ON EXTENSIONS OF THE GENERALISED JENSEN FUNCTIONS ON SEMIGROUPS

JANUSZ BRZDĘK and ELIZA JABŁOŃSKA ${ }^{\boxtimes}$

(Received 14 November 2016; accepted 26 November 2016; first published online 13 February 2017)

Abstract

Assume that $(G,+)$ is a commutative semigroup, τ is an endomorphism of G and anvolution, D is a nonempty subset of G and $(H,+)$ is an abelian group uniquely divisible by two. We prove that if D is 'sufficiently large', then each function $g: D \rightarrow H$ satisfying $g(x+y)+g(x+\tau(y))=2 g(x)$ for $x, y \in D$ with $x+y, x+\tau(y) \in D$ can be extended to a unique solution $f: G \rightarrow H$ of the generalised Jensen functional equation $f(x+y)+f(x+\tau(y))=2 f(x)$.

2010 Mathematics subject classification: primary 39B52; secondary 39B82.
Keywords and phrases: Jensen function, restricted domain, abelian semigroup, involution, filter.

1. Introduction

The well-known and important Jensen functional equation (see, for example, [13])

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}
$$

can be written in the equivalent form

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) \tag{1.1}
\end{equation*}
$$

(for example, for real functions f). It is enough to replace x and y by $x+y$ and $x-y$, respectively. So the functional equation

$$
\begin{equation*}
f_{0}(x+y)+f_{0}(x+\tau(y))=2 f_{0}(x) \tag{1.2}
\end{equation*}
$$

with a given function τ, is a natural generalisation of (1.1) which is (1.2) with $\tau(y)=-y$.

The equation (1.2) is considered in [14, 15]. In this form, with a suitable function τ (compare with [14] and [16, page 207]), it can be considered on semigroups. We examine the possibility of extensions of solutions of (1.2) on some 'large enough' subsets D of a semigroup to a solution of the equation on the whole semigroup. Our results have been motivated by somewhat analogous situations in [4, 9-12] (see also

[^0][13] and [5]) and a program declared by a group of mathematicians of the University of Debrecen (Hungary) concerning the possibility of extensions of solutions of some functional equations from restricted domains (the program has been motivated by a problem of Aczél [1] and further discussions with him).

Let $(H,+)$ be an abelian group uniquely divisible by two, let $(G,+)$ be a commutative semigroup and let D be a nonempty subset of G. Let τ be an endomorphism of G and an involution, that is, $\tau(x+y)=\tau x+\tau y$ and $\tau(\tau x)=x$ for $x, y \in G$, where $\tau x:=\tau(x)$ for $x \in G$ (see [3]). We investigate the possibility of extensions of functions $f: D \rightarrow H$, satisfying the conditional equation

$$
\begin{equation*}
f(x+y)+f(x+\tau y)=2 f(x), \quad x, y \in D, x+y, x+\tau y \in D, \tag{1.3}
\end{equation*}
$$

to the solutions $f_{0}: G \rightarrow H$ of (1.2).
Note that if G is a group and $\tau x \equiv-x$, then we can replace x by $x+y$ in (1.2) and obtain the equation

$$
f_{0}(x+2 y)+f_{0}(x)=2 f_{0}(x+y)
$$

which can be written as

$$
\begin{equation*}
\Delta_{y}^{2} f_{0}(x):=\Delta_{y, y} f_{0}(x)=0, \tag{1.4}
\end{equation*}
$$

where Δ stands for the Fréchet difference operator given by

$$
\Delta_{y} f_{0}(x)=\Delta_{y}^{1} f_{0}(x):=f_{0}(x+y)-f_{0}(x), \quad x, y \in G .
$$

Recurrently, we define

$$
\Delta_{x_{n+1}, x_{n}, \ldots, x_{1}}:=\Delta_{x_{n+1}} \circ \Delta_{x_{n}, \ldots, x_{1}}, \quad x_{1}, \ldots, x_{n+1} \in G, n \in \mathbb{N} .
$$

Therefore, somewhat analogous properties for (1.1) for real functions can be deduced from the quite involved results in [9, 13] proved for general polynomial equations, of which (1.4) is a particular case. Related results for the analogously generalised d'Alembert equation have been obtained in [2].

