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Abstract. In this paper, using a recent critical point theorem of Ricceri, we
establish two multiplicity results for the Schrödinger equation of the form

−�u + a(x)u = λf (x, u) + µg(x, u), x ∈ lRn, u ∈ W 1,2(lRn),

where f, g : lRn × lR → lR (n ≥ 3) are Carathéodory functions, λ and µ two positive
parameters.
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1. Introduction. In the last few years, several authors have studied the following
Schrödinger equation

−�u + a(x)u = f (x, u), x ∈ lRn, u ∈ W 1,2(lRn) (S)

establishing, under suitable assumptions, existence or multiplicity of solutions. We refer
the reader to [1], [2], [6]. Very recently, in [4], Kristaly obtained two results concerning
three weak solutions for the Schrödinger equation of the form

−�u + a(x)u = λb(x)f (u), x ∈ lRn, u ∈ W 1,2(lRn) (Pλ)

under the following conditions:
(a0) a ∈ L∞

loc(lRn) with ess inf lRn a > 0 and

m({x ∈ B(y, r) : a(x) ≤ M}) → 0 as |y| → ∞,

for each M > 0, r > 0, where m stands for the Lebesgue measure.
(b0) b ∈ L1(lRn) ∩ L∞(lRn), b ≥ 0, and supR>0 ess inf |x|≤Rb(x) > 0.
(1) f ∈ C(lR, lR), and there exist c > 0 and q ∈]0, 1[, such that

|f (s)| ≤ c|s|q for s ∈ lR.

(2) lim
s→0

f (s)
|s| = 0.

∗Corresponding author. Because of a surprising coincidence of names within the same Department, we have
to point out that the author was born on August 4, 1968.
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(3) sup
s∈lR

F(s) > 0, where F(s) =
∫ s

0
f (t) dt.

In particular, under the above assumptions, he proved the existence of an open interval
of positive parameters λ and a number ν for which (Pλ) admits at least two distinct
nonzero weak solutions, whose norms are less than ν.

Motivated by this fact, we obtain the same multiplicity results for the following
more general nonlinear Schrödinger equation

−�u + a(x)u = λf (x, u) + µg(x, u), x ∈ lRn, u ∈ W 1,2(lRn), (Pλ,µ)

where f, g : lRn × lR → lR (n ≥ 3) are Carathéodory functions, λ and µ being two
positive parameters. The proofs of our theorems are all based on a recent two local
minima result of Ricceri (see [8]), while in [4] the aim is achieved using a three critical
points theorem of Bonanno (see [3]).

We shall use in this paper the following conditions on the nonlinearity f :
(f0) there exist a nonnegative function b ∈ L1(lRn) ∩ L∞(lRn) and a constant

q ∈]0, 1[, such that

|f (x, t)| ≤ b(x)|t|q for t ∈ lR, a.e. x ∈ lRn,

(f1) lim
t→0

ess sup x∈lRn

∣∣∣∣ f (x, t)
t

∣∣∣∣ = 0,

(f2) there exists a constant d ∈ lR such that sup
R>0

inf
|x|≤R

F(x, d) > 0, where F(x, t) =∫ t

0
f (x, s) ds.

A weak solution of (Pλ,µ) is any function u ∈ W 1,2(lRn) satysfying (Pλ,µ) in the
weak sense. We shall consider W 1,2(lRn) endowed with the norm

‖u‖ =
(∫

lRn
(|∇u|2 + u2) dx

)1/2

,

and the subspace of W 1,2(lRn) defined by

E :=
{

u ∈ W 1,2(lRn) :
∫

lRn
a(x)u2 < +∞

}
.

The space E, endowed with the inner product

〈u, v〉E =
∫

lRn
(∇u∇v + a(x)uv) dx

and the corresponding norm

‖u‖E = 〈u, u〉1/2
E ,

is a Hilbert space.
It is known (see [1]) that (a0) implies that E can be continuously embedded into

Lp(lRn) whenever p ∈ [2, 2∗], and the embedding is compact when p ∈ [2, 2∗[ , 2∗ = 2n
n−2 .

In the sequel, we denote by kp the Sobolev embedding constant.
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The main tool is a recent critical point result by Ricceri [8]. We state it below in a
form which is enough for our purposes.

THEOREM 1.1. ([8], Theorem 4) Let X be a reflexive real Banach space, I ⊆ lR an
interval, and � : X × I → lR a function such that �(x, ·) is concave in I for all x ∈ X,
while �(·, λ) is continuous, coercive and sequentially weakly lower semicontinuous in X
for all λ ∈ I. Further, assume that

sup
λ∈I

inf
x∈X

�(x, λ) < inf
x∈X

sup
λ∈I

�(x, λ).

