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Introduction. In this paper we shall discuss maximal nonparabolic and maximal normal
nonparabolic subgroups of the modular group F = <co, <p ; co2 =q>3 = 1}. The modular
group may also be defined as the group of fractional linear transformations w = (az+b)/(cz+d),
where a, b, c, d are rational integers with ad—be = 1. Here, a maximal nonparabolic sub-
group of F is a subgroup that contains no parabolic elements and any proper subgroup of F
which contains S contains parabolic elements. Similarly, a maximal normal nonparabolic
subgroup is a normal nonparabolic subgroup of F which is not contained in any larger normal
nonparabolic subgroup of F.

In connection with maximal nonparabolic subgroups we are, in particular, interested in
Neumann subgroups, where by a Neumann subgroup we mean a subgroup N* of the homo-
geneous modular group F* = SL(2, Z) which contains the matrix

a>= and has the elements x", t = ,

as right coset representatives in F*. Magnus [7] and Neumann [13] show that Neumann sub-
groups N* of F* define maximal nonparabolic subgroups N of F which we will also call
Neumann subgroups. Neumann found uncountably many Neumann subgroups and Magnus
conjectured that Neumann's list was complete. In this paper we shall show that Neumann did
not find all of them, and that, in fact, there exist Neumann subgroups with all possible subgroup
structures except those whose free product decomposition contains a free group of odd rank;
whether there exist Neumann subgroups whose free product structure contains a free group of
odd rank is unknown.

In section two on normal nonparabolic subgroups, we show that if G is a normal sub-
group of finite index in F and if the parabolic class number t of G is greater than 1, then G', its
commutator subgroup, contains only hyperbolic elements. By definition, if n is the level of G
(the smallest integer n such that x"eG), the parabolic class number is the number of distinct
conjugates MT '̂M"1 in G where «eF. For all normal subgroups G of genus zero with t greater
than 1, we find maximal normal nonparabolic subgroups containing G'.

At this time I would like to thank Wilhelm Magnus and James Humphreys for their
interest in this work; I would also like to thank the referee for his careful reading and helpful
suggestions especially in correcting part of the proof of Theorem 2.

1. Neumann subgroups. In 1932 B. H. Neumann [13] investigated subgroups N* of the
homogeneous modular group SL(2, Z) which are defined by the condition that, for any ordered
pair of relatively prime integers (a, c), iV* contains exactly one matrix in which the first column
consists of the ordered pair (a, c). Neumann investigated these subgroups in connection with a
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problem on the foundations of geometry while Magnus in 1973 investigated these groups as
nonparabolic subgroups of the modular group. We have the following theorem.

THEOREM. A subgroup A of the modular group F is a maximal nonparabolic subgroup if
either of the following two conditions is satisfied:

(i) The elements xx = (cocp)x, X = 0, + 1 , + 2 , . . . form a complete system of distinct right
coset representatives of A. in T.

(ii) If A* is the homogeneous group generated by the 2 x 2 matrices defining the elements of
A, then every ordered pair of relatively prime integers (a, c) appears exactly once as the pair of
elements in the first column of one of these matrices.

Condition (ii) implies (i) and (i) implies (ii) if

0} = or some other element y with y" = is in A.

For a proof of this theorem see Magnus [8].
Using the Reidemeister-Schreier process for finding generators and relations for a sub-

group, one can show that the problem of finding Neumann subgroups N, that is subgroups of
F satisfying the property (i) and containing a>, is equivalent to finding a permutation/of the
integers which satisfies the following three conditions:

(iii) / (0) = 0.

The condition that/(O) = 0 corresponds to the condition that co e N. To see this we write

r = <e>, z ; co2 = (coz)3 = I).

Then, using the xx as coset representatives, N is generated by

where zfW is the right coset representative of zxa>. It follows immediately that if coeN we
must have/(0) = 0. The relations are

Note that different permutations of the integers/: Z-»Z satisfying conditions (i), (ii), and
(iii) define different Neumann subgroups since the generators are

~X - 1 -
VA = ~

and there cannot be two different matrices with first column (A, 1) in the same Neumann
subgroup. The uncountably many Neumann subgroups found by B. H. Neumann are
described in the following theorem [8, 13].
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NEUMANN'S THEOREM. Let h,, I = 1, 2, 3 , . . . be an infinite sequence in which each h, is
either 0 or 1. Let k, = I— ht and define g, by

i - i

Then gl+i — gt = 1 ifh, = 1 andgl+l—g, = 6 ifht = 0. Every integer ^ 2 can be represented in
exactly one manner as an expression of one of the forms

( ( 7 = 1 , 2 , 3 , 4 , 5 ) .