2. Preliminaries

Write

$$
T+a:=\{x+a: x \in T\} \quad \text { and } \quad T-a:=\{x \in G: x+a \in T\},
$$

for $a \in G$ and $T \subset G$. Clearly, if G is a group, then

$$
T-a=\{x-a: x \in T\} .
$$

Throughout the paper, we assume that $D \in \mathcal{L}$, where \mathcal{L} is a family of subsets of G, satisfying:
(i) $\mathcal{L} \neq 2^{G}$;
(ii) $B \in \mathcal{L}$ for $B \in 2^{G}$ with $2^{B} \cap \mathcal{L} \neq \emptyset$;
(iii) $A \cap B \in \mathcal{L}$ for $A, B \in \mathcal{L}$;
(iv) $B-x, B+x \in \mathcal{L}$ for $x \in G$ and $B \in \mathcal{L}$;
(v) $\tau(B) \in \mathcal{L}$ for $B \in \mathcal{L}$.

Clearly, Conditions (i) and (ii) imply that $\emptyset \notin \mathcal{L}$.

Remark 2.1. Conditions (ii) and (iii) mean that \mathcal{L} is a filter. It is well known that if $\mathcal{I} \subset 2^{G}$ is an ideal (that is, if $2^{B} \subset \mathcal{I}$ and $B \cup C \in \mathcal{I}$ for every $B, C \in \mathcal{I}$), then

$$
\mathcal{L}:=\{A \subset G: G \backslash A \in \mathcal{I}\}
$$

is a filter. Moreover, if I has some suitable additional properties, then also conditions (i), (iv) and (v) are valid. Below we provide several examples of ideals $I \subset 2^{G}$ having suitable properties (compare with [2, Remark 1]).
(a) G is cancellative and not of finite cardinality and $I=\{A \subset G: \operatorname{card} A<\operatorname{card} G\}$.
(b) d is an invariant metric in G (that is, $d(x+y, z+y)=d(x, z)$ for $x, y, z \in G)$, $\sup _{x, y \in G} d(x, y)=\infty$, the set $\tau(B)$ is bounded (that is, $\sup _{x, y \in \tau(B)} d(x, y)<\infty$) for each bounded set $B \in 2^{G}$ and I is the family of all bounded subsets of G.
(c) $G=\{z \in \mathbb{C}: \mathfrak{R} z>0\}$ (with the usual addition of complex numbers), I is the family of all subsets A of G with $\sup _{z \in A} \Re_{z<\infty}$ and $\tau z=\bar{z}$ for $z \in G$, where \bar{z} is the complex conjugate and $\mathfrak{R z}$ is the real part of the complex number z.
(d) G is a topological group of the second Baire category, I is the family of all first category subsets of G and τ is continuous (which actually means that τ is a homeomorphism because $\tau^{-1}=\tau$).
(e) G is a locally compact topological group, μ is the Haar measure in G with $\mu(G)=\infty, \mathcal{I}=\{A \subset G: \mu(A)<\infty\}$ and τ is continuous.
(f) $\quad G$ is a Polish group, I is the σ-ideal of Haar zero subsets of G (see [6]) and τ is continuous.
(g) G is a Polish group, I is the σ-ideal of Christensen zero subsets of G (see [8]) and τ is continuous.
(h) G is an abelian Polish group, I is the σ-ideal of all Haar meagre subsets of G (see [7]) and τ is continuous.