Then, for each ρ > supI infX �(x, λ) there exist a non-empty open set A ⊆ I with the
following property: for every λ ∈ A and every sequentially weakly lower semicontinuous
functional � : X → lR, there exists δ > 0 such that, for each µ ∈]0, δ[, the functional
�(·, λ) + µ�(·) has at least two local minima lying in the set {x ∈ X : �(x, λ) < ρ}.

Moreover, the application of Theorem 1.1 in proving our main result is made
possible by the following proposition.

PROPOSITION 1.1. ([7], Proposition 3.1) Let X be a nonempty set and �, J two real
functions on X. Assume that there exist σ > 0, u0, ū ∈ X, such that

�(u0) = J(u0) = 0, �(ū) > σ, sup
�(u)≤σ

J(u) < σ
J(ū)
�(ū)

.

Then, for each ρ satisfying

sup
�(u)≤σ

J(u) < ρ < σ
J(ū)
�(ū)

,

one has

sup
λ≥0

inf
u∈X

(�(u) − λJ(u) + λρ) < inf
u∈X

sup
λ≥0

(�(u) − λJ(u) + λρ).

2. Main results. The following theorems guarantee the existence of one and two
nontrivial solutions in which the perturbation term g satisfies conditions of the types

(g0) there exist two positive constants c, s with s ∈]1, n+2
n−2 [, such that

|g(x, t)| ≤ c|t|s for t ∈ lR, a.e. x ∈ lRn.

(g1) there exist a nonnegative function c ∈ L1(lRn) ∩ L∞(lRn) and a constant
r ∈]0, 1[, such that

|g(x, t)| ≤ c(x)|t|r for t ∈ lR, a.e. x ∈ lRn.

THEOREM 2.1. If the assumptions (a0) and (f0)-(f2) hold, then there exist a number r
and a non-degenerate compact interval C ⊆ [0,+∞[ such that, for every λ ∈ C and every
Carathéodory function g : lRn × lR → lR satisfying the condition (g0) there exists δ > 0
such that, for each µ ∈]0, δ[, the problem (Pλ,µ) has at least one nonzero weak solution
whose norm is less than r.
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Proof. Put X = E and define the following functionals:

�(u) = 1
2
‖u‖2

E, J(u) =
∫

lRn
F(x, u(x)) dx

for each u ∈ X .
It is well known that assumptions (a0) and (f0) and compact embedding, imply

that the functional J is well defined and of class C1 on E.
In particular we have

J ′(u)(v) =
∫

lRn
f (x, u(x))v(x) dx,

for all u, v ∈ E.
By (f2) there exists R0 > 0 such that ρ0 := inf

|x|≤R0

F(x, d) > 0. Let 0 < ε < 1, and

define uε ∈ E such that uε(x) = 0 for any x ∈ lRn \ B(0, R0), uε(x) = d for any x ∈
B(0, εR0), and ‖ū‖L∞ ≤ |d|. One has

J(uε) =
∫

B(0,εR0)
F(x, d) dx +

∫
B(0,R0)\B(0,εR0)

F(x, uε(x)) dx

≥ ρ0ε
nm (B(0, R0)) − ‖b‖L∞dq+1m(B(0, R0)).

Now, for some ε close to 1, the expression above will be strictly positive. Denote ū = uε

for such a value.
Fixing p with 2 < p < 2∗ and using the hypotheses (f0) and (f1), we find, for each

ε > 0 a constant cε > 0 with

|F(x, t)| ≤ ε|t|2 + cε|t|p for every t ∈ lR and a.e. x ∈ lRn. (1)

Applying inequality (1) with ε = J(ū)
�(ū)

we get

|F(x, t)| ≤ ε

4k2
2

|t|2 + cε|t|p for every t ∈ lR and a.e. x ∈ lRn. (2)

At this point, in order to apply Proposition 1.1, choose

0 < σ < min

{
�(ū),

(
ε

21+p/2cεkp
p

)2/(p−2)
}

.

For every u ∈ E with �(u) ≤ σ we have

J(u) ≤ ε

4k2
2

∫
lRn

|u(x)|2 dx + cε

∫
lRn

|u(x)|p dx

≤ ε

4k2
2

‖u‖2
L2 + cε‖u‖p

Lp ≤ ε

4
‖u‖2

E + cεkp
p‖u‖p

E ≤ ε

2
σ + cεkp

p(2σ )p/2.

Thus

sup�(u)≤σ J(u)

σ
≤ ε

2
+ cεkp

p2p/2σ (p/2−1) <
J(ū)
�(ū)

.
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Then, choosing

sup
�(u)≤σ

J(u) < ρ < σ
J(ū)
�(ū)

,

Proposition 1.1 ensures that

sup
λ≥0

inf
u∈E

�(u, λ) < inf
u∈E

sup
λ≥0

�(u, λ),

where

�(u, λ) = �(u) − λJ(u) + λρ ∀u ∈ E, ∀λ ≥ 0.

