∏∞

n=1 En with ‖x‖ = ∞ and limn→∞ xn = 0;

(3) every non-empty clopen subset of E is unbounded;

(4) E is cohesive; and

(5) dim E > 0.

Proof. (1) ⇒ (2). Assume (1). We shall construct sequences n0 < n1 < · · · in N and
y1, y2, . . . in R such that, for each k ∈ N,

(i) ym ∈ {0} ∪ (Em ∩ [−1/k, 1/k]) for nk−1 � m < nk, and

(ii)
∑nk−1

m=1 |ym|p � k.

Put n0 = 1 and assume that n0, . . . , nk−1 and y1, . . . , ynk−1−1 have been found. Select
for each m ∈ N an am ∈ {0} ∪ (Em ∩ [−1/k, 1/k]) such that |am| � 1

2η(k)m. Since
‖a‖ � 1

2‖η(k)‖ = ∞, we can select an nk > nk−1 such that

nk−1∑
m=nk−1

|am|p � 1.

If we define ym = am for nk−1 � m < nk, then the hypotheses are satisfied. Clearly, we
have ‖y‖ = ∞ and limm→∞ ym = 0. Select a z ∈ E and define x ∈

∏∞
m=1Em by xm = ym

if ym �= 0 and xm = zm if ym = 0. Condition (2) is proved.

(2) ⇒ (3). Erdős [9] proved statement (3) for the case En = {1/i : i ∈ N} for all n. We
adapt his method to suit the general situation. Assume that x ∈

∏∞
n=1 En is such that

‖x‖ = ∞ and limn→∞ xn = 0. Let A be a bounded and non-empty subset of E . Select an
M ∈ N such that ‖z‖ � M for every z ∈ A. For i ∈ N let ξi : RN → �p be the projection
ξi(z) = (z1, . . . , zi, 0, 0, . . . ). We construct inductively a sequence of points a0, a1, . . . in
A and natural numbers n0 < n1 < · · · such that, for i � 1,

(a) ξni
(ai) = ξni

(ai−1),

(b) ‖ai−1 − ξni
(ai−1)‖ < 2−i, and
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(c) the distance between ai and E \ A is less than 2−i.

We put n0 = 1 and choose a0 ∈ A. Assume that ai−1 and ni−1 have been found. Select
an ni such that ni > ni−1, |xj | < 2−i−1 for all j > ni, and ‖ai−1 − ξni(a

i−1)‖ < 2−i−1,
satisfying hypothesis (b). For j ∈ N we define bj ∈ E by

bj
m =

{
xm, if ni < m � ni + j,

ai−1
m , otherwise.

Observe that b0 = ai−1 ∈ A and that, since ‖x‖ = ∞,

lim
j→∞

‖bj‖ �
( ∞∑

m=ni+1

|xm|p
)1/p

= ∞.

Since A is bounded we can find a j such that bj ∈ A and bj+1 /∈ A. We put ai = bj and
note that hypothesis (a) is satisfied. For the third hypothesis we note that, for j ∈ N,

‖bj+1 − bj‖ = |xni+j+1 − ai−1
ni+j+1|

� |xni+j+1| + |ai−1
ni+j+1|

< 2−i−1 + ‖ai−1 − ξni(a
i−1)‖

< 2−i.

This completes the induction.
By hypothesis (a) there is a c ∈

∏∞
i=1 Ei such that ξni+1(c) = ξni+1(a

i) for every i � 0.
We then have

‖c‖ = lim
i→∞

‖ξni+1(a
i)‖ � lim

i→∞
‖ai‖ � M,

thus c ∈ E . We find that

lim
i→∞

‖c − ai‖ � lim
i→∞

(‖c − ξni+1(c)‖ + ‖ξni+1(a
i) − ai‖) � 0 + lim

i→∞
2−i−1 = 0

and thus limi→∞ ai = c. This means that c is in the closure of A and, by hypothesis (c),
it also means that c is in the closure of E \A. So c is a boundary point of A and the proof
is complete.

The implications (3) ⇒ (4) and (4) ⇒ (5) are trivial.

(5) ⇒ (1). Assume that n ∈ N is such that ‖η(n)‖ < ∞. Let z ∈ E and let ε ∈ (0, 1/n).
Select a k ∈ N such that

∞∑
i=k

(η(n)i)p < 1
2εp and

∞∑
i=k

|zi|p < εp.