Let us now recall some useful results from [2, 14].
Theorem 2.2 [14, Theorem 2]. A function $h: G \rightarrow H$ satisfies (1.2) on G if and only if there exist an additive function $A: G \rightarrow H$ and a constant $a \in H$ such that

$$
\begin{aligned}
& A(\tau x)=-A(x), \quad x \in G \\
& h(x)=A(x)+a, \quad x \in G .
\end{aligned}
$$

Lemma 2.3 [2, Lemma 1]. Assume that $S \in \mathcal{L}$. Then

$$
\begin{equation*}
\{z \in G:(S+z) \cap S \neq \emptyset\}=G . \tag{2.1}
\end{equation*}
$$

Lemma 2.4 [2, Lemma 2]. Assume that $S \in \mathcal{L}$ and that $h_{0}: S \rightarrow H$ satisfies

$$
h_{0}(x+y)=h_{0}(x)+h_{0}(y), \quad x, y \in S, x+y, x+\tau y \in S .
$$

Then there exists a unique additive function $h: G \rightarrow H$ such that $h(x)=h_{0}(x)$ for $x \in S$.

3. The main result

First, we prove a lemma.
Lemma 3.1. Let $D \in \mathcal{L}$ and $g: D \rightarrow H$ satisfy (1.3). Then there exist $\widehat{D} \in \mathcal{L}$ and $c \in H$ with $\widehat{D} \subset D, \tau(\widehat{D})=\widehat{D}$ and

$$
\begin{equation*}
g(\tau x)=-g(x)+c, \quad x \in \widehat{D} \tag{3.1}
\end{equation*}
$$

Proof. Let

$$
D_{0}:=D \cap \tau(D) \in \mathcal{L}
$$

Fix $u \in D_{0}$ and write

$$
D_{u}:=(D-u) \cap D \cap(D-\tau u) \in \mathcal{L}, \quad \widehat{D}:=D_{u} \cap \tau\left(D_{u}\right) .
$$

Clearly, $\tau(\widehat{D})=\widehat{D}$ and $\widehat{D} \in \mathcal{L}$.
Now take an arbitrary $w \in \widehat{D}$. Then

$$
\tau u, \tau w, w+u, w+\tau u, u+\tau w, \tau u+\tau w \in D,
$$

and hence

$$
\begin{aligned}
2 g(u) & =g(u+w)+g(u+\tau w), \\
2 g(\tau u) & =g(\tau u+w)+g(\tau u+\tau w) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
2 g(u)+2 g(\tau u) & =g(u+w)+g(\tau u+w)+g(u+\tau w)+g(\tau u+\tau w) \\
& =2 g(w)+2 g(\tau w) .
\end{aligned}
$$

Thus we have proved that there is $c_{0} \in H$ with

$$
2 g(w)+2 g(\tau w)=c_{0}, \quad w \in \widehat{D}
$$

and, setting $c:=c_{0} / 2$, we obtain (3.1).
Proposition 3.2. Let $D \in \mathcal{L}$ and $g: D \rightarrow H$ satisfy (1.3). Then there exist $\widehat{D} \in \mathcal{L}$, a unique additive function $\mathbf{A}: G \rightarrow H$ and a unique constant $a \in H$ such that $\widehat{D} \subset D$, $\tau(\widehat{D})=\widehat{D}$,

$$
\begin{array}{cc}
\mathbf{A}(\tau x)=-\mathbf{A}(x), & x \in G, \\
g(x)=\mathbf{A}(x)+a, & x \in \widehat{D} . \tag{3.3}
\end{array}
$$

Proof. According to Lemma 3.1, there are $\widehat{D} \in \mathcal{L}$ and $c \in H$ such that (3.1) holds, $\widehat{D} \subset D$ and $\tau(\widehat{D})=\widehat{D}$. Let

$$
A(x):=\frac{1}{2}(g(x)-g(\tau x)), \quad x \in \widehat{D}
$$

Then

$$
\begin{align*}
A(\tau x) & =\frac{1}{2}(g(\tau x)-g(\tau(\tau x))) \\
& =\frac{1}{2}(-g(x)+g(\tau x))=-A(x), \quad x \in \widehat{D} . \tag{3.4}
\end{align*}
$$