Now, we can apply Theorem 1.1. Clearly, �(u, ·) is concave in I = [0,+∞[ for every
u ∈ E. By (a0), (f0) and the compact embedding, the functional J ′ is compact and so
sequentially weakly continuous, (see Corollary 41.9 of [9]). Then, we have that �(·, λ)
is sequentially weakly lower semicontinuous.

Now, we prove the coercivity of �(·, λ) for each λ ∈ I . For fixed λ ∈ I , by (f0) one
has

�(u, λ) = 1
2
‖u‖2

E − λJ(u) + λρ ≥ 1
2
‖u‖2

E − λkq+1
2 ‖b‖L2/(1−q)‖u‖q+1

E + λρ.

Since q < 1, �(u, λ) → +∞ as ‖u‖E → +∞.
Now, for fixed α > supλ∈I infu∈E �(u, λ), Theorem 1.1 ensures that there exists

a non-empty open set A ⊆ I with the following property: for every λ ∈ A and every
Carathéodory function g : lRn × lR → lR satisfying condition (g0), there exists δ > 0
such that, for each µ ∈]0, δ[, the functional

Eλ,µ(u, v) = �(u, λ) − µG(u)

has at least two local minima lying in the set {u ∈ E : �(u, λ) < α}, where G is the
sequentially weakly continuous functional defined by

G(u) =
∫

lRn

(∫ u(x)

0
g(x, t) dt

)
dx.

These minima are also the critical points of Eλ,µ and hence weak solutions of the
equation (Pλ,µ).

Finally, let [a, b] ⊂ A be any non-degenerate compact interval. Observe that⋃
λ∈[a,b]

{u ∈ E : �(u, λ) ≤ α}

⊆ {u ∈ E : �(u, a) ≤ α} ∪ {u ∈ E : �(u, b) ≤ α}.

This implies that the set S := ⋃
λ∈[a,b]{u ∈ E : �(u, λ) ≤ α} is bounded. Hence, the two

local minima of Eλ,µ have norm less than or equal to r, taking r = sup
u∈S

‖u‖.

Finally, since one of them may be the trivial one, we shall have a nonzero weak
solution. ��
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Through the same arguments made in the proof of Theorem 2.1, but applying also
the Palais-Smale properties, we obtain the following result.

THEOREM 2.2. Let us assume the same hypotheses of Theorem 2.1. Then, there exists
a non-empty open set A ⊆ [0,+∞[ such that, for every λ ∈ A and every Carathéodory
function g : lRn × lR → lR satisfying the condition (g1) there exists δ > 0 such that, for
each µ ∈]0, δ[, the problem (Pλ,µ) has at least two distinct nontrivial weak solutions.

Proof. Reasoning as in the first part of proof of Theorem 2.1, there exists a non-
empty open set A with certain properties. In particular, fix a Carathéodory function
g : lRn × lR → lR satisfying the condition (g1), for each λ ∈ A. There exists δ > 0 such
that, for each µ ∈]0, δ[, the problem (Pλ,µ) has at least two solutions which are critical
points of the functional Eλ,µ(u) = �(u, λ) − µG(u), where G(u) is the weakly sequential
continuous function defined by

G(u) =
∫

lRn

(∫ u(x)

0
g(x, t) dt

)
dx.

From (g1) we have

G(u) ≤ kr+1
2 ‖c‖L2/(1−r)‖u‖r+1

E

for each u ∈ E and so the functional Eλ,µ is coercive for each λ ∈ A and µ ∈]0, δ[.
Now, by Example 38.25 of [9], the functional Eλ,µ has the Palais-Smale property.
Since this functional is also C1 in E, Corollary 1 of [5] ensures that there exists a

third critical point of the functional Eλ,µ that is a solution of equation (Pλ,µ). Since
one of the solutions may be the trivial one, we conclude that the equation (Pλ,µ) has at
least two distinct, nontrivial weak solutions. ��

EXAMPLE 1.1. As an example of nonlinearity of f satisfying (f0)-(f2), g satisfying
(g0) (resp. (g1)) of Theorem 2.1 (resp. Theorem 2.2), let 0 < q < 1, and consider the
functions defined by

f (x, t) = 1
(1 + |x|n)2

|t|q sin t,

g(x, t) = cos |x| | sin t|s with s ∈
]

1,
n + 2
n − 2

[
,(

g(x, t) = 1
(1 + |x|n)2

| sin t|r with r ∈]0, 1[
)

.
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