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Let A be a quasi-accretive operator defined in a uniformly smooth Banach space. We present a necessary and
sufficient condition for the strong convergence of the semigroups generated by — A and of the steepest descent
methods to a zero of A.
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1. Introduction

The purpose of this paper is to present a necessary and sufficient condition for the
strong convergence of the semigroup generated by a m-accretive operator and of the
steepest descent approximation process.

xn+l=xn-tnAxn, tne/?+=(0,oo), {Qil1 (1.1)

to a zero of a quasi-accretive operator A in Banach spaces.
Let X* be the dual space of a real Banach space X and J:X-*2X* be the normalized

duality mapping defined by

Ir — /v* e Y*- / v* YS —IIY*II llvll HY*II —HYIU V r c VJX — [X fcA . \X ,X/ — \\X \\\\X\\,\\X || — | |X | | / V.XEA

where <.,.> denotes the generalized duality pairing. An operator A with domain D(A),
range R(A) and kernel N(A) is said to be accretive if, for every x,yeD(A), there is a
selection j(x-y)eJ(x-y) such that <Ax—Ay,j(x—y))^0. If N{A)=?0 and this in-
equality holds for any xeD(A) but yeN(A), the corresponding operator A is said to be
quasi-accretive. An accretive operator A is m-accretive if R(I + rA) = X for all r > 0.

Such operators have beem extensively studied and applied by various authors (see,
e.g. [l]-[8], [10]-[14]). The interest and importance of such operators stems mainly
from the fact that many physically significant problems can be modelled in terms of an
initial value problem of the form
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« « - * °"° (12)

where A is an accretive operator in an appropriate Banach space. In this case, a zero of
A corresponds to an equilibrium point of the system (1.2).

When A is a m-accretive operator in a reflexive Banach space, it is known [3, p. 118]
that — A generates a semigroup S of nonlinear contraction on cl(D(A)), the closure of
D(A), and S(t)x0 for any xoe D(A) is a strong solution of (1.2). Therefore, the asymptotic
behaviour of the system (1.2) is reflected by the convergence of the semigroup S(t) as
well as the process (1.1), which can be viewed as a discrete approximation of S(t), as t
goes to infinity. In this line, several sufficient conditions are known. See, for instance,
O. Nevanlinna and S. Reich [10], R. E. Bruck and S. Reich [7], A. Pazy [11] and the
references mentioned there. In this paper we would like to characterize the necessary
and sufficient conditions for the strong convergence of S(t)x0 and the process (1.1) in
Banach spaces. In [16], Z. B. Xu and G. F. Roach considered this problem for certain
special cases of the operators that possess the so-called property (/). We shall extend
these previously established results. In particular, our main theorems (Theorems 1 and
2) will unify and generalize all of the corresponding results established in [6]-[8], [10]-
[11], [13]-[14] and [16].

2. Preliminaries

Given a quasi-accretive operator A in a Banach space X, we let N0(A) be a proximal,
closed and convex subset of N(A), Po be an arbitrary selection of the nearest point
mapping from X onto N0(A) and Jo(x-Pox) be an element in J(x — Pox) that satisfies
<J0(x —Pox),P0

x—3;>^0 f°r aH yeNo(.A). With this notation, we introduce the
following:

Definition 1. The operator A is said to satisfy the condition {J) if
</lx,J0(x —Pox)> = 0 implies xeN(A).

Definition 2. A sequence {xn} (an abstract function u(t)) in X is said to be
hyperstrongly convergent if it is strongly convergent, the limit w = limn_00||xn —Poxn||
(lim,_00||u(t) — Pow(t)||) exists and either m = 0 or {||xn+i— xJlJe/1 (Hdu/dOHeL^O,oo)).

The following provides us with a series of examples of operators satisfying the
condition (J).