Hence, by (3.1),

$$
\begin{equation*}
g(x)=\frac{1}{2}(g(x)-g(\tau x))+\frac{1}{2}(g(x)+g(\tau x))=A(x)+\frac{c}{2}, \quad x \in \widehat{D} . \tag{3.5}
\end{equation*}
$$

Now, take $x, y \in \widehat{D}$ such that $x+y, x+\tau y \in \widehat{D}$. Then $y+\tau x \in \widehat{D}$ and, by (1.3) and (3.1),

$$
\begin{aligned}
2 A(x+y) & =2 g(x+y)-c \\
& =[g(x+y)+g(x+\tau y)]-g(x+\tau y)+[g(y+x)+g(y+\tau x)]-g(y+\tau x)-c \\
& =2 g(x)+2 g(y)-g(x+\tau y)-[-g(x+\tau y)+c]-c \\
& =2 g(x)-c+2 g(y)-c=2 A(x)+2 A(y) .
\end{aligned}
$$

Thus, according to Lemma 2.4, there is a unique additive function $\mathbf{A}: G \rightarrow H$ such that $\left.\mathbf{A}\right|_{\widehat{D}}=A$.

Take $z \in G$. In view of (2.1), there are $x, y \in \widehat{D}$ such that $z+x=y$; clearly, $\tau z+\tau x=\tau y$ and $\tau x, \tau y \in \tau(\widehat{D})=\widehat{D}$. So, by the additivity of \mathbf{A},

$$
\begin{aligned}
\mathbf{A}(z)+A(x) & =\mathbf{A}(z)+\mathbf{A}(x)=\mathbf{A}(y)=A(y), \\
\mathbf{A}(\tau z)+A(\tau x) & =\mathbf{A}(\tau z)+\mathbf{A}(\tau x)=\mathbf{A}(\tau y)=A(\tau y),
\end{aligned}
$$

and hence, by (3.4),

$$
\mathbf{A}(\tau z)=A(\tau y)-A(\tau x)=-A(y)+A(x)=-\mathbf{A}(z)
$$

Moreover, in view of (3.5), (3.3) holds with $a:=c / 2$.
It remains to show the uniqueness of \mathbf{A} and c. So let $\mathbf{A}_{1}: G \rightarrow H$ be an additive function and let $c_{1} \in H$ be such that $\left.\mathbf{A}_{1}\right|_{\widehat{D}}+c_{1}=g=\left.\mathbf{A}\right|_{\widehat{D}}+c$. Let $x \in G$. Then, using (2.1), there exist $s, t \in \widehat{D}$ such that $x+t=s$ and hence

$$
\begin{aligned}
\mathbf{A}_{1}(x) & =\mathbf{A}_{1}(x)+\mathbf{A}_{1}(t)-\mathbf{A}_{1}(t)=\mathbf{A}_{1}(x+t)-\mathbf{A}_{1}(t) \\
& =\mathbf{A}_{1}(s)-\mathbf{A}_{1}(t)=\mathbf{A}(s)+c-c_{1}-\left(\mathbf{A}(t)+c-c_{1}\right) \\
& =\mathbf{A}(x+t)-\mathbf{A}(t)=\mathbf{A}(x)+\mathbf{A}(t)-\mathbf{A}(t)=\mathbf{A}(x) .
\end{aligned}
$$

Consequently, $c=c_{1}$, which completes the proof.
We also need the following lemma.
Lemma 3.3. Let $f, g: D \rightarrow H$ satisfy (1.3) and $S:=\{x \in D: g(x)=f(x)\} \in \mathcal{L}$. Then $g(x)=f(x)$ for $x \in D$.

