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ABSTRACT

This paper proposes a multivariate generalization of the generalized Poisson
distribution. Its definition and main properties are given. The parameters are
estimated by the method of moments.
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1. INTRODUCTION

The univariate generalized Poisson distribution (GPD), introduced by CONSUL
and JAIN (1973), is a well-studied alternative to the standard Poisson
distribution. CONSUL (1989) provided a guide to the current state of modeling
with the GPD at that time, and documented many real life examples. GPD has
also been making appearances in the actuarial literature (see GERBER, 1990;
GOOVAERTS and KAAS, 1991; KLING and GOOVAERTS, 1993; AMBAGASPITIYA
and BALAKRISHNAN, 1994 etc.). A bivariate generalization was developed by
VERNIC (1997) and was applied in the insurance field.

The multivariate generalization that we present in this paper is derived from
the GPD in a similar way with the BGPD. In consequence, the BGPD can be
obtained from the MGPm for m — 2. In section 2 we present some properties of
the MGPm. The method of moments is used in section 3 for the estimation of the
parameters. In section 4 the particular case of the BGPD is considered together
with its application in the insurance field, based on the paper of VERNIC (1997)
and illustrated with a numerical example. Since the BGPD is well fitted to the
aggregate amount of claims for a compound class of policies submitted to
claims of two kinds whose yearly frequencies are a priori dependent, it is natural
to consider that the MGPm is a good candidate for the aggregate amount of
claims for a class of policies submitted to claims of m kinds.
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2. THE MULTIVARIATE GENERALIZED POISSON DISTRIBUTION

2.1. Development of the distribution

If 7V~ GPD(X,6), then its probability function (p.f.) is given by (CONSUL
and SHOUKRI, 1985)

i Xn^ " = °' !' - ,(2.1)
[ 0 , for n > q when 8 < 0

and zero otherwise, where A > 0, m a x ( - l , —X/q) < 0 < 1 and q > 4 is the
largest positive integer for which A + 6q > 0 when 6 < 0.

VERNIC (1997) used the trivariate reduction method to construct the
BGPD in the following way: let Nj, i = 1, 2, 3, be independent generalized
Poisson random variables (r.v.), N{ ~ GPD(Xj,0j), / = l , 2, 3, and let
X = N} + N3 and Y=N2 + N3. Then (X, Y) ~ BGPD(Xt,6>,-; / = 1, 2, 3).

Similarly, we obtain the m-dimensional generalized Poisson distribution
by taking (m + 1) independent generalized Poisson random variables,
Ni~GPD(Xi,6i), z = 0, ..., m, and considering X\ =N\ +N0, ..., Xm =
Nm + N0. Then (Xh ,.., Zm) ~ MGPm(A,@), where A = (Ao, Ab ..., Am)
and Q — (9o, 0\, ..., 5m). This method can be called the multivariate
reduction method, as an extension of the trivariate reduction method.

It is easy to see that the joint p.f. of (X\, ..., Xm) reads

p(xu ..., xm) = P{XX = xu ..., Xm = xm) =

k=0

where/- is the p.f. of the r.v. TV,.
Using (2.1) in (2.2) we get

p(xu -.., xm) - (Yl^j) expi -A - Y^Xj

E IP^rSS
(Ao exJfc(£0,--0o] L (2.3)

k[ I V/».

, .-., xm = 0, 1, 2, ...,

7=0
where A — ^ A7 and 0! = 1.
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2.2. Properties of the distribution

We will first make some remarks on the GPD.
The GPD reduces to the Poisson distribution when 6 — 0 and it possesses

the twin properties of over-dispersion and under-dispersion according as
9 > 0 or 9 < 0. When 9 is negative, the GPD model includes a truncation due
to the fact that/(«) = 0 for all n > q (see 2.1). In the following, the moments
expressions and the other formulas for the GPD are valid only for the case
A > 0, 0 < 9 < 1 and q = oo, as discussed in SCOLLNIK (1998). This is a point
frequently misrepresented in the literature.

