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ABSTRACT

GOOVAERTS and KAAS (1991) present a recursive scheme, involving Panjer's
recursion, to compute the compound generalized Poisson distribution (CGPD). In
the present paper, we study the CGPD in detail. First, we express the generating
functions in terms of Lambert's W function. An integral equation is derived for the
pdf of CGPD, when the claim severities are absolutely continuous, from the basic
principles. Also we derive the asymptotic formula for CGPD when the distribution
of claim severity satisfies certain conditions. Then we present a recursive formula
somewhat different and easier to implement than the recursive scheme of Goov-
AERTS and KAAS (1991), when the distribution of claim severity follows an
arithmetic distribution, which can be used to evaluate the CGPD. We illustrate the
usage of this formula with a numerical example.
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1. INTRODUCTION

Modelling the claim frequency data is one of the most important areas in risk
theory. Traditionally, the Poisson distribution, when the mean number of claims is
equal to its variance, and the negative binomial distribution, when the variance of
the number of claims exceeds its mean, have been used because of their convenient
mathematical properties. Several authors including GOSSIAUX and LEMAIRE (1981),
SEAL (1982) and WILLMOT (1987) have considered alternatives to Poisson and
negative binomial distributions for this purpose. CONSUL (1990) has compared the
Generalized Poisson distribution (GPD) suggested by CONSUL and JAIN (1973) with
several well known distributions and concluded that GPD is a plausible model for
claim frequency data. GOOVAERTS and KAAS (1991) presented a recursive scheme
to compute the total claim distribution under the assumptions that the claims are
independently and identically distributed integer random variables with the GPD
claim frequency.

In this paper, we discuss the compound generalized Poisson distribution (CGPD)
in detail and derive a somewhat easy to programmable recursive relation than one
given by GOOVAERTS and KAAS (1991). In Section 2, we present a brief summary
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of the properties of the generalized Poisson distribution. In Section 3, we express
the generating functions of CGPD in terms of Lambert's W function and illustrate
the derivation of moments. In Section 4, we present an integral equation similar to
Volterra's integral equation of second kind for the density function of CGPD when
the distribution of claim severity is absolutely continuous. In addition, we discuss
the tail behaviour of CGPD when the claim severity is non arithmetic. In Section 5,
we present a recursive formula for the probability function of CGPD when the
distribution of claim severity is arithmetic. We illustrate the usage of this formula
through an example.

2. GENERALIZED POISSON DISTRIBUTION (GPD)

CONSUL and JAIN (1973) proposed a new generalization of the discrete Poisson
distribution which was modified by CONSUL and SHOUKRI (1985) to: A discrete
random variable TV is said to have a generalized Poisson distribution (GPD) if its
probability mass function is given by

\X{X + n9) exp(-X-nd)
(2.1) Vr(Nn)p{k6) \ V ^

for n>m when 9<0

and zero otherwise, where X > 0, max ( - 1, -Xlm) < 9 < 1 and m( > 4) is the
largest positive integer for which X + dm > 0 when 9 is negative. This generaliza-
tion of the Poisson probability model in the sense that is probability generating
function (pgf) is given by the Lagrange expansion of any pgf under a suitable
transformation (CONSUL and SHENTON (1972)). The GPD reduces to the Poisson
distribution when 9 = 0 and it possesses the twin properties of over-dispersion and
under-dispersion according as 9 > 0 or 9 < 0. The GPD gets truncated for negative
values of 9 but the truncation error is always less than 0.07%. A recent book by
CONSUL (1989) discusses various properties, inference and numerous applications of
this model in biology, ecology, and other disciplines. For simplicity, from here on
we assume the parameter 9 > 0. AMBAGASPITIYA and BALAKRISHNAN (1993) has
recently expressed the moment generating function MN(t) and the probability
generating function of the GPD in terms of Lambert's W function when 8 > 0 as
follows:

(2.2) MN(t) = exp i - - [W( - 9 exp ( - 6 +1)) + 9]

(2.3) PN(z) = exp J - - [W( - 8z exp ( - 8)) + 9]
[ 9

where W is the Lambert's W function defined as

W(x)exp(W(x))=x.

For more details about Lambert's IV function see CORLESS et al. (1994).
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2.1. Central moments of GPD

We can obtain the central moments of GPD by differentiating (2.2) with respect to t
as illustrated by AMBAGASPITIYA and BALAKRISHNAN (1993), or from the basic
principles as described by CONSUL (1989), or by using the method suggested by
GOOVAERTS and KAAS (1991). The resulting expressions for first four central
moments are as follows:

(2.4) nK=lM

[i2 = AM3

where M = (\ - 0 ) " ' .

