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The particle-in-cell (PIC) method is successfully used to study magnetized plasmas.
However, this requires large computational costs and limits simulations to short physical
run times and often to set-ups of less than three spatial dimensions. Traditionally,
this is circumvented either via hybrid-PIC methods (adopting massless electrons)
or via magneto-hydrodynamic-PIC methods (modelling the background plasma as a
single charge-neutral magneto-hydrodynamical fluid). Because both methods preclude
modelling important plasma-kinetic effects, we introduce a new fluid-PIC code that
couples a fully explicit and charge-conserving multi-fluid solver to the PIC code SHARP
through a current-coupling scheme and solve the full set of Maxwell’s equations. This
avoids simplifications typically adopted for Ohm’s law and enables us to fully resolve
the electron temporal and spatial scales while retaining the versatility of initializing
any number of ion, electron or neutral species with arbitrary velocity distributions. The
fluid solver includes closures emulating Landau damping so that we can account for this
important kinetic process in our fluid species. Our fluid-PIC code is second-order accurate
in space and time. The code is successfully validated against several test problems,
including the stability and accuracy of shocks and the dispersion relation and damping
rates of waves in unmagnetized and magnetized plasmas. It also matches growth rates
and saturation levels of the gyro-scale and intermediate-scale instabilities driven by
drifting charged particles in magnetized thermal background plasmas in comparison with
linear theory and PIC simulations. This new fluid-SHARP code is specially designed for
studying high-energy cosmic rays interacting with thermal plasmas over macroscopic time
scales.

Keywords: astrophysical plasmas, plasma simulation, plasma instabilities

1. Introduction

Astrophysical plasmas naturally partition into thermal and non-thermal particle
populations. Provided particles collide frequently via (Coulomb) collisions, this eventually
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leads to a characteristic thermal Maxwellian phase-space distribution. This population can
be reliably described with the fluid approximation, which characterizes a vast number of
particles by a few macroscopic fields in space (e.g. number density, mean velocity and
temperature). By contrast, the non-thermal cosmic ray (CR) ion population at energies
exceeding GeV is mostly collisionless and interacts with the background plasma via
wave—particle interactions, thus retaining its initial power-law distribution for much longer
times (Blandford & Eichler 1987; Draine 2011; Zweibel 2017). Low-energy CRs (< GeV)
more frequently experience Coulomb/ionization collisions and as such have a direct
influence on the gas dynamics and molecular chemistry (Dalgarno 2006; Padovani et al.
2020). The CRs can excite and grow plasma waves via instabilities at which they scatter
in pitch angle (i.e. the angle between momentum and magnetic field vector), thereby
regulating their macroscopic transport speed and exchanging energy and momentum with
the thermal population. Modelling these plasma processes requires us to move beyond the
classical fluid approximation.

During the process of diffusive shock acceleration, CRs stream ahead of the shock
into the precursor region and drive non-resonant Alfvén waves unstable by means of
their powerful current (Bell 2004; Riquelme & Spitkovsky 2009; Caprioli & Spitkovsky
2014a), which provides efficient means of increasing their wave—particle scattering and
reducing the CR diffusion coefficient (Caprioli & Spitkovsky 2014b). Upon escaping
from the acceleration site into the ambient medium, CRs continue to drive Alfvén waves
through resonant instabilities. Scattering off of these self-induced waves regulates their
transport speed (Kulsrud & Pearce 1969; Marcowith, van Marle & Plotnikov 2021;
Shalaby, Thomas & Pfrommer 2021), which is determined by the balancing instability
growth and wave damping (Thomas & Pfrommer 2019; Thomas, Pfrommer & Enflin
2020). In the interstellar medium, CRs provide a comparable if not dominant pressure,
despite their negligible number densities in comparison with the thermal population,
which makes them dynamically important (Boulares & Cox 1990; Draine 2011). Their
pressure gradient can drive outflows from the interstellar medium (Simpson et al. 2016;
Farber et al. 2018; Girichidis et al. 2018) so that powerful global winds emerge from
galaxies (Uhlig et al. 2012; Hanasz et al. 2013; Pakmor et al. 2016; Ruszkowski, Yang
& Zweibel 2017) that enrich the circumgalactic medium in galaxy haloes with CRs that
can also dominate the pressure support and modify the cosmic accretion of gas onto
galaxies (Buck et al. 2020; Ji et al. 2020). The degree to which CRs regulate galaxy
formation critically depends on the efficiency of wave—particle interactions, which in turn
depend on the amplitude of self-excited plasma waves (Thomas, Pfrommer & Pakmor
2022). On even larger scales, CRs energized in jets of active galactic nuclei stream into
the surrounding intracluster medium of cool core clusters and heat it via the excitation
of Alfvén waves and the successive damping (Guo & Oh 2008; Pfrommer 2013; Jacob
& Pfrommer 2017; Ruszkowski, Yang & Reynolds 2017). Because the plasma physics
underlying these processes is highly nonlinear, numerical calculations are needed to study
these effects.