In conclusion, we will assume for simplicity that 9 > 0. From
AMBGASPITIYA and BALAKRISHNAN (1994) we have the following formulas
for N~GPD(\,0):
- the probability generating function (p.g.f.)

} (2.4)

the moment generating function (m.g.f.)

\ (2.5)

where the Lambert Jf function is defined as W(x) exp{ W(x)} = x. For more
details about this function see CORLESS et al. (1996).
- the first four central moments

4 ; m = 1\2M<> + A(15M2 20M + 6)M5 J ' l ' ;
f E(N) = MI = AM ; Var(N) = /i2 = AM3

\ M3 = A ( 3 M - 2)M* '» M4 = 3A2M6 + A(15M2 - 20M + 6)M

where M = (1 - 0 ) " 1 .

The probability generating function of the MGPm

Let now TI((?) denote the p.g.f. of the r.v. TV,, i = 0, ..., m. Then the joint
p.g.f. of (Xu ..., Xm) is

• - • tm). (2.7)

Using (2.4) in (2.7) and assuming that 9, > 0, i = 0, ..., m, we have

n(r,, ..., tm) =
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The moment generating function of the MGPm

If the m.g.f. of Nj is M,-(f), i = 0, ..., m, then the m.g.f. of (X\, ..., Xm) is

M(tu .., tm)=E(exp{hXi+ ... +tmXm}) = (

= Mi(h) • ... • Mm(tm)MQ{u + ... +tm). (2.8)

Using (2.5) in (2.8), the joint m.g.f. is given for #, > 0, / — 0, ..., m, by

M(tu ..., /m) =

™ A,
exp< — y ^wiy—t -00 expl - ^

1=1

Moments / m \
Let /xri r = E\ n (A}- - EXj)rj be the (n, ..., rm)'h central moment of

V=' /
(Zi, ..., Xm). The equation for /ir,,...,rm given / i ^ the A;'A central moment of
Nj, j = 0, ..., m, results as follows

m

= E

I, - EN, + Wo - ENo)'1

]=\ ij=O \lJ

m r'

.,0) \]=\
n V? (2.9)

From (2.6) and the independence of Nj,j = 0, ..., m, we also have for 9/ > 0,
z = 0, ..., m,

(2.10)
f EXt = XtMi + A0M0

\ Fa/-(X,) = XtM] + XQM\ ' ' •"' '

and from (2.9) we have, for example

— — (°) — A M3

M1110...0 = Mo...010...010...010...0 = A*3 = A Q ( 3 M Q — 2 ) M 0

(0)
1...1 = M m

(2.11)
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Marginal distributions
The marginal distributions are

i = r) = P{Ni + N0 = r) = A0A,exp{-(A0 + A,) - rd0}-

In particular, if 0, = 0O = 0, this reduces to Xt ~ GPD(X,: + Ao, 0). Else-
where, X, is not a GPD.

Remark. From the development of the MGPm, it is easy to see that if
{Xu ..., Xm)~MGPm(A, G), then for any {/i, ..., ik] c {1, ..., m\ with
2 < k < m, (Xh, ..., Xk) - MGPk(A', &), where A' = (Ao, A(1, ..., A,J and
e l /n r\ n \

— {"0: "if, •••) Vk)-

For h = 1 the remark is not always true. But if we consider the particular
case 0o = 0i = ... = 0 m = 0, then from (Xu ..., Xm) ~ MGPm(A, G) it
follows that Xi ~ GPD(\j + Ao, 0), i = 1, ..., m.

Recurrence relations
The marginal p.f. can be computed using the univariate generalized Poisson
distribution, as it is seen from

, ..., 0) = exp{-A}

p(0, ..., 0, xj, 0, ..., 0) =fj(Xj) f[fi(0) /o(O) =

U /
= fj(xj) exp{-(A - Xj)}, 7 = 1 , ..., m, Xj > 0.