(i) A satisfies the condition (/) introduced in [16], that is, for any peN(A) and any
j(x — p) e J(x — p), the equality </4x, ;(x-p)> = 0 holds if and only if xeN(A). In this
setting, it is seen that A satisfies the condition (J) with N0(A) = {p} for any peN(A).
Furthermore, either strongly quasi-accretive operators or operators of the form
A = a(/ — T) with a constant a and a nonexpansive mapping T defined in a uniformly
convex Banach space (cf. [16, Th. 2]) also satisfy (J).
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(ii) A satisfies the convergence condition introduced by Nevanlinna and Reich in
[10]: if X is uniformly convex and A is m-accretive, then xneD(A), ||xn||^C, ||J4X,,||^C
and lim)1^0O</lxB,J(xn-Pxn)>=0 imply that liminf^^Hxn-PxJI^O, where P:X^N(A)
is the nearest point mapping. From [7] and [10], it is clear that such operators satisfy
the condition (J) with N0(A) = N(A) and, particularly, they include those operators such
that N(A) = {z] and 0eint{Az).

(iii) A is quasi-accretive and demi-positive in the sense of Bruck [4]: A is a quasi-
accretive operator such that for any xneD(A) and for an peN(A), if x ^ x , {Axn} is
bounded and (Ax,J(xn —p)>->0 (n->oo), then xeN(A). It is seen that a demi-positive
operator satisfies the condition (J) with N0(A) = {p}. If X is uniformly convex and
smooth, any accretive operators that have zero sets with nonempty interiors are
demi-positive.

(iv) A satisfies Bruck's condition (see [6]): if xneD(A) such that xn-*+x then
limn_00</4xn — Ay,xn—y} = 0 implies Ay = Ax. The class of operators satisfying this
condition in Hilbert spaces, for instance, includes those maximal monotone operators of
subdifferentials, or more generally a-angle-bounded operators and Yosida approxi-
mation Ax of a maximal monotone operator (cf. [6, p. 15]).

We shall establish our main results by using certain special geometric aspects of
Banach spaces. Recall that a Banach space is said to be uniformly smooth if the
modulus of smoothness of X, defined by

satisfies limt_opx(T)/T = 0. The following properties of px will be used in the sequel:

(pi)
(p2) px(r) is continuous, convex and nondecreasing;
(p3) PX(T)/T is nondecreasing;
(p4) There is a constant B > 0 such that px(n)/n2 S Bpx{x)/x2 for any r\ ^ T > 0.

We also need the following specialization of [15, Th. 2]:

Lemma 1 [16]. Let X be a uniformly smooth Banach space with its modulus of
smoothness px{t). Then there exist positive constants K and C such that

3. The steepest descent approximation

With the notation fixed as above, we now prove the following theorem.

Theorem 1. Let X be a uniformly smooth Banach space and A:X-*X be a
quasi-accretive, demi-closed operator which satisfies the condition (J) and

VC>0. (3.1)
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Then, for any xoeX there is a positive real number T(x0) such that the sequence {xn}
defined by the steepest descent approximation process (1.1) with

tn^T(x0), n = 0,l,..., and {px(tn)}el' (3.2)

converges hyperstrongly to an element x* in N(A) if and only if there is a nondecreasing
function i//:R + -*R+ such that

{Axn,J(xn-Poxn)y^(\\xn-Poxn\\)\\Axn\\, n = 0.1, . . . (3.3)

where i/>(0)=0, \j/(t) is strictly increasing in t^.t* with

f lim ||xn-Poxn||, if (Hx^-xJJe/1

t*= < n-oo
[. 0, otherwise

Proof. "=>". Let M = sup{||xn-Poxn| |:n^O}, N = sup{||v4xn||:n^0} and m =
limn^oo||xn-P0xn||. If M = 0 or N = 0, then xn = x* for some x*eN(A) and hence (3.3)
follows trivially; If M = m, then (3.3) follows also directly provided we define \j/{t) to be
any strictly increasing function in t>t* but ip{t) = O for every re[0, t*]. Suppose M>0,
N > 0 and M>m. Then for any t e (0, M) we define

C, = {neN:\\xn-Poxn\\>t}

and

= inf«/lxn,J(xn-PoxJ>/N: neC,} (3.4)