Define z′ ∈ �p by z′
i = zi if i < k and z′

i = 0 if i � k, thus ‖z − z′‖ < ε. Put δ = ε/(2k)1/p

and let i < k. Since Ei is zero dimensional we may select ai and bi in R \ Ei such that
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zi − δ < ai < zi = z′
i < bi < zi + δ. We define the clearly clopen neighbourhood C of z

in E by
C = {x ∈ E : ai < xi < bi for each i < k}.

Define U = {x ∈ C : ‖x − z′‖ � ε} and note that U is a closed neighbourhood of z in
E with diameter at most 2ε. Let x be a point in U . If i � k, then |xi| = |xi − z′

i| �
‖x − z′‖ � ε < 1/n. This means that |xi| � η(n)i and hence that

∞∑
i=k

|xi − z′
i|p =

∞∑
i=k

|xi|p < 1
2εp.

On the other hand, since x ∈ C we have
∑k−1

i=1 |xi − z′
i|p < kδp = 1

2εp. Thus ‖x − z′‖ <

ε and x is an interior point of U because C is clopen. We have that U is a clopen
neighbourhood of z with small diameter and we may conclude that dim E = 0. �

Note that in Theorem 1 the conditions (1)–(3) are metric, whereas conditions (4)
and (5) are topological. Let us compare (4) and (5). Cohesion is a weakening of connect-
edness and plays a crucial role in characterizing Erdős space and complete Erdős space
(see [4–6]). Clearly, a cohesive space is at least one dimensional at every point but the
converse is not valid. An extreme example can be found in [3], where a one-dimensional
homogeneous space that is not cohesive is constructed. However, if X is either a topo-
logical group or a complete and homogeneous space, then X is cohesive if and only if
dim X �= 0 (see [5, Proposition 6.3], respectively [3]). In addition, it follows from Theo-
rem 3.1 in [7] that a closed subspace of complete Erdős space is cohesive if and only if it
is one dimensional at every point. Theorem 1 extends this list of positive results.

Recall that if A1, A2, . . . is a sequence of subsets of a space X, then

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak.

The following sufficient condition for dim E �= 0 is a useful one because it is easily tested.

Corollary 2. If 0 is a cluster point of lim supn→∞ En, then every non-empty clopen
subset of E is unbounded (and hence dim E �= 0).

Proof. If E is empty, then the conclusion is void. Let E �= ∅ and let n ∈ N. Select a
t ∈ lim supk→∞ Ek such that 0 < |t| < 1/n. Choose a sequence k0 < k1 < k2 < · · · in N

such that there is, for each j ∈ N, a tj ∈ Ekj with limj→∞ tj = t. We may assume that
for every j, 1

2 |t| < |tj | < 1/n. Thus η(n)kj
� |tj | > 1

2 |t| for each j and hence ‖η(n)‖ = ∞,
proving statement (1) of Theorem 1. The desired conclusion follows when we note that
the zero dimensionality of the En was used only for the implication (5) ⇒ (1) in the
proof of Theorem 1. �

Let ϕ : X → R̂ be a function. We define the following subspaces of the product X × R̂:

Lϕ = {(x, t) ∈ X × R̂ : ϕ(x) � t}
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and

Gϕ = {(x, ϕ(x)) : x ∈ X and ϕ(x) < ∞}.

Let C be a non-empty zero-dimensional compact space and let ϕ : C → R̂ be a lower
semi-continuous (LSC) function, which means that ϕ−1((t, ∞]) is open in C for every
t ∈ R̂. We call ϕ a Lelek function if Gϕ is dense in Lϕ. If ϕ is a Lelek function, then the
quotient space Lϕ/∞ we obtain when we identify the set C × {∞} to a point in Lϕ is
called a Lelek fan (see [11]). According to Bula and Oversteegen [1] and Charatonik [2],
the Lelek fans, and consequently also their endpoint sets Gϕ, are topologically unique.
Kawamura, Oversteegen and Tymchatyn [10] have shown that complete Erdős space is
homeomorphic to Gϕ.

A well-known and useful property of the norm topology on �p is that this topology
is the weakest topology that makes all the coordinate projections z 
→ zi and the norm
function continuous. This fact can also be formulated as follows: the graph of the norm
function when seen as a function from �p with the product topology to R is homeomorphic
to the Banach space �p. Note that this fact means that the norm topology on spheres
Sε(a) = {x ∈ �p : ‖x − a‖} coincides with the product topology and thus the spheres in E
are zero dimensional if the En are zero dimensional. Consequently, we have dim E � 1 in
that case.