The permutations of the integers defined by the table below satisfy conditions (i), (ii), and(iii).

X

- 3 / - 1
- 3 /
1 -3 /
- 1
0
1

9i
(gi + l)kt

(gt + 2)kt

(.91+4)&j
(g, + 5)kf

(—3l)h, + (g, + 3)kl

(—31— \)ht + (g, + l)kt

- 1
0
- 2

-3/fc,

(-3/-2JA:,

We start our study of Neumann subgroups by asking whether they are infinitely generated
and whether they are first kind. In order to define what it means for a Fuchsian group to be
first kind, we must first define a limit point of a Fuchsian group F to be a limit of a sequence of
images Vnz, Vn e F. The limit set L of F, that is the set of all limit points off, is either the real
line or else a perfect nowhere dense subset of the real line [5]. If the limit set is the entire line, F
is called first kind or horocyclic. Otherwise F is called second kind.

THEOREM 1. All Neumann subgroups of the modular group are infinitely generated and
first kind.

Proof. By a theorem of Marden [9], we know that a Fuchsian group G is finitely gener-
ated if and only if every fundamental region has a finite number of sides. It is well known
that a fundamental region R for the modular group is {z : —\ < Re z _ \, \z\ > 1}. Thus,
since the fundamental region for a Neumann subgroup constructed by taking the union of the
regions T"R has infinitely many sides, a Neumann subgroup must be infinitely generated.

https://doi.org/10.1017/S0017089500002573 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002573


94 CAROL TRETKOFF

We shall now show that for any Neumann subgroup N,

Iffl = {a | a = lim Kn(oo) where VneN]
n-*co

is the real line and hence N is first kind. Let x be any element on the real line and let ajcn

be a sequence of distinct rationals with (an, cn) = 1 such that lim ajcn = x. Then by the first
n-»oo

theorem stated in this section, we know that there exists a transformation Vn e N defined by

in N. Now Fn(oo) = ajcn so lim Fn(oo) = x. Thus Lm = R and Neumann subgroups are
n-*oo

first kind.
Since the modular group is a free product of the cyclic group a2 of order 2 and the cyclic

group a3 of order 3, we know from the Kurosh subgroup theorem that structurally a Neumann
subgroup must be a free product of groups isomorphic to Z, <r2 and a3, where at least one of
these types appears infinitely many times and a2 appears at least once since Neumann sub-
groups contain a>. We have the following theorem.

THEOREM 2. There exist Neumann subgroups with all possible structures with the exception
that, when the free factor is finitely generated, its rank is even. (It may be true that all possible
structures are possible.)

Proof. To prove this theorem we shall construct permutations / : Z->Z satisfying the
three conditions /(0) = 0, f(f(k)) = k, and f(k -1) = 1 + / ( / ( ! ) +1). For factors of the free
product that are isomorphic to a2 we use the following pattern.

Pattern 1: k

k-l
k
k + l

I
k
I-1

Here and in the following patterns / is the smallest integer < 0 that has been already assigned
and k is the first positive integer that has not yet been assigned. We use pattern 2 for free
factors that are isomorphic to tr3 and pattern 3 for free factors that are isomorphic to F2, the
free group of rank 2.

Pattern 2: k

k-l
k
k + l
k+2

f(X)

I
k + l
k
I-1
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Pattern 3: X

k-l
k
k+l
k + 2
k+3
k+4
k+5
k+6
k + 1
k + 8

XX)

I
k+4
k+6
1-2
k+7
k
/-I
A:+l
k+3
1-3

Note that each of these patterns can be attached consecutively in any order since they all end by
sending the greatest positive integer assigned to the least negative integer already assigned, and
this just becomes the beginning of the next pattern to be used in constructing the permutation/.

To prove that these patterns give the desired results we must use the relations

y K - I = yitfw+1 a n d yfl/w = *

to write the group as a free product. For pattern 1, we have generators

and the following relations.

or yk = or

So, if yk_ i is taken into account in the previous pattern, we can write

and hence we are left with generator yk and the relation yl = 1.

For pattern 2, we have generators

and relations

(1) v*-i

(2) y* =

(3) Vt+i = yk+2yi or ?*_! = ykyk+2

(4) y* =
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Now, relations (2) and (4) imply that yl = 1, and relations (1) and (3) imply that if we know
yk _ j we can eliminate yk+2 • Thus we have one generator yk and one relation yI = 1.