Clearly f(t) is nonnegative and nondecreasing. We now prove that / ( r )>0 for any
te(m,M). Assume this is not the case, namely, that there is a toe(m,M) such that
/ ( t o ) = 0. Then a subsequence {nj in C(o exists so that

\\xni-Poxni\\^to>m (3.5)

and

</lxn(,J(xn,.-Poxn,.)>/Ar^0 (i^co). (3.6)

Since the limit m = limn->00||xn —Poxn|| exists, (3.5) implies that {||xnj —Poxni||} is finitely
circulative, that is, there exists an xnoe{xn} and a subsequence {xmj}c{xni} such that
xniJ = xno for any ; ^ 1 . xno must be an element in N(A) because (3.6) implies
(Axno,JQ(xno — P0xno)y = 0 and A satisfies the condition (J). Thus, by the definition of
the process (1.1), we have xn = xno for any n^n0. Since xn is known to converge to
x*eN(A), it in turn follows that xno=x*. Therefore we deduce from (3.5) that
llx* — Pox*| |^tn>m. But, on the other hand, we have
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\ \ x * - P o x * \ \ ^ \ \ x * - P o x n \ \ ^ \ \ x * - x n \ \ + \ \ x n \ \

This yields ||x* — P0x*||^limn^0O||xn-Poxn|| = m, which is a contradiction. Thus, f(t)>0
for any te(m,M). Moreover, by the definition of t*, if {||xn+1—xn||}e/' then t* = m and
if {||xn+1 — XnH}^/1, by the hyperstrong convergence of {xn} we also have m = 0 = t*, we
conclude that f{t)>0 for any te(t*,M).

We extend the domain of / to R+ by defining /(0)=0, f(t) = sup{f(s):s<M} for
every t^M and f(t) = inf{f{s):s<M} for any te(0,rri]. Then, with the function ty
defined by il/(t)=(l + t)~1tf(t), it is seen that ^(0) = 0, i//(t) is strictly increasing in t^t*,
which fulfills the inequality (3.3). This completes the proof of the necessity.

"<=". Suppose the inequality (3.3) is satisfied for a function i// that possesses the
mentioned properties. We prove that there is a T(x0) such that the process (1.1) with tn

chosen as in (3.2) converges hyperstrongly to x*, an element in N(A). To this end,
we assume x0 4 N(A) and let n be a positive real number such that

||x0-F0Xo||^2/x||/lxo|| and ^ | | / l x o | | )>0 . (3.7)

Let

where the constants K and C are the same as in Lemma 1. We proceed by the following
steps:

Step 1. We prove that the sequences {xn—Poxn} are bounded and in particular,

||> ii=0,1,... (3.11)

This is trivially true for n = 0. Assume this holds for an integer n>0. Then we have two
possible cases: either ||xn—Poxn||^^||/4xo|| or ||xn—Poxn||>^||/4xo||. In the first case, by
(3.7H3.10) and (1.1) we have

xo|| + T(x

which establishes (3.11) directly. In the second case, by using Lemma 1 and (3.7H310),
we obtain

https://doi.org/10.1017/S0013091500006167 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006167


ZONG-BEN XU, YAO-LIN JIANG AND G. F. ROACH

p v ll^-crllv P -v ll^
n+l ~rOXn+l\\ = | | x n + l "^O-^nll
^ II*.- P0xn\\

2 - 2tn(Axn, J(xn - Pox.)> + K(||xn - Poxn|| + tn\\Axn\\

+ C/2)px(tn\\Axn\\)

^ \\xn-Poxn\\
2-2tn<P(\\xn-Poxn\\)\\AXn\\ + K(24Axo\\ + T(xo)M(xo)

+ C/2)px(tn\\Axn\\)

\ \ \ \ \ \ \ \ 4 \ \ ). (3.12)

If, furthermore, in this case ||/4xn||>||i4x0||, then (3.8H3.10) yield

From (3.12), it follows that

ll l l < r l l v P v l l
11! = ||-)C»I •• 0 x n | | -

If ||/lxn||^||/lx0|| in this case (obviously, we can assume /4xn#0 without loss of
generality), then by using the property (p3) of the modulus of smoothness and by (3.7)-
(3.10), we have