Given these probabilities, for x} > 0, j — 1, ..., m, we have the following
recurrence relation

mm{xi,...,xm} ( m \

1)A} ^ I J|/?(0, ..., 0, X/-A:, 0, ..., 0) )•

-exp{-^0 o } .
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3. ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS

Let (JCI,-, ..., xmi), i— 1, ..., n be a random sample of size n from the
population. We will assume that the frequency of the w-tuple (s\, ..., sm) is
nsl,...,sm for s\, ..., sm = 0, 1, .... We recall that J2

n+...+Si+...+sj+...+ =

S\,...,Sm

< j
, , j

We denote

and, with the notations in (3.1)

, 7 = 1 , .:,m, (3.2)

<J

sisjskn+...+Sj+...+Sj+...+si,+...+ , I <J < k

' Si,Sj,Sk

It is easy to see that

M0...010...010...0 = E(XiXj) — E(Xj)E(Xj), i <j
Mo... 010...010... 010...0 — E(XiXjXk) — E(XiXj)E(Xk) — E{XjXk)E{Xi) — ,

so we can use the sample moments

A0...010...010...0 = XiXj - XjXj ,
j

i

A0...010...010...010...0 = XiXjxk - xXj xk - xjxj
i J k

i <j < k

- xJxJ Xi + (3.3)
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The general method
The classical method of moments consists of equating the sample moments
to their populations equivalents, expressed in terms of the parameters. The
number of moments required is equal to the number of parameters which
equals 2(m + 1). For example, using (2.10), (2.11), (3.2) and (3.3), we can
choose the following 2(m + 1) equations

Xj = XjMj +
a) = XjM] + A0M

3

M110...0 —
7 J 1 ? ' " I

Denoting a = U1°""°, the solution of the system is
Mi 10...0

Mi 10...0

Mj =
of - M110...0

V jc,- - A 0 M 0
:y- - A 0 M 0

, y = l , ..., m. (3.4)

W e used the fact tha t 0 < l , s o M = T ^ > 0 .

Particular case: 90 = 8\ — ... — 6m — 8, so Mo = M\ = ... = Mm — M.

Method I. The number of parameters is now [m + 2) : Ao, ..., Am and M, so
we can use the following equations:

Mno...o = A0M3 , with the solution <

M =

Ao =

3

Ai 10-0
M3

Xj~M

Method II. Another possibility is to use the method of moments in
combination with the zero cell frequency method. If we denote by

/o.o = - ^ the frequency of the cell (0, ..., 0), we can consider the system

I- /0...0 = exp{-(A0 + ... + Am)}
//. Xj = (Xj + A0)M
///. o) = {Xj + A0)M

3
j= 1, ..., m.
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We have here (2m +1) equations. By summing equations / and / /
separately, we get

m I m

, y = 1, ..., m.

V=i

(m \fm y
Dividing the two relations gives M2 = I £ aj I I J2 xi \ •> hence the
solution v= 1 / \/=1 /

M =
\

- l

From equation / we have

In /0...0 = Ao + ] P Ay ,

and using equation IV we are lead to

(3.5)

-ln/o...o = A 0 + - ^ x , - - W i A o

so that

1 / 1
0...0 (3.6)

Then, from equation / / we have

1
j ~ MXj - Ao , ; '= 1, ..., m. (3.7)

Finally, the solution (M, Ao, Ay, j = 1, ..., m) is given by (3.5), (3.6) and
(3.7).

Remark. In method //, the estimation of M is based on the empirical
moments from all m variables, while in method / only three variables are
taken into consideration by
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4. PARTICULAR CASE: BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD)

Considering m = 2, the multivariate generalized Poisson distribution reduces
to the bivariate generalized Poisson distribution. The BGPD was introduced
by VERNIC (1997) and was applied in the insurance field. The distribution
was fitted to the aggregate amount of claims for a compound class of policies
submitted to claims of two kinds whose yearly frequencies are a priori
dependent. A comparative study with the classical bivariate Poisson
distribution and with two bivariate mixed Poisson distributions has been
carried out, based on two sets of data concerning natural events insurance in
the U.S.A. and third party liability automobile insurance in France. The
conclusion, after applying the x2 goodness-of-fit test, is that the BGPD fits
better to the data, so it can be considered as a valid alternative to the usual
bivariate Poisson or mixed Poisson distributions. For more details see
VERNIC (1997).

