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TRANSITIVE VECTOR SPACES OF BOUNDED 
OPERATORS 

BY 

S A N D Y G R A B I N E R 

ABSTRACT. The linear subspace S of B(X, Y), the space of 
bounded operators from the Banach space X to the Banach space 
Y, is said to be transitive if Sx is dense in Y for all x ^ 0. We give a 
number of conditions, involving operators intertwined by S, which 
imply that S is not transitive, and conditions which, when X = Y, 
imply that the commutant of S is also not transitive. 

0. Introduction. Suppose that S is a linear subspace of B(X, Y), the space of 
bounded operators from the Banach space X to the Banach space Y. We say 
that S is transitive if Sx is dense in Y for all x^O. When X= Y and S is an 
algebra, this is of course equivalent to S having no proper invariant subspaces. 
In this paper we give a number of conditions which guarantee that S is not 
transitive, and also conditions under which its commutant is not transitive when 
X=Y. Our results are similar to results proved for algebras in [2], [3], [5], [7]. 
Notice that when X = Y, the commutant of S is an algebra, even when S is not; 
so that in this case we will be proving that the commutant has an invariant 
subspace. 

Our major result, Theorem (1.1), gives conditions when the space of 
operators intertwining two operators K and C is not transitive. In the case 
K = C, Theorem (1.1) reduces to Lomonosov's Theorem [5] on the existence of 
hyper invariant subspaces of compact operators. In section 2, we prove, for 
vector spaces of operators, results similar to those proved in [2] and [3] for 
algebras intertwining bounded and compact operators. The proofs given for 
algebras in [2] and [3] need to be modified, and Theorem (2.3) is new even for 
algebras. 

Some of our proofs will use what has come to be called Lomonosov's Lemma 
[7, Th. 2, p. 222] and its consequences. We start by restating Lomonosov's 
Lemma for vector spaces of operators. 

LOMONOSOV'S LEMMA. If S is a transitive subspace of B(X, Y), if K is a 
non-zero compact operator from Y to X, and if k is a non-zero scalar, then there 
is an operator S in S for which À is an eigenvalue of SK and KS. 
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The proof given in [7, pp. 222-223] carries through if S is a vector space (or 
even just a convex set) and therefore provides an operator S for which 1 is an 
eigenvalue of SK. One then just needs to notice that SK and KS always have 
the same non-zero eigenvalues. Though I originally thought that I would need 
the above vector-space form of Lomonosov's Lemma, all the proofs below use 
only the algebra form or one of its consequences. 

1. The space of intertwining operators. When K = C, the following theorem 
reduces to Lomonosov's Theorem that every compact operator has a hyper-
invariant subspace. 

THEOREM (1.1). Suppose that K and C are non-zero bounded operators on the 
Banach spaces X and Y, respectively, and let S = {SeB(X, Y):SK = CS}. If 
either K or C is a compact operator and if there is a non-zero bounded operator T 
from Y to X for which KT = TC, then S is not transitive. 

Proof. We may assume, without loss of generality, that K is one-one. For if 
x belongs to the null space of K, Sx belongs to the null space of C, and thus is 
not dense. Similarly we can assume that C has dense range, for if z belongs to 
the range of K, we have Sz is contained in the range of C. We now consider 
separately the cases that K is compact and that C is compact. 

Case 1. K is compact. Then every TS in TS commutes with the compact 
operator K. Let x be a non-zero vector in a hyperinvariant subspace of K 
Then TSx is not dense in X. This completes the proof when T has dense range. 

In general let E be the closure of the range of T, and notice that K restricts 
to a non-zero compact operator K on E. Let S be the subspace of B(E, Y) of 
the restrictions to E of the operators in S. Then for all S in S we have 
SK = CS. Also, as an operator from Y to E, T has dense range and satisfies 
KT = TC. So, by the dense range case considered above, there is a non-zero x 
in E for which Sx = Sx is not dense in Y 

Case 2. C is compact. Let N be the null space of T. Since C(N) ç N and C 
has dense range, it induces a non-zero compact operator, C, on Y/N. Let IT be 
the natural projection from Y onto Y/N, and let T be the map induced by T 
from Y/N to X. For each S in S, (TTS)T commutes with the non-zero compact 
operator C. If y + N is a non-zero element of a hyperinvariant subspace of C, 
then 7rST(y + N) = rrSTy is not dense in Y/N. Hence STy is not dense in Y 
and Ty^O. This completes the proof. 

2. Intransitive operator ranges. We say that a subspace of a Banach space is 
a multirange if it is the span of the range of a bounded multilinear operator 
from a product of Banach spaces. The most important special case is an 
operator range, that is, the range of a bounded linear operator. A number of 
invariant-subspace theorems [2], [3], [4], [6] have been proved by considering 
operator range algebras in the Banach space B(X). Multiranges arise in the 
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study of joint invariant subspaces [3, Th. (3.2), p. 849]. For instance a 
two-sided ideal in a Banach algebra is jointly invariant under the algebras of 
left and of right multiplications (cf. [4]). 

In this section, we extend results from [2] and [3] on operator range and 
multirange algebras of B(X) to multirange subspaces of B(X) and B(X, Y). 
Theorem (2.3), below, is new even for operator range algebras. 