Similarly, for pattern 3, we have generators

V f c - l , • • - ,
and relations

(1) 7k- I = r ^ t + s (7)
(2) yk = rt+iv*+7 (8)
(3) ?fc+i =y*+27/-i (9)

(5)
(6) y*+4 = Vfc+5?i (12) y*+3y*+7 = l

Using relations (10), (11), and (12), we can remove y k + 4 , y k + 6 , and y k + 1 from the list of gener-
ators and get

(1) ik-1 = y* y*+s (6) y*~1 = yfc+5 y*"-\
(2) yk = y*+1 yk+3 0) y*+5 = y*V 1 y*+2

(3) yk+1 = y*+2y^Vs (8) y*~"+i = yr+3y*"x

(4) yfc+2 = y*+3 y*+s (9) ?*"+ 3 = y*+8 ?*"+2

(5) rfc+3 = y^1 V/t+i

Now, relations (2), (5) and (8), (1) and (6), (4) and (9), and (3) and (7) are the same, so we need
only deal with relations (1), (2), (3) and (4). Given y t_ t from the previous set of generators
and keeping yk and yk+l, we can remove yk+3, yk+5 and yk+8 from the list of generators and at
the same time remove relations (1), . . . , (4). Hence we are left with generators yk and yk+l

and no relations.
The question that remains is how do we begin the permutation. We want to show that if

r+s+t = oo where r, s, and t are non-negative integers, that we can construct a Neumann
subgroup whose free product structure has r factors isomorphic to <r2>

 S factors isomorphic to
<73 and t factors isomorphic to the free group of rank 2. Recall that r must be at least one since
co must be in the Neumann subgroup and to2 = 1. There are three cases to consider: r ^ 2,
r = 1 and s ^ 1, and r = 1 and s = 0. If r ^ 2, begin the permutation / with pattern 1 with
k = 1, / = 0. This contributes o2 *az t 0 the free product structure. Then complete the per-
mutation by using pattern 1 r—2 times, pattern 2 s times and pattern 3 t times. However, if
r = land s ^ 1, begin with pattern 2 with k = 1, / = 0 and if r = 1 and 5 = 0, begin with pattern
3 with k = 1,1 = 0. It is easy to check that these beginnings contribute a2 * &$ and a2 * ̂ i to
the free product structure. Then one can complete the permutation/by using patterns 2 and
3 the appropriate number of times.

The Neumann subgroups that Neumann found are in one to one correspondence with
infinite sequences of zeros and ones. It turns out that each zero contributes the free product of
three cyclic groups of order 2 to the free product structure of the Neumann subgroup, while
each one contributes a cyclic group of order 3.
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To see this, we first note that if h, = 0 and / ^ 2, then

97

A

- 3 / - 2
- 3 / - 1
- 3 /
-3 /+1

9,-1
9,
0i+l
0i + 2
0, + 3
0i + 4
0i + 5

/(A)

0i + 5
0i + 3
0i + l
0 i - l

-3/+1
0i
- 3 /
0i + 2
- 3 / - 1
0i+4
- 3 / - 2

Here the integers between — 3/ and gr( have been previously assigned. By comparing this with
pattern 1, we note that this portion of Neumann's permutation consists of pattern 1 repeated
three times. Thus it must correspond to the free product of three cyclic groups of order 2.

Now if h, = 1 and / ^ 2, then

A

- 3 / - 2
- 3 / - 1
- 3 /
-3 /+1

0,-1
9,

01
- 3 /
- 3 / - 1
0,-1

-3/+1
-31-2

where the integers between —3/ and gt have been previously assigned. Comparing this with
pattern 2, one finds that this portion of the permutation is similar to pattern 2 except for the
fact that the role of the negative and positive integers has been reversed.

It remains to check the portion of Neumann's permutation around zero (which is un-
changed for all sequences of zeros and ones). Here

- 2

0
1

0
- 2
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It is easy to check using relations yxf/w = 1 and yr-iViV/w+i = 1 that this portion of the
permutation contributes a free product of two cyclic groups of order 2 generated by y_i and
y0 to the structure of the Neumann subgroup.

Thus the free product structure of Neumann's Neumann subgroups contain no free factors.
This implies that Magnus's conjecture [8] that Neumann's list is complete is false.

2. Normal nonparabolic subgroups of I \ We now study the normal nonparabolic sub-
groups of the modular group F = <<o, <p;co2 =<p3 = 1> and consider the problem of finding
maximal ones. We start by proving the following theorem.

THEOREM 3. The normal nonparabolic subgroups NofT are all free of infinite rank.