In the following, we will consider another example, based on the accident
data of CRESSWELL and FROGATT (1963), with X\ as the accidents in the first
period and X2 as the accidents in the second period. The data are given in
table 1, first row in each cell.

The summary statistics for these data are:

x, = 1.0014, jc2 = 1.291, of = 1.1935, oj = 1.5961,

/in =0.3258, /*2i =0.365.

Under the hypothesis (Xu X2) ~ BGPD(X0, \ u A2; 0O, 6\, 02), we have
from (3.4)

f 6*0 = 0.0286, 01=0.1057, 6>2 = 0.1200 1
\ Ao = 0.2987, Ai = 0.6206, A2 = 0.8653 j "

The theoretical frequencies in this case are given in table 1, second row in
each cell. After grouping in 32 categories: (zj),=0 4;7=0 5; (0..4, 6 and above);

(5 and above, 0 and above), we obtain xlbs — Yl (°^s ~ th)2/th = 25.935 and
a significance level (P-value) verifying 0.45 < a < 0.75. So the distribution is
adequate.

We will now consider the particular case #o = Q\ — 82 — 0, so that we
have the hypothesis (Xu X2) ~ BGPD(X0, Xu A2; 9). From (3.5), (3.6) and
(3.7) we have 6 = 0.0935, Ao = 0.2778, A, = 0.63, A2 = 0.8925, and the
theoretical frequencies are given in table 1, last row in each cell. For the same
categories we have xlbs = 23.6082 and 0.7 < a < 0.85, so this particular
distribution fits even better than the general one.
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TABLE 1

COMPARISON OF OBSERVED AND THEORETICAL FREQUENCIES

X2

Xi

0

1

2

3

4

5

6

7

E

0

117
118.843
117

61
66.356
67.132

34
24.834

24.976

7
7.871
7.694

3
2.287
2.138

2
0.632
0.558

0
0.169
0.140

0
0.044
0.034

224

221.036
219.672

1

96
91.204
95.100

69
85.419
84.165

42
38.319
37.584

15
13.249
12.602

3
4.040
3.685

1
1.149
0.995

0
0.313
0.255

0
0.083
0.063

226
233.776
234.449

2

55
44.710
46.748

47
51.437
50.881

31
30.090
30.048

16
12.124
12.004

1
3.860
3.774

0
1.142
1.075

0
0.319
0.285

0
0.086
0.072

150
143.768
144.887

3

19

17.959
18.088

27

23.005
22.205

13
15.577
15.739

7
7.260
7.911

1

2.610
2.927

0

0.816
0.910

0

0.236
0.255

1

0.065
0.067

68

67.528
68.102

4

2
6.460
6.081

8
8.820
8.065

7
6.505
6.427

3
3.386
3.849

2
1.676
1.799

0
0.464
0.647

1

0.140
0.198

0
0.040
0.055

23
27.491
27.121

5

2
2.171
1.865

5
3.087
2.608

2
2.402
2.249

1
1.341
1.516

1
0.616
0.844

0
0.220
0.382

0
0.071
0.136

0
0.021
0.041

11

9.929
9.641

6

0
0.697
0.537

1

1.019
0.780

3
0.822
0.711

0
0.480
0.520

1
0.226
0.327

0
0.090
0.176

0
0.031
0.079

0
0.010
0.028

5
3.375
3.158

7

0
0.217

0.148

0
0.324

0.220

0
0.267
0.209

0
0.161
0.162

1
0.079

0.111

0
0.033
0.068

0
0.012
0.036

0
0.004
0.016

1

1.097
0.970

E

291
282.261
285.567

218
239.467
236.056

132
118.816
117.943

49
45.872
46.258

13
15.394
15.605

3
4.546
4.811

1
1.291
1.384

1

0.353
0.376

708
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