The last result can also be obtained from the following more abstract analysis. A space
is called almost zero dimensional if every point has a neighbourhood basis consisting of
sets that are intersections of clopen sets of the space. If every Ei is zero dimensional,
then the resulting space E is almost zero dimensional. The reason lies in the fact that
closed balls in �p are also closed subsets of R̂N with the product topology, or, in other
words, that the norm function is LSC when seen as a function from R̂N to [0,∞]. Thus,
closed balls in E are also closed subsets of the zero-dimensional space

∏∞
n=1 En, making

them intersections of clopen sets. Oversteegen and Tymchatyn [12] proved that every
almost zero-dimensional space is at most one dimensional.

Theorem 3. If every Ei is closed in R, then E is homeomorphic to complete Erdős
space if and only if dim E > 0 and every En is zero dimensional.

Proof. According to Erdős [9], complete Erdős space is one dimensional and totally
disconnected. If E �= ∅, then every En is clearly imbeddable in E . Thus, if E is homeo-
morphic to complete Erdős space, then every En is also totally disconnected and hence
zero dimensional as a subset of R.

We now turn to the ‘if’ part. We follow the method in [10] and will represent E as an
endpoint set Gϕ of a Lelek fan. Let Ēn be the closure of En in R̂ and consider the zero-
dimensional compactum C =

∏∞
n=1 Ēn in R̂N. We let ϕ : C → [0,∞] be the restriction

of the p-norm ‖ · ‖. Since the p-norm together with the product topology on �p generates
the norm topology on �p and E corresponds to {x ∈ C : ϕ(x) < ∞} we have that E is
homeomorphic to Gϕ. It now suffices to show that Gϕ is dense in Lϕ. Let x ∈ C and let

U = U1 × · · · × Uk × Ēk1 × Ēk+2 × · · ·
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be a standard neighbourhood of x in C. Since every En and hence every Ēn is zero
dimensional, we may assume that the Ui are clopen. Consider E ∩ U and note that it is
clopen subspace of E . Select an a ∈ E and select, for each i � k, a bi ∈ Ei ∩ Ui. If we put
bi = ai for i > k, then b = (b1, b2, . . . ) ∈ E ∩ U , thus E ∩ U is not empty. Let y ∈ E ∩ U

and let ϕ(y) < t < ∞. Then there is a z ∈ E ∩ U with ‖z‖ = ϕ(z) = t, because otherwise
the set {y ∈ E ∩ U : ‖y‖ < t} would be a bounded, non-empty, clopen subset of E , in
violation of Theorem 1. Thus {ϕ(y) : y ∈ E ∩U} is an unbounded non-empty subinterval
of [0,∞). We may conclude that for each x ∈ C the set {x} × [ϕ(x),∞] is contained in
the closure of Gϕ. The proof is complete. �

We now consider some examples. Theorem 3 in combination with Corollary 2 shows
that, for example, the following closed subgroup of (�p, +) is homeomorphic to complete
Erdős space:

{z ∈ �p : nzn ∈ Z for each n ∈ N}.

This result also follows from [8].
Another representation of complete Erdős space is

{z ∈ �2 : zn ∈ {0} ∪ {1/i : i ∈ N} for each n ∈ N},

which was featured by Erdős in [9].

Corollary 4. If every En is a zero-dimensional closed subset of R such that E �= ∅,
then E × Ec is homeomorphic to Ec.

Proof. Apply Theorem 3 to the sequence (E′
n)∞

n=1, where E′
2k−1 = Ek and E′

2k =
{0} ∪ {1/i : i ∈ N} for k ∈ N. �

Consider also the following choice: En = {0, 1/n}, for n ∈ N. If p = 1 then, by Theo-
rems 1 and 3 and the well-known fact

∑∞
n=1 1/n = ∞, we have that E is homeomorphic

to complete Erdős space and we might call this minimal representation harmonic Erdős
space. Interestingly, if p > 1, then it is easily verified that E is a Cantor set. This example
also provides us with an elegant and concrete model for the Lelek fan, as follows. Let
C = {0, 1}N be the Cantor set and define ϕ : C → [0,∞] by

ϕ(x) =
∞∑

n=1

xn

n
for x = (x1, x2, . . . ) ∈ C.

By the proof of Theorem 3, ϕ is a Lelek function and Lϕ/∞ is a Lelek fan, the harmonic
Lelek fan.

Remark 5. Note that the proofs in this note can easily be adapted to work also for
the quasi-Banach spaces �p, p < 1.
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