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Abstract. The distribution of Near-Earth Objects, in particular Near-Earth asteroids is ex-
amined using maximum likelihood methods. These are analysed with respect magnitudes, tax-
onomic classes and to their orbital distances. Comparisons are made with the distributions of
main-belt asteroids and short-period comets.
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1. Introduction
The Near-Earth Object (NEO) population is defined as the group of small bodies with

perihelion distance q < 1.3 AU and aphelion distance Q > 0.983 AU. These are composed
of the 334 Atens that have semi-major axis a < 1.0 AU, the 1994 Apollos with perihelion
q < 1.0AU and a > 1.0 AU, and the 1748 Amors with 1.0 < q < 1.3 AU (as of August
2006). These NEOs with semi-major axes smaller than that of Jupiter are thought to be
mainly asteroids that have escaped from the main asteroid belt, although as we shall see
some may be extinct cometary nuclei.

In order to estimate the size of an NEO from its measured absolute magnitude its
reflectivity (that is its geometric albedo) must be known. The measurements of albedo
are only available for less than one percent of the NEOs, and the values span a wide of
values from 0.023 to 0.63 (Binzel et al. 2002).

Attempts to debias the albedo and taxonomic distribution of NEOs have been made
by Luu & Jewitt (1989) using Monte-Carlo simulations of the distribution. Binzel et al.
(2002) conducted a similar study. They attempted to define a reasonable albedo distribu-
tion for each of the main belt source regions previously identified as sources of asteroidal
and cometary material to the NEO population by Bottke et al. (2002). Stuart & Binzel
(2004) utilize the direct observations of a taxonomically well determined subset of NEOs
to determine the albedo distribution of the NEOs for which albedos are not available.

In this work we use maximum likelihood techniques to help determine the size distribu-
tion from the observed population with well determined absolute magnitudes. We draw
heavily on the debiasing work particularly of Stuart & Binzel (2004). The absolute mag-
nitude data used is taken from the MPC data sites at http://www.cfa.harvard.edu/iau/
lists/Atens.html, http://cfa- www.harvard.edu/cfa/ps/lists/Amors.html, andhttp://cfa-
www.harvard.edu/cfa/ps/lists/Apollos.html. In Fig. 1 we show a plot of the semi-major
axis versus eccentricity of the Atens, Amors and Apollos used in this analysis.

2. Tisserand parameter
The Tisserand parameter is a dynamical quantity that is approximately conserved dur-

ing an encounter between a planet and an interplanetary body. It therefore provides a

69

https://doi.org/10.1017/S1743921307003080 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307003080


70 J.R. Donnison

Figure 1. Plot of semi-major axis versus eccentricity of the Atens, Amors and Apollos used in
this paper.

way to connect the post-encounter dynamical properties with the pre-encounter proper-
ties. The Tisserand parameter also provides a measure of the relative speed of an object
when it crosses the orbit of a planet.

The Tisserand parameter TJ relative to Jupiter under the restricted circular three-body
problem is given by

TJ = aJ/a + 2
√

a/aJ (1 − e2) cos i, (2.1)

where aJ is the semi-major axis of Jupiter, and a, e, and i are the semi-major axis, eccen-
tricity, and inclination of the asteroid. Solar system bodies with TJ � 3 are dynamically
coupled to Jupiter. A number of Near-Earth Asteroids have 2 < TJ < 3. They tend to
have low albedos and Fernandez et al. (2001) showed that there was a strong correlation
between TJ and albedo which suggested that there is a significant cometary contribution
to this asteroid population. The Jupiter family of comets have 2 � TJ � 3 and the Halley
and long-period comets tend to have TJ � 2. Bodies with TJ > 3 are generally decoupled
from Jupiter and asteroids generally fall into this category. Binzel et al. (2004) did a
similar analysis to Fernandez using taxonomic classes rather than albedo. They found a
distinct taxonomic difference with respect to TJ , where C,D and X-type asteroids pre-
dominate for TJ < 3. This group is much more dominated by very dark objects than
those with TJ > 3.