Proof. From Newman [15] we know that every normal subgroup of F except A (wi) and
A((p) is free, where by A(x) we mean the normal closure of x in F. Certainly, a nonparabolic
subgroup of F must have infinite index in F since none of the elements x", n # 0, is in F, where

T = oo<p = I. That the normal nonparabolic subgroups of F have infinite rank then

follows from B. Baumslag's theorem that if a subgroup S of infinite index in a free product
of two groups P contains a normal subgroup of P, then S must be of infinite rank [1].

We shall need the following lemma, which is due to Mason [10].

LEMMA. If G is a normal subgroup of finite index in the modular group ^ A (eo), A (q>) or F',
then G', the commutator subgroup, is normal in F and contains only hyperbolic elements.

Magnus [7] shows that F(2)' is maximal normal hyperbolic by proving that F/F(2)' is
just-infinite, where by a just-infinite group we mean one in which every (non-trivial) normal
subgroup has finite index [12]. Here, by F(«) we mean the principal congruence subgroup of

F of level n, that is the set of linear fractional transformations with
az+b

a = d= +1 mod n and b = c = 0 mod n.

The fact that F(2)' is maximal normal hyperbolic then follows from the correspondence
theorem and the fact that all subgroups of finite index in F must contain parabolic elements.
We shall show that F(3)' is also maximal normal hyperbolic using some results from Mason's
paper [11] and some facts about space groups.

We know that if G is a normal subgroup of F # A(<w) or A(̂ >), G has the following pre-
sentation

G = <Pi,P2,...,P,,A1,B1,...,Ag,Bg;P1...Ptn[Ai,Bi] = +I),

where the set {Pu..., P,} has the following properties:

(i) every parabolic element of G is conjugate over G to some power of a Pt (1 g i ̂  t)
(ii) no non-trivial power of a P{ is conjugate over G to a power of Pt (1 g i,j ^ t, i ¥=j)

(Lehner [4]).

Now, as in Mason [11], we define a permutational representation 6 of F on the t symbols
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Pu . . . . Pt. Let Xer. Then XP,X~l = X}PjXJl for some XjeG, by the properties of the set
{Pi, ...,Pt) stated earlier, and UX{P^ = Pj is a permutation of the set Q = { i ^ , . . . , Pt}.
Mason proves the following theorem [11].

MASON'S THEOREM. Let St be the symmetric group on t symbols. The map 6 : F -> S,
defined by 9(X) = Hxfor all XeT is a homomorphism from T onto a transitive subgroup of St.
The kernel of 9 equals G* and the stabilizer in 9 (F) ofPy eQisO (G*), so that all the stabilizers in
0 (F) of the elements ofQ are cyclic groups of fixed order k.

Here Gr is the group generated by T and G where T = a><p and G* is the group generated by
ik and G, where 1 g k ^ t and k is the least integer such that

coik s T?CO (mod G).

From this theorem it follows that when G is maximal normal, that is, when F/G is simple,
ker 6 = G and 6 gives a faithful permutational representation of F/G. Also, Mason has
remarked in [11, p. 456] that when G =T(N), then G* = ker 6 = G. In particular, this tells us
that when G =F(3), kerfl =F(3) and 9 gives a permutational representation of F/F(3) s /44.
We shall need this fact in order to show that F/F (3)' is a space group and F (3)' is maximal
normal hyperbolic.

We may define a space group S of dimension n to be an extension of a free abelian group A
of finite rank n by a finite group B such that the centralizer of A in S is A. This is equivalent to
saying that an n-dimensional space group is an extension of a free abelian group of rank n by a
finite group B using a monomorphism p : B^> Aut A. The finite group B is called the point
group. Here the monomorphism p is just conjugation of the elements of A by the elements of
B. Hence the group F/G' is a space group with free abelian normal subgroup GjG' and point
group F/G whenever ker 9 = G. In particular, F/G' is a space group when F/G is simple,
G ^A(co) or A(<p), and when G =F(3).

Now the only free normal subgroups of genus zero of the modular group are F (2), F (3),
F(4) and F(5). This follows from a simple calculation using the formula for the genus of a
subgroup of the modular group [14]. And, without additional information about the normal
closure in F of the generators At, Blt ..., Ag, Bg for a normal subgroup G of genus g, we
cannot obtain maximal normal hyperbolic subgroups containing G'. We do know that the
normal closure of Au B{,..., Ag, Bg in G is hyperbolic since any parabolic element in G must
be conjugate to some Ph 1 g i ^ t, and conjugates of Pt are not in the normal closure of
AUBU ..., Ag,Bg. Hence, if the normal closure of Au Bu ..., Ag, Bg in G is normal in F, we
would have a start in determining maximal normal hyperbolic subgroups containing G' when G
has genus greater than zero. Now F (4)' is certainly not maximal normal hyperbolic since it is
contained in F(2)', and while F(5)' is not maximal normal hyperbolic, we can find a maximal
normal hyperbolic subgroup containing F(5)'. First, however, we shall show that F(3)' is
maximal normal nonparabolic.