Px(tn\\Axn\\)^px(tnM(x0))
tn\\Axn\\ ~ tnM(x0)

o|| 2+(n\\Axo\\)
| | | |~ M(x0) K(3A»||ylxo|| + C/2) ~ #C(3/*||̂ xo|| + C/2)

which yields from (3.12) also that

| |xn + 1-P0xn + 1 | | 2g | |xn-P0xn | | 2- tn | | / lxn | | [2^| | / lxo| | )

g| |xn-Poxn| |2.

This implies that in this case we always have ||xn+1 —Poxn + 1 | |^| |xn —P0xn||^2//||/lxo||.
completing the proof of Step 1.

Step 2. Show that {xn} is also bounded. For this purpose, we take an x*eN{A)
arbitrarily and let dn = max{||xn—x*||,K3} where K3 = max{T(x0)M(x0),C/4} and
/C2 = max{BM2(x0), 1}, where B, C are the constants specified by property (p4) of the
modulus of smoothness and Lemma 1 respectively. From Lemma 1 and (1.1), we then
have
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\\xn+i-x*\\2 = \\xn-x*-tnAxn\\
2

Z\\xn-x*\\2-2tn(Axn,J(xn-x*)> + K(\\xn-x*\\

+ tn\\Axn\\,C/2)px{tn\\Axn\\)

^\\xn-x*\\2 + K(\\xn-x*\\ + T(x0)M(x0),C/2)px(tn\\Axn\\)).

Noting that the properties (pl)-{p4) of the modulus of smoothness yield ||||
Px(tnM(x0)), Px(tnM(x0))^px(tn) if M(xo)^l and px(tnM(x0))^BM2(x0)Px(t0) if
M(x0) > 1, we obtain

T(xo)M(xo)},C/2W£n)

Z\\xn-x*\\ + 2KK2max{\\xn-x*\\,K3}px(tn). (3.13)

This implies d2
+1^d2 + 2KK2dnpx(tn) and furthermore

dn+l<dn + KK2px(tn).

Since {px(tn)}ell, the convergence of {dn} as n-*co (and in particular, the boundedness
of {||xn — **||}) then follows, which in turn, from (3.13), implies the convergence of the
sequence {||xn-x*||}.

Step 3. Demonstrate that the sequence {xn} converges hyperstrongly to an
x* e N(A). We notice first that a similar reasoning to that in Step 2 implies the existence
of the limit / = limn^00||xn-P0xn||. If/>0 and ( H x ^ ^ x J ) ^ / 1 , then, by letting Aft be a
positive integer such that ||xn —Poxn||^//2 whenever n^.Ni and M = /C[3//||/4xo|| + C/2],
we obtain from (3.12) that

||xn+, - P o x n + , ||2 ̂  \\xn-Poxn\\
2-2tJ(\\xn ~ PoX.IDIMx.ll + Mpx(tn\\Axn\\)

^ I k - Pox.|| - 2tM/2)\\Axn\\ + Mpx(tn\\Axn\\)

for any n>Nt. Because sup{||/lxn||:n^O}:gM(xo)< +oo, the uniform smoothness of X
implies that there is an integer N2>Nt such that

0, Vn ̂  N2

which yields from (3.14) and (1.1)
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This clearly implies {||xn+1 — xJlJe/1, contradicting the assumption.
Thus two possible cases must occur: either lim^^lx,,—Poxn|| = 0 or {||xn+1— xJlJe/

In the first case, just as in the reasoning leading to (3.12) we can find

n - l

| |xn-Poxm||2^||xm-/JoXm||2 + M1 X Px{tjM(x0)) Vn>w>0
j = m

where Ml=Kmax{\\xn —xm|| + ||xm — Poxm|| + /i||/lxo|| + C/2:n,m^0}< +00. This gives

llv v- Il-Cllv- P v ll-l-llv P \- II
\\Xn~ Xm\\^\\Xn — ^0Xm\\ + \\Xm~ r0Xm\\

-•0 (n, m->co)

which shows that {xn} is a Cauchy sequence; in the second case, {xn} certainly is a
Cauchy sequence, we then conclude that the limit x* = limn_0Oxn exists. In the first case,
one sees

and hence x*eN(A). In the second case, we have liminfn_oo||y4xn||->0 hence the
demi-closedness of A implies x*eJV(4 This completes the proof of Theorem 1.