The Tisserand parameter will be incorporated here into the statistical determination
of the distribution.
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3. Magnitudes
The apparent magnitude m, of a near-Earth body is given by (Russell 1916; Jewitt

1999)

m = m� − 2.5 log10

(
pV R2

Aφ (α)
2.25 × 1016R2∆2

)
, (3.1)

where m� is the apparent magnitude of the Sun (−26.8 magnitude in the visible), pV is
the geometric albedo, RA(km) is the radius of the asteroid, R(AU) is the heliocentric
distance, ∆(AU) is the geocentric distance, and φ (α) is the phase function which at
opposition with α = 0 is φ (0) = 1. This equation can be rewritten in terms of the
absolute magnitude, H, as

m = H + 5 log10 R + 5 log10 ∆ − 2.5 log10 φ (α) , (3.2)

where H is defined as the apparent magnitude that a near-Earth body would have if
it was observed at 1 AU from the Sun, 1 AU from the Earth and at zero phase angle.
In this analysis we consider the cumulative magnitude distribution using the absolute
magnitudes H as listed in the Minor Planet Center list mentioned earlier. The H values
are accurate to 0.05 magnitudes and clearly leading to errors in the estimation of the
diameter. Combining equations (3.1) and (3.2), the diameter of the asteroid D (= 2RA)
is related to the absolute magnitude and can be written in the form

H = C − 5 log10 D − 2.5 log10 pV , (3.3)

where C = 15.618 (Harris & Harris 1997; Stuart & Binzel 2004). The albedos of comet
nuclei are typically pV ∼ 0.04, and those of the Centaurs, which probably originated in
the Kuiper Belt, have a wide range of values from 0.04 to 0.17. The NEOs, as mentioned
earlier, range from 0.023 to 0.63 (Binzel et al. 2002) giving a factor of 5 in possible
diameter of an NEO for a given absolute magnitude. Stuart & Binzel (2004) found that
for NEOs the correlation between albedo and absolute magnitude was not statistically
significant and they assumed in their analysis that there was no correlation. We shall
here make the same assumption. In order to assess the distribution more quantitatively,
we consider the range of absolute magnitudes of the bodies. In Fig. 2 we have a plot of
the cumulative number of the NEO population with absolute magnitude greater than H
(as of August 2006). The bodies span the large magnitude range 9.45 � H � 30.01.

The distribution shows a linear section for magnitudes up to H ∼ 20.0 magnitudes.
Above this magnitude the cumulative number no longer increases so steeply. For these
higher magnitudes selection effects are presumed to be very important and many of
the fainter and more distant bodies have yet to be discovered. Below this value the
linear slope is not very sensitive to value of H chosen, though care must be taken in its
assessment. In order to fit this linear section of the distribution we employ maximum
likelihood estimation methods. The use of least-squares fits by many previous authors
is not appropriate for cumulative plots as the data points are not independent of each
other (Donnison & Sugden 1984; Gladman et al. 1998). We now proceed to the basic
statistical model of this distribution.

4. Statistical model
We shall assume that the expected proportion of near-Earth bodies with diameters

greater than D follows a Pareto power law of the form (that is a power law distribution
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Figure 2. Plot of the cumulative number of the NEO population with absolute magnitude
greater than H.

truncated at the lower end)

F (> D) =
(

D

D∗

)−α

. (4.1)

Here α is the power law or cumulative size index and D∗ is the lower limit in diameter
that can be observed. Ideally we would like to work with the distribution of pV but since
the number of known albedos is very small we only have average values for taxonomic
classes to work with (see Stuart & Binzel 2004). Therefore for a given pV , in terms of
absolute magnitude using Eq. (3.3), the expected proportion of bodies with magnitudes
less than H is

F (< H) =
(

pV

pV∗

)0.4α

100.2α(H−H∗), (4.2)

where H∗ is the critical upper limit in magnitude that is detectable corresponding to
bodies with diameter D∗, and pV∗ is the corresponding albedo. The coefficient of the
magnitudes is often denoted by β, so that α = 5β.

An equivalent description of the diameter distribution is in terms of the probability
density function given by

N (D) =
α

D∗

(
D

D∗

)−(α+1)

, D > D∗, (4.3)
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where N (D) dD is the expected proportion of bodies with diameters between D and
D+dD. Eliminating the diameter using Eq. (3.3), we can write the distribution in terms
of magnitude, so that we have Φ (H), the expected proportion of bodies with magnitudes
between H and H + dH, for a given pV is given by

Φ (H) =
C̄pV∗α

10−0.2H∗

(
pV

pV∗

) 1
2 (α+1)

100.2(α+1)(H−H∗), (4.4)

where C̄ is a constant. To proceed further to determine α we use maximum likelihood
estimation. The method of maximum likelihood is applicable to a random sample of obser-
vations taken from any given distribution. If we consider a set of n near-Earth bodies con-
ditional on the number in the taxonomic class with absolute magnitudes H1,H2, .....Hn,
then the corresponding likelihood function is given by the product of the joint probability
density functions as

L (α) =
n∏

i=1

Φci
(Hi) , (4.5)

where ci is the taxonomic class for ith observation. It is easily seen that the maximum
unconditional likelihood over α is the same as the maximum conditional likelihood given
the numbers in the taxonomic classes. This can be handled more easily in log form so
that

� (α) = loge L (α) = n loge α + 0.2 (α + 1)
n∑

i=1

(Hi − H∗) loge 10

+ 0.2nH∗ loge 10 +
n∑

i=1

loge C̄i +
1
2

(α + 1)
n∑

i=1

loge

(
pV ci

pV ∗

)

+n loge pV ∗ (4.6)

Maximum likelihood estimation of the index now proceeds by maximizing � (α) as a
function of α. The solution of the likelihood equation

∂�

∂α
= 0, (4.7)

is then given by

n

α̂
+ 0.2 loge 10

n∑
i=1

(Hi − H∗) +
1
2

n∑
i=1

loge

(
pV ci

pV ∗

)
= 0, (4.8)

that is
α̂ =

n

0.2 loge 10
∑n

i=1 (H∗ − Hi) − 1
2

∑n
i=1 loge

(
pV ci

pV∗

) . (4.9)

The term involving the albedos can be written in terms of the various taxonomic orbital
classes. That is

n∑
i=1

loge

(
pV ci

pV ∗

)
=

∑
taxonomic classes c

loge

(
pV

pV∗

)classc

. (4.10)

Classc is the observed number in class c. We can estimate this quantity from the frac-
tional abundances and debiased albedos derived from the ten taxonomic complexes A, C,
D, O, Q, R, S, U, V, X by Stuart & Binzel (2004). This takes into account that TJ � 3
for 30% of the NEOs and that TJ > 3 for the remaining 70%. Here we also extrapolate
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the abundances from the large sample size used by Stuart & Binzel (2004) to the current
sample size used here. For the over simplified case where all the asteroids have the same
albedo, that is pV = pV∗ then we have

α̂ =
n

0.2 loge 10
∑n

i=1 (H∗ − Hi)
. (4.11)

This gives an expression similar to that of Donnison (2006) used for trans-Neptunian
bodies. The sampling variance of α̂ for large n for both the general case given by equation
(4.9) and the simple case given by equation (4.11) is then approximately given by〈

−
(

∂2�

∂α2

)−1
〉

=
α2

n
, (4.12)

so that the estimated standard error of α̂ in large samples is therefore

α̂√
n

. (4.13)