Due to its ability to resolve kinetic processes, the particle-in-cell (PIC) method (Dawson
1962; Langdon & Birdsall 1970; Hockney 1988; Birdsall & Langdon 1991) has become
one of the most used methods for studying plasmas from laboratory to astrophysical scales.
Examples of that include revolutionizing our understanding of the rich physics found in
collisionless shocks (Spitkovsky 2008; Marcowith et al. 2016), magnetic reconnection
(Daughton, Scudder & Karimabadi 2006; Daughton et al. 2011; Sironi & Spitkovsky
2014), instabilities driven by highly relativistic electron—positron beams (Bret, Gremillet &
Dieckmann 2010; Shalaby et al. 2017a, 2018, 2020) as well as the transport of non-thermal
particle populations like CRs (Holcomb & Spitkovsky 2019; Shalaby et al. 2021).
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However, the PIC method needs to advance numerous particles per cell each time step,
and thus it is quick to reach its computational limit. Even one-dimensional simulations
usually only capture the dynamics on very short physical times and the extent to which
two- or three-dimensional simulations can be performed is very limited.

The time interval between the inverse of the electron plasma frequency, w; ', (which
is necessary to ensure the stability of the PIC algorithm) and that of the ion plasma
frequency, w; ', depends on the ion-to-electron mass ratio, since w; ' /o' = (m;/m.)"?,
assuming charge neutrality, i.e. that the electron and ion densities are equal. Therefore,
one frequently used trick to increase the computational efficiency in PIC simulations
is to adopt a reduced ion-to-electron mass ratio to bridge the gap between the smallest
time scale in the simulation and the larger time scale on which interesting physical
processes occur. However, this might lead to artificial suppression of physical effects
(Bret & Dieckmann 2010; Hong et al. 2012; Moreno et al. 2018), including instabilities
with excitation conditions that depend on the mass ratio (Shalaby et al. 2021, 2022).
This shows the need for a more efficient numerical method to complement the accurate
results achieved by PIC simulations in order to enable simulations of realistic physics
occurring on longer time scales. One possible method consists in using the less expensive
fluid approximation, which works particularly well for collisional systems where frequent
particle collisions maintain a thermodynamic temperature but is less well motivated in
weakly collisional or even collisionless astrophysical plasmas where it cannot accurately
capture some important microphysical plasma processes.

Multiple methods have been devised that combine the computational advantages of
a fluid code, while trying to maintain some of the physics accuracy provided by the
PIC method. Hybrid-PIC codes (Lipatov 2002; Gargaté et al. 2007) treat electrons as
a massless fluid and ions as particles. With the assumption of charge neutrality and
the Darwin approximation (i.e. neglecting the transverse displacement current), these
codes are able to overcome some computational barriers while omitting effects on the
electron time and length scale. Since this eliminates the need to resolve electron scales,
the increase in computational efficiency from pure-PIC to hybrid-PIC methods is roughly
a factor of (m;/m.)"/? in time scale and approximately the same factor in spatial scales.
In cases where the electron pressure anisotropy becomes important, such as in magnetic
reconnection, a hybrid Vlasov—Maxwell system can be coupled to an anisotropic electron
fluid with a Landau fluid closure, which captures more kinetic physics (Finelli et al.
2021). On the other hand, an even more efficient method exists, that combines the
magneto-hydrodynamic (MHD) description of the thermal background plasma with PIC
methods to model the evolution of energetic particles such as CRs (Bai ef al. 2015; van
Marle, Casse & Marcowith 2018), called MHD-PIC. However, this method inherits the
assumptions of MHD, in particular, the use of (a simplified) Ohm’s law by fully neglecting
the displacement current, which precludes physics associated with the higher-order terms
of Ohm’s law as well as the electron dynamics.