Remark 1. From the proof of Theorem 1, one easily sees that the assumptions of
uniform smoothness of X and (3.1) are in fact not required for the necessity of the
theorem while the assumption that A satisfies the condition (J) is not required for the
sufficiency of the theorem.

Remark 2. We observe that if A is bounded then the assumption (3.1) is satisfied
either when N0(A) is bounded, or instead of (3.2) we take tn = fn/M(x0), with {fn} being
an arbitrary positive sequence satisfying {px(Q}G'1 and, for a fixed x*eN(A),
M(x0) = Sup{\\Ax\\:max{\\x-x*\\,K3}^max{\\x0-x*\\,K3} + KYjin)Px(Q} with K3 =
max {sup {fn}, C/4}. For the first situation this claim is straightforward and, for the
second case, this can be justified by showing by induction that

msix{\\xn+l-x*\\,K3}^max{\\xn-x*\\,K3

(the argument similar to that used in the step 2 of the proof). Additionally, we observe
that the demi-closedness of A is naturally satisfied if A is m-accretive ([3]).
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Remark 3. In developing their general convergence principle, R. E. Bruck and S.
Reich in [7] introduced the following condition (which will be called as the Bruck-
Reich condition below): Let (/, F) be an admissible pair (namely, D(f)czD(F)<zX,
f:D{f)^R+, F:D{F)^X* and (/,F) satisfies either f(x+y)^f(x) + (y,F(x)}-b{x,y)
\\y\\ or f(x + y)^f(x) + (y,F(x)} + b(x,y)\\y\\ for all appropriate x and y, where
0£b(x,y)-*0 as y->0 uniformly for bounded x). A set-valued mapping A:D(A)->2x is
said to satisfy the Bruck-Reich condition if, for each K>0, there is an increasing
function g:K + ->R + such that g(r)>0 for r>0, and

<y,F(x)>Zg{f(x))\\y\\, VxeD(A),yeAx,\\x\\ZK,\\y\\£K- (3-15)

In particular, if we take /(x) = i | |x-Pox | | 2 , F(x) = J0(x — Pox) and let A be single-
valued, then (3.15) leads to the following

(Ax, J0(x - Pox)> ^g(\\\x - Pox||)||Xx||, Vx 6 D(A), \\x\\ ZK,\\Ax\\£K. (3.16)

If, furthermore, we take xe{xn} in this inequality, where {xn} is the sequence defined by
the process (1.1), then (3.16) is nothing else but just (3.3) in Theorem 1. This shows that,
in practical applications, it is reasonable to believe that (3.16) actually is a necessary and
sufficient condition for strong convergence of the process (1.1) starting from every
xoeD(A). Thus, it is seen that Theorem 1 here generalizes all of the corresponding
results in [7], [10], [11] and [16].

4. The nonlinear semigroup of contractions

Let A:D(A)-*X be an accretive operator which satisfies the range condition clD(A)c
0 {R{I + tA):t>0}. Then it is known that

S(t)x=\im(l + -
n̂ ooV n

exists for each xecl(D(A) and defines a semigroup of nonlinear contractions
S:clD(A)xR + ->clD(A).

If, furthermore, X is reflexive and A is closed, it is also known that S(t)x0 is the
unique strong solution of the evolution equation (1.2) for any xoeD(A) (cf. [3, p. 118]).

Theorem 2. Let X be a reflexive and strongly smooth Banach space and A be a
demi-closed accretive operator which satisfies the condition (J) and the range condition.
Then, for any xoeD(A), S(i)xo = u(t) converges hyperstrongly to an x* in N(A) if and only
if there is a nondecreasing function <p:R + ->R+ such that

(4.1)

where <p(0)=0, q>(t) is strictly increasing in t^.t* with t* given by
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flim||ii(r)-Poii(t)||, if
t*= < (->oo

10, otherwise.