2.2. Maximum likelihood estimators of k and 8

Let a random sample of n items be taken from the GPD model and let xx, x2, . . . , xn

be their corresponding values. If the sample values are classified into
class frequencies and n, denotes the frequency of the ith class
(n,•= # {Xj: 1 < j < n,Xj = i}), the ML estimate 0 as described in CONSUL and
SHOUKRI (1984) is given by the unique root of 0 given by the equation

4, / ( / - i )
(2.5) X « , J— x)6

where k ( < 2) is the number of classes, n = X* = i «,• and x is the sample mean. Note
that (2.5) does not give a value for 6 when k = 0 or 1. The ML estimate A is then
given by

(2.6) X = x(l-d)

2.3. Tail behaviour of GPD

Lemma 2.1: For fixed A, 6 and n —» °o

(2.7) Pr(iV=n) = exp I -A + - In"3'2 • (6 exp (1 - 0))"

Proof:

For large n, using the Stirling approximation to n! we can write the pmf in (2.1) as

(2.8) Pr (N=n) =

Yin
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where Ox - d\{ri) satisfies 0 < 0] < 1. After some rearrangement, we have

f A f A ~1" ~' ( (9 M
(2.9) Pr(N=n)~\ 1 + — exp - A - — - L~ 3 / 2 (6 exp (1 - 0))";

U ^ L dn] { 12/iJJ
Note that the term inside the { } tends to the required constant as n —> °° and

hence the proof.

3. COMPOUND GENERALIZED POISSON DISTRIBUTION ( C G P D )

Let N denote the number of claims produced by a portfolio of policies in a given
time period. Let X, denote the amount of the ith claim. Then

(3.1) S = X{+X2 + ... + XN

represents the aggregate claims generated by the portfolio for the period under
study. In order to make the model tractable, two fundamental assumptions are made
in risk theory and they are

1. Xl,X2,-.. are identically distributed random variables with the distribution
function F(x).

2. The random variables N,XltX2,... are mutually independent.

When a GPD is chosen for N, the distribution of S is called a compund
generalized Poisson distribution. In terms of the convolution operation, we can
write the distribution function of S as:

^ , exp ( - X - n6)
Fs(x)= X F * n ( ) X a + e)n-1

n = o n\

The moment generating function of S is given by

(3.2) Ms(t) = M

where MN(t) is the moment generating function (mgf) of the GPD and Mx(t) is the
mgf of the claim amount distribution. By using the expression given in (2.2), we
can write the mgf of S as

(3.3) Ms(O = expj--[W(-0exp(-0)MJ f(O) + 0 ] | .

Similarly, the probability generating function (pgf) of S, when the distribution of
claim severity is arithmetic, can be written as

(3.4) Ps(z) = exp\- - [ W ( - 0 e x p ( - 0 ) / > x ( z ) ) +

where Px(z) is the pgf of claim amount distribution.
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3.1. Central moments of S

The moments of S can be obtained by directly differentiating the mgf of S given in
(3.3). For this differentiation, one may use the following identity, involving
Lamberts W functions:

dW(x) W(x)

dx x(l + W(x))

After some lengthy algebra, we obtain the following expressions for the first
three central moment of S:

E(S) = XpxM

Var(S) = Xp2M
3 + X(p2—p\)M

E((S - E(S))3) =X(3M-2)p]MA + 3Xp, {Pl-p])M3 + (p3 - 3p2px + 2p])XM

where M = (1 -0)~] and p,•, / = 1,2,3 are the ith non-central moments of claim
severity.

4. PROPERTIES OF C G P D : ABSOLUTELY CONTINUOUS SEVERITIES

Theorem 4.1: If the claim sizes are absolutely continuous with pdf f(x) for
x > 0, then the pdf g(X, 9; x) of CGPD satisfy the integral equation

(4.1) g(X,9;x)=Pl(X,9)f(x) + - A . U + A-)g(X + 9, 9;x-y)f{y)dy
X + 9 Jo \ x)

where p, (A, 0) = Pr (N = 1) in the GPD with parameters A and 9.

Proof:

Consider

(4.2) g(X,9-x)= X pi(X,9)f*i{x)
; = i

(4.3) =Px(X,9)f(x) + X pi(X,9)f*i(x)
i = 2

By using the following identity of GPD,

A ( X
(4.4) P i ( X , 9 ) = lOpi t(X + 9 , 9 ) + - P i _ x ( X + 9 , 9 ) \ ( = 1 , 2 , . . .