5. Results
From Fig. 2 the linear part ranges up to absolute magnitudes of around 20.0. The

number of NEOs with magnitudes less than or equal to this value is 2079 (as of August
2006). These will form the data necessary for our determination. Before we proceed we
can obtain a lower limit for the index if we assume the unrealistic situation that all the
albedos are equal, that is pV = pV ∗, then α̂ given by Eq. (4.11) has a value of 1.16 ±
0.025. More realistically, estimating the albedo term using the fractional abundances and
debiased albedos of Stuart & Binzel (2004) with a pV∗ of 0.05 (equivalent to D=0.6 km at
magnitude 20.0) gives α̂ of 1.813±0.040. This compares with the value of α of 1.95 found
by Stuart & Binzel (2004) as the nearest power law fit and by Stuart (2001) who using
a power law fit found a magnitude index β of 0.39. Bottke et al. (2002) by modelling
derived an α of 1.75 (based on a magnitude index β of 0.35). Rabinowitz et al. (2000)
also found a β of 0.35 using directly the debiased magnitude distribution observed by
the NEAR survey. The result obtained does show some sensitivity to the value of pV∗

that is assumed.

6. Comparison with cometary distributions
The size distribution of cometary nuclei of long and short period comets has been

investigated by a number of authors. Two approaches have been adopted. In the first
approach, Donnison (1986, 1990, 1997, 1999), Hughes & Daniels (1980, 1982) and Hughes
(2002) used the absolute magnitude, H10, of the integrated dust and gas coma of active
comets to estimate the magnitude, size and mass distributions of the cometary nuclei of
both long and short period comets.

In the second approach the cometary diameters are measured directly. In the past only
a few such size measurements were possible. However, the number of comet diameters
accurately determined at large heliocentric distances has recently increased from ground
based observations and the Hubble Space Telescope (HST) (Lamy et al. 2000; Licandro
et al. 2000; Lowry et al. 2001; Lowry & Fitzsimmons 2003 and Weissman & Lowry 2003).
The cometary nuclei at these distances are not obscured by the surrounding coma and
dust and are able to be measured directly. This has enabled the cometary index to be
estimated for short period comets.
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The distribution of masses of such bodies as comets asteroids and trans-Neptunian
bodies is usually characterized by a power law index s defined through the mass dis-
tribution function ζ(m), such that the number of bodies with masses between m and
m + dm is given by

ζ(m)dm = Am−sdm, (6.1)

where A is constant over a specific mass range. The s for near-Earth asteroids is related
to α derived earlier by

s =
α

3
+ 1. (6.2)

Currently using the active H10 short period comet data, the mass index s is about 1.6
(Donnison 1990; Hughes 2002). For the direct determination Fernandez et al. (1999),
Tancredi et al. (2006) found for the Jupiter family of comets an s of 1.88, while Weiss-
man & Lowry (2003) found an s of 1.53. Recently Meech et al. (2004) found 1.48 for the
value of s. Since not all the data used has been published and is not is readily available
a full explanation for the differences has not been found. The larger value of Fernandez
et al. (1999) may however reflect the fact that their sample includes many comets ob-
served at very small heliocentric distances where activity was possible and finding the
index is complex. The present author is currently working on a new assessment of this
index. These values for comets indicate that for the distribution of comets the majority
of the mass lies in a few large bodies suggesting if considered in isolation that plan-
etesimal accretion as opposed to collisional fragmentation is the most likely mode of
formation. However, since they probably have their origin in the Kuiper Belt, their small
sizes indicate that they may be partly collisional remnants of the larger bodies. For the
near-Earth asteroids investigated in this paper we find s of around 1.65, suggesting that
this is a distribution derived from larger bodies and that collisional fragmentation could
be significant in their evolution. Yoshida et al. (2003), Yoshida & Nakamura (2004) have
found that the slopes of the cumulative size distribution of Subaru-detected main belt
asteroids in the magnitude range 16.5 < H < 18.5, vary with semi-major axis with an
α range from 1.11 ± 0.06 for outer belt asteroids to 1.91 ± 0.008 for those near the 4:1
resonance gap (2.0AU < a < 2.2AU). This corresponds to s values of 1.37 to 1.64. This
supports the dynamical theory that the inner gaps can convey asteroids efficiently into
the near-Earth region.

7. Conclusions
The size distribution index of NEOs has been estimated by using maximum likelihood

methods and the fractional abundances and debiased albedos of Stuart & Binzel (2004).
The value found is in line with previous estimates and with the main-belt asteroid size
distribution and some estimates of the cometary distribution.
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