Proof. For any t > s, observe that the contraction property of S implies

\\S(t)x0-P0S(t)x0\\^\\S(t)x0-P0S(s)x0\\
= \\S(t-s)S(s)xo-PoS(s)x0\\ = \\S(t-s)S(s)x0-S(t-s)PoS(s)xo\\

It follows that the function g(r) = ||S(t).x-P0S(t)x|| = ||u(t) — Pow(r)|| is nonincreasing and
therefore we can write m = limt^aog(t). Furthermore we easily find (e.g., see [10,
Theorem 1])

2
a.e.t>0. (4.2)

"=>". Similar to the case in Theorem 1, by letting M = snp{g(t):t^.O}, N =
sup{\\Au(t)\\:u(t)€D(A)}, C, = {seR + :g(s)2:t,u(t)eD(A)} and f(t) = iaS{<Au(s),J(u{s)-
Pou(s))y/N:seC,}, we only need to show / ( t )>0 for any te(m, M) under the assump-
tions that M>m, m>0 and N>0. Again assume to the contrary, namely, there is a
toe(m,M) such that f(to) = 0. Then for a subsequence {t,}c:C,o, which is nonempty
because u(t) e D(A), a.e.t > 0, we have

and

<A«i(t,),./(«(t()-Pou(t,))>-»0 (i-oo).

(4.3)

(4.4)

Now we need to distinguish two possible cases:

Case 1. If {tj} contains an infinite subsequence which tends to infinity, then by
convergence of g(t) as t goes to infinity we deduce that w(t,) is finitely circulative and
consequently we come to a contradiction just as in the proof of Theorem 1.

Case 2. If {t,} is contained in an interval, say, [0, T\, in this case we can assume
without loss of generality that tt tends to a t* e [0, T\. Since A is semi-closed, g(t) is
nondecreasing and the strong smoothness of X implies that J is continuous from the
strong topology of X to the strong topology of X*. (4.3) and (4.4) then give

(4.5)

and (Au(t*),J(u(t*)- Pou(t*))> = 0, from which u(t*)eN(A) clearly follows (for,
satisfies the condition (J)). Furthermore, we observe that for any t>t*,
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u{t) = S(t)x0 = S(t - t*)S(t*)x0 = S(t - t*)u(t*) = u(r*).

Hence u(t)->u(t*) as t-»oo, which yields g(t*) = \\u(t*) — P0u(t*)\\ = \im,^o0g(t) = m. This
contradicts (4.5) and hence completes the proof of the necessity.

"<=". (4.1) together with (4.2) now implies

1 d
(p(g(t))\\Au(t)\\^(Au(i),J(u(i) — Pou(t))')^ — - -rg2(i)

2 at

and hence

- .. .. i

[g (s)—g W] (4-6)

for any t ^ s > 0 . If m#0 and ||i4ii(t)||£L1(0,oo), then there is a T0>0 such that
g(t)^m/2, Vt> To, which yields

(4.7)

By the definition of t*, <p(t) in this case is strictly increasing in t > 0, so (p(m/2) > 0. From
(4.7) it then follows that ||y4u(t)||eL1(0, oo), yielding an obvious contradiction. Accord-
ingly we have that either m = 0 or ||/4u(t)||eL1(0, oo).

If m = 0, then for any h ̂  0

as t->oo and hence x* = lim,-,mu(t) exists. From the above inequality clearly, ||u(t)—x*|
S 2g(t). This gives

from which x*eN(A) follows. Suppose m#0 but

eL^O.oo).

Then u(t) is convergent, and in particular, if y* = \imn-.„ u(t), then Ay* = 0 because of the
semiclosedness of A. This completes the proof of Theorem 2.

Remark 4. Theorem 2 extends [7, Th. 3.3] and the corresponding results in [10]
and [11].
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