We repeat from [3, p. 847] (cf. [2, p. 57]) the main fact that we will need 
about multiranges. Recall [1, p. 35] that a Riesz operator is an operator with 
the same spectral properties as a compact operator. 

LEMMA (2.1). Suppose that M is a multirange in the Banach space X and that 
K is a Riesz operator on X. If K(M) ^ M, then there is a spectral projection P of 
K with finite-dimensional null space for which P(M) = {0}. 

The next result generalizes [3, Th. (3.3), p. 850]. 

THEOREM (2.2). Suppose that S is an infinite-dimensional multirange in 
B(X, Y), that K is a bounded operator on X, and that C is a Riesz operator on 
Y. If SK^CS and if there is a non-zero multirange M for which K(M)^M, 
then S is not transitive. When X = Y, the commutant of S is also not transitive. 

Proof. The multirange S M g S K ( M ) g C(SM). Since C is a Riesz operator, 
it follows from Lemma (2.1) that SM is finite-dimensional. Hence if x is a 
non-zero vector in M, then Sx is finite-dimensional and certainly not dense. 
Also there is a non-zero operator S0 in the kernel of the map S —» Sx from S to 
Y Hence S0 has a non-trivial null space, which, when X=Y, is an invariant 
subspace for the commutant of S. This completes the proof. 

Some cases when there is an operator range M with K(M) =2 M are given in 
[3, p. 850]. Probably the most important case (cf. [6, Th. 3, p. 116], [2, Th. 7, 
p. 61]) is when K has a non-zero eigenvalue. In this case we can take M to be 
the associated eigenspace. The next result is the dual of this special case. 

THEOREM (2.3). Suppose that S is an infinite-dimensional multirange in 
B(X, Y), that K is a Riesz operator on X, and that C is a bounded operator on 
Y. If CS^SK and if C* has a non-zero eigenvalue, then S is not transitive. 
When X = Y, the commutant of S is also not transitive. 

Proof. Let / be an eigenvector for the non-zero eigenvalue À of C*. Then 
S*/ -À 1 S*C*/ç(K*/A)S*/ . Then, by Lemma (2.1) applied to K*IK there is a 
spectral projection P of K with finite-dimensional null space for which 
P*(S*/) -{0}. Then if x belongs to the range of P, we have /(Sx) = {0}, so that 
Sx is not dense in Y Also, as in the proof of Theorem (2.2), there is an S0 in S 
for which S*f = 0. This S0 does not have dense range, so, when X=Y, the 
closure of the range of S0 is an invariant subspace of the commutant of S. This 
completes the proof. 
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The full strength of the assumption that C or K is a Riesz operator is used in 
Theorems (2.2) and (2.3) only to prove the intransitivity of the commutant. 
Essentially the same proofs show that S is intransitive when the operators 
involved have a decomposition at 0 in the sense of [3, p. 845] (cf. [2, p. 56]). 
One just needs to use the full strength of [3, Th. (2.2), p. 847] instead of the 
special case given in Lemma (2.1), above. 

The next corollary is a generalization of [2, Ths. 4 and 6, pp. 59-61] and [3, 
Th. (3.1), p. 848]. 

COROLLARY (2.4). Suppose that S is an infinite-dimensional multirange in 
B(X) and that K and C are compact non-zero operators on X. If either SK c CS 
or CS^SK, then the commutant of S has an invariant subspace. 

Proof. Suppose that the commutant of S is transitive. It then follows from 
Lomonosov's Lemma that there are operators A and B in the commutant of S 
for which AK and CB have non-zero eigenvalues. Since CB is compact, {CB)* 
also has a non-zero eigenvalue. If SK ç CS, then S(AK) ç= (AC)S and it follows 
from Theorem (2.2) that the commutant of S has an invariant subspace. 

If C S ç S K , then (CB)S^S(CB), and it follows from Theorem (2.3) that the 
commutant of S has an invariant subspace. 

REFERENCES 

1. S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators 
on Banach Spaces, Dekker, New York, 1974. 

2. C. K. Fong, E. A. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Extensions of 
Lomonosov's invariant subspace theorem, Acta Sci. Math. (Szeged), 41 (1979), 55-62. 

3. S. Grabiner, Operator ranges and invariant subspaces, Indiana U. Math. J., 28 (1979), 
845-857. 

4. S. Grabiner, Compact endomorphisms and closed ideals in Banach algebras, preprint. 
5. V. Lomonosov, Invariant subspaces for operators which commute with a completely continuous 

operator, Functional Anal. Appl. 7 (1973), 213-214. 
6. E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, Algebras intertwining compact 

operators, Acta Sci. Math. (Szeged), 39 (1977), 115-119. 
7. C. Pearcy and A. L. Shields, A survey of the Lomonosov technique in the theory of invariant 

subspaces, in Pearcy, C , éd., Topics in Operator Theory, Amer. Math. Soc, Providence, R.I., 
1974. 

DEPARTMENT OF MATHEMATICS 

POMONA COLLEGE 

CLAREMONT, CALIFORNIA 91711 

https://doi.org/10.4153/CMB-1984-058-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-058-8