Proof. Take an arbitrary $w \in D$ and choose $s \in(S-w) \cap \tau^{-1}(S-w) \in \mathcal{L}$. Then $w+s, w+\tau s \in S$ and hence

$$
2 g(w)=g(w+s)+g(w+\tau s)=f(w+s)+f(w+\tau s)=2 f(w) .
$$

Consequently, $g(w)=f(w)$.
Now we are ready to prove the main result of this paper.
Theorem 3.4. Let $D \in \mathcal{L}$ and $g: D \rightarrow H$ satisfy (1.3). Then there is a unique solution $f: G \rightarrow H$ of (1.2) such that $g(x)=f(x)$ for $x \in D$.
Proof. On account of Proposition 3.2, there exist $\widehat{D} \in \mathcal{L}$, a unique additive function A : $G \rightarrow H$ and a constant $a \in H$ such that $\widehat{D} \subset D, \tau(\widehat{D})=\widehat{D}$ and conditions (3.2)-(3.3) are valid. Let

$$
f(x):=\mathbf{A}(x)+a, \quad x \in G .
$$

Clearly, f satisfies (1.2) for every $x, y \in G$ (see Theorem 2.2). Moreover, by (3.3),

$$
\widehat{D} \subset\{x \in D: g(x)=f(x)\} \in \mathcal{L} .
$$

So, according to Lemma 3.3, $g=\left.f\right|_{D}$.
Finally, we show the uniqueness of f. To this end, suppose that $f_{0}: G \rightarrow H$ is a solution of (1.2) with $g=\left.f_{0}\right|_{D}$. Clearly,

$$
D \subset\left\{x \in G: f_{0}(x)=f(x)\right\} \in \mathcal{L} .
$$

Hence, again by Lemma 3.3 (with $D:=G$ and $g:=f_{0}$), $f_{0}=f$. This completes the proof.

References

[1] J. Aczél, "'Remark 5" in the report of the meeting of the forty-second international symposium on functional equations (June 20-27, 2004, Opava, Czech Republic)', Aequationes Math. 69 (2005), 164-200.
[2] A. Bahyrycz, J. Brzdęk and E. Jabłońska, 'Extensions of the generalized cosine functions’, Publ. Math. Debrecen 89 (2016), 263-275.
[3] K. Baron, 'On additive involutions and Hamel bases', Aequationes Math. 87(1-2) (2014), 159-163.
[4] N. G. de Bruijn, 'On almost additive mappings', Colloq. Math. 15 (1966), 59-63.
[5] J. Brzdęk, 'On almost additive mappings', Bull. Aust. Math. Soc. 54 (1996), 281-290.
[6] J. P. R. Christensen, 'On sets of Haar measure zero in abelian Polish groups', Israel J. Math. $\mathbf{1 3}$ (1972), 255-260.
[7] U. B. Darji, 'On Haar meager sets’, Topology Appl. 160 (2013), 2396-2400.
[8] P. Fischer and Z. Słodkowski, 'Christensen zero sets and measurable convex functions', Proc. Amer. Math. Soc. 79 (1980), 449-453.
[9] R. Ger, 'On almost polynomial functions', Colloq. Math. 24 (1971), 95-101.
[10] R. Ger, 'Note on almost additive functions', Aequationes Math. 17 (1978), 73-76.
[11] S. Hartman, 'A remark about Cauchy's equation', Colloq. Math. 8 (1961), 77-79.
[12] W. B. Jurkat, 'On Cauchy's functional equation', Proc. Amer. Math. Soc. 16 (1965), 683-696.
[13] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities (Państwowe Wydawnictwo Naukowe and Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985).
[14] P. Sinopoulos, 'Functional equations on semigroups', Aequationes Math. 59 (2000), 255-261.
[15] H. Stetkær, 'Functional equation on abelian groups with involution', Aequationes Math. 54 (1997), 144-172.
[16] H. Stetkær, Functional Equations on Groups (World Scientific Publishing Company, Singapore, 2013).

JANUSZ BRZDE_K, Department of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
e-mail: jbrzdek@up.krakow.pl
ELIZA JABŁOŃSKA, Department of Discrete Mathematics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
e-mail: elizapie@prz.edu.pl

[^0]: (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