A + 9 { i

we have

(4.5) X PiU,0)f*i(x) =

^ p, ^(X + 9,9) .
+ X X ^ ^ —f*'(x)

/
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Using the identities

(4.6) /*'(*)= I f*{i~V\x-y)f(y)dy

and

'*'(x)_ r

i Jo
(4.7) ' _ ^ = | J-f*('-"(x-y)f{y)dy

x

we have

(4.8) X Pia,9)f*i(x) = \6 ̂  Pi_,a + 6,e) I /*('-|)U-.y)/(y)<v6,9) f*u

Jo

' = 2

By interchanging the order of summation and the integration and realizing the
fact

(4-9) X
(" = 2

(4.10)

we have

2 + 0 Jo
lx-y)f(y)dy

Substitution of (4.11) in (4.3) yields the required result and hence the
theorem.

One has to solve the integral equation (4.1) numerically. Although, there are
many algorithms and implementations available to solve Volterra integral equations
of the second kind, one has to modify them to solve (4.1). We are currently
investigating the problem of finding the best algorithm and we hope to report this
finding in a future article.

4.1. Tail behaviour of CGPD

Theorem 4.2: If there exists a number K > 0 satisfying

exp (d)
(4.12) _ ^

ed
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for X non-arithmetic and if - L'x ( - K) < °°, then

(4.13)

where C is given by

(4.13) \-Fs(x)~Cx-y2exp(-Kx),

_ r y v . » L,A_K)

0

Proof:

The Proof of this theorem directly follows from the Lemma 2.1 and from the
theorem of EMBRECHTS, MAEJIMA, and TEUGELS (1982).

5. PROPERTIES OF C G P D : ARITHMETIC SEVERITIES

Theorem 5.1: If the claim sizes are random variables on the positive integers
with probability mass function / (x ) = Pr (X = x), x = 0, 1,2,..., then the probabil-
ity mass function g(A, 0;x) of CGPD satisfies the recurrence equation

A 4, ( y \
(5.1) fi((A,0;x) = X 0 + A- g(A + 0 ,0 ;x-y) / (> ' ) .

A + 0 .y=i i, x)

Proof:

This theorem can be proved following the same line of reasoning as Theorem 4.1 or
the standard proof of Panjer's recursion (see Theorem 6.6.1 and Corollary 6.6.1 in
PANJER and WILLMOT (1992)).

A result analogue to Theorem 4.2 can be established for discrete severity case
using Lemma 2.1 and the theorem given in WILMOT (1989).

5.1. Recursive evaluation

The recursive formula given in (5.1) is easily programmable and also simple to use
for manual calculations. For the latter, one may use the following schematic
approach:

2 0, 0,0) gf(A + 3 0, 0,0) gf(A + 4 0, 0,0)

2 0, 0, 1) g(A + 3 0, 0,1)

gU + 26,6,2)
0,0,3)

9 (A,

g (A,

g (A,

0,

0,

0,

0)
1)

2)

9 (AH

0 ( A H

9(AH

-0,
h0,

h0,

0,

0,

0,

0)

1)
2)
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The first row of the above scheme is obtained by using the fact that g (X + id, 0) =
p0(X + id, 0) = exp (-X-id) for i = 0, 1 To calculate the probability mass
function given in the (i,j )th location, one has to use the elements in (l,j+ 1) where
/ = 0, 1,... ,i- 1. Since the scheme is of an upper diagonal form, we can carry out
the computations for each row starting from right to left. For example, if one wishes
to compute g(X, 6, 4) one may start from g(X + 46, 0, 0) and move along the
diagonal from right to left, i.e. calculate g(X + (4-i)0, 6, i), i-0, 1, 2, 3, 4 in that
order.

Example:

Suppose that S has a CGPD with X = 0.8, 9 = 0.5 and the distribution of individual
claim amounts is as follows:

X

1
2
3

Pr (X = x)

0.25
0.45
0.30

Then, by using the recursive method described above, the pmf of S has been
tabulated for s = 0(1)59 and these values are presented in Table 1.

TABLE l

THE PROBABILITY MASS FUNCTION OF S

s

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Pr(S = s)

.44933

.05451

.10555

.09329

.04809

.04813

.03595

.02737

.02320

.01835

.01505

.01248

.01029

.00860

.00720

.00605

.00512

.00434

.00369

.00315

s

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Pr (S = s)

.00269

.00231

.00198

.00171

.00148

.00128

.00111

.00096

.00083

.00073

.00063

.00055

.00048

.00042

.00037

.00032

.00028

.00025

.00022

.00019

s

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Pr (S = s)

.00017

.00015

.00013

.00012

.00010

.00009

.00008

.00007

.00006

.00006

.00005

.00004

.00004

.00003

.00003

.00003

.00002

.00002

.00002

.00002
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