Mason [11] shows that there are no normal subgroups Nwith infinite index in F between
F (3) and F (3)' other than F (3)'. Hence, using the following lemma, we have

THEOREM 4. F/F(3)' is just infinite, so that F(3)' is maximal normal hyperbolic.
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LEMMA. A space group S with maximal normal abelian subgroup A and point group B is
just-infinite if and only if all normal subgroups N ofS such that N<= A have finite index in S.

Proof. It follows from the definition of a just-infinite group that if S is just-infinite, then
JV«=a S implies that N has finite index.

Now assume that S is not just-infinite and all normal subgroups N<3 S such that N <=• A
have finite index in S. Then there exists a subgroup N*<i S such that [S: N*] = oo. Since
all normal subgroups of 5 contained in A have finite index, N* n A = 1. But this is impossible
since if N* nA = 1, then [N*, A] = {nan~1a~1 \neN*, as A} = 1, and this implies that N* is
contained in the centralizer of A in S. Since the centralizer of A in S is A, N* = 1.

In order to work with T (5)' we need the following theorem of McCarthy [12].

MCCARTHY'S THEOREM. IfG is a just-infinite group where A is the maximal normal abelian
subgroup that is free of positive rank r and B is the point group, then the monomorphism
p: B-+ Aut A affords a faithful Z-irreducible representation of B in GL{r, Z). Conversely, let
B be a finite group which has a faithful Z-irreducible representation p : B-> Aut A and let G be
any extension of A by B using p; then G is just-infinite.

We know that F(5) is generated by Pu ..., Pl2, and Mason [11] shows that 9 : F -> Sl2 is
not primitive. Mason also shows that if Plt..., P12 are properly arranged so that the blocks
ofimprimitivityare {PUP2}, {P3,P4}, ..., {P1UP12}, then the group L generated by

{P1P2,P3P4,...,PllP12andG'}

is normal in F and is hyperbolic. This means that the permutation representation of A5 of
degree 12 obtained by conjugating Pu ..., P12 by the elements of F/F(5) is reducible over the
integers. In particular, with basis elements A1 = PVP2, A2 = P3PA, A3 = PSP6, AA = P7P8,
As = PgP10, A6 = PnP12, Pu P3, P5, P& P9, and Plu we see that the representation is
reducible into two 6 degree representations of A5, the first 9t being a transitive permutation
representation on the blocks {Pu P2},..., {Plu P12} while the second 92 is an integral
representation with l's and - l ' s as entries. Now, the representation on Au A2,..., A6 is
doubly transitive since by Mason's Theorem the stabilizer of Pt is a 5-cycle which must be
transitive on A2,..., A6. Here we are using the lemma that if G is a transitive permutation
group on Cl, then G is Mold transitive if and only if any Ga is k— 1 fold transitive on Q - {a},
where G. is the stabilizer of ocefl.

X2

X*
Xs

1

3

3

4
5

1

1

0
1

1

o

o
1

- 1

1
1+V5

2

2
- 1

0

1
1-V5

2
1+V5

2
- 1

0

https://doi.org/10.1017/S0017089500002573 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002573


NONPARABOLIC SUBGROUPS OF THE MODULAR GROUP 101

By [2, p. 58] 9U being doubly transitive, reduces over its splitting field into the identity
representation and an absolutely irreducible representation. However [2, p. 57] 6, being a
transitive permutation representation, contains the identity representation only once over its
splitting field. The character table of A5 is as shown above.

It follows that 92, if reducible over the integers, must split into two representations of
degree 3. Since the degree 3 representations have irrational characters, we see that 62 must be
irreducible over Z. Hence we have the following theorem.

THEOREM 5. The group L, as defined by Mason, is a maximal normal hyperbolic subgroup of
F and TjL is a just-infinite group with point group As and a normal free abelian subgroup of
rank 6.

We remark that Mason's Theorems that there are no subgroups of infinite index in F
between F(2)' and F(2) and between F(3)' and F(3) can also be proved using McCarthy's
Theorem and the fact that the permutational representations 6 defined by Mason's Theorem of
F / r (2) ^ S3 and F/F (3) s AA are doubly transitive on t = 3 and t = 4 symbols respectively,
where / is the parabolic class number. Since a doubly transitive representation reduces over its
splitting field into the identity representation and an absolutely irreducible representation
[2, p. 58], McCarthy's Theorem applies.
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