In this paper we present a self-consistent algorithm that is suitable for simulating
microphysical effects of CR physics by only applying the fluid approximation to thermal
particles and solving the full set of Maxwell’s equations. Our goal of this novel fluid-PIC
method is to sacrifice as little physics accuracy as possible, while at the same time
alleviating computational restraints by orders of magnitude for set-ups involving CRs (or
similar, low density non-thermal particle populations interacting with a thermal plasma).
The fluid-PIC method, in essence, couples a multi-fluid solver to the PIC method by
summing their contributions to the charge and current densities used to solve Maxwell’s
equations, and the resulting electromagnetic fields. Thus, the subsequent dynamics is
dictated by fluid and PIC species. This enables the treating of any arbitrary number
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of species in thermal equilibrium by modelling them as separate fluids that interact
electromagnetically with each other and with particles of arbitrary momentum distribution
(modelled using the PIC method). In contrast to MHD-PIC and hybrid-PIC methods,
we do not explicitly assume Ohm’s law, and instead solve Maxwell’s equations in a
fully self-consistent manner in our fluid-PIC code. Therefore, displacement currents are
included in our model and fast changes in the electric field and electron dynamics are
captured. This, in turn, allows us to study the interaction of high-energy particles with the
background plasma, e.g. to investigate CR streaming. Another hybrid approach resolving
electron time scales fully, but using pressure coupling, has been used for the simulation of
pick-up ions in the heliosphere by Burrows, Ao & Zank (2014).

Often implicit and semi-implicit methods are utilized for stability and resolution reasons
to couple the multi-fluid equations to Maxwell’s equations (Hakim, Loverich & Shumlak
2006; Shumlak et al. 2011; Wang et al. 2020). However, this creates an interdependency
between all fluids and has limited utility when coupled to explicit particles. We have
developed an explicit multi-fluid solver in which each fluid and particle species is agnostic
about each other and the coupling is achieved via an indirect current-coupling scheme.
Because the PIC part of the code is the most computationally expensive part of the
fluid-PIC, hybrid-PIC and MHD-PIC methods, the computational efficiency is mostly
determined by the number of particles required as well as the smallest time and length
scales that need to be resolved. Hence, this fluid-PIC approach results in large speed ups
for CR propagation simulations in comparison with traditional hybrid-PIC codes, which
treat every ion as a particle and need to initialize a large number of particles according to
the density ratio, as well as in comparison with PIC-only simulations. Especially studying
CR propagation in the interstellar medium, where the typical CR density is of the order
of 10~° times the interstellar medium number density, is challenging. Since the fluid-PIC
algorithm is faster by orders of magnitude in comparison with PIC in such a case, we
can reach further into the realistic parameter regime without sacrificing some essential
microphysics.

One of the most important kinetic effects is arguably Landau damping. The fluid
description can emulate this effect using Landau closures (Hammett & Perkins 1990;
Umansky et al. 2015; Hunana et al. 2019a), which necessitates the computation of
the heat flux in Fourier space. While Fourier transforms in one dimension are not
easily parallelizable, this bottleneck can partially be mitigated by performing global
communications of the message-passing interface (MPI) in the background while
processing the high computational load (e.g. resulting from evolving orbits of PIC
particles) in the foreground. Simulations with periodic boundary conditions are currently
handled by convolution with a finite-impulse-response (FIR) filter in our code, but other
options are available in the literature (Dimits, Joseph & Umansky 2014; Wang et al.
2019). A number of simplifying local approximations exist as well (Wang et al. 2015;
Allmann-Rahn, Trost & Grauer 2018; Ng et al. 2020), which scale computationally well
but become inaccurate for studying some multiscale plasma physics problems. Our code
implements these different approaches so that an appropriate one can be chosen, dependent
on the requirements of a simulation. Our implementation is massively parallelized and can
be efficiently run on thousands of cores. Furthermore, the fluid-PIC method allows for any
multi-fluid set-up. As such, this framework allows for some straightforward extensions.
Potentially, this involves a set-up with actively participating neutrals to incorporate
ion—neutral damping into this method. To this end, the coupling between different fluids
needs to be extended by a collision term, which is left as a future extension to the
code.
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The outline of this paper is as follows. In § 2, we introduce the pillars of this method
and describe the PIC method, the fluid solver, how we couple both methods by means
of electromagnetic fields and describe various implementations of the Landau closure.
In § 3, we show validation tests of the fluid solver (shock-tube tests), linear waves in an
ion—electron plasma and the damping rate of Langmuir waves in a single-electron fluid
with Landau closures. We then investigate the nonlinear effects of two interacting Alfvén
waves as well as CR-driven instabilities, where fluid-PIC and PIC results are compared.
We conclude in § 4. Throughout this work, we use the SI system of units.

2. Numerical Method

After a review of the kinetic description of a plasma in § 2.1, we briefly introduce our
PIC method in §2.2. The fluid description for plasmas and its assumptions are given
in § 2.3. The finite volume scheme we use to numerically solve the compressible Euler
equations is described in § 2.4, while the electromagnetic interactions of the fluid are
described in § 2.5. In § 2.6, we describe the Landau closure we adopt in order to mimic
the Landau damping in kinetic thermal plasmas within the fluid description, and detail its
implementation in our code. We close this section by describing the overall code structure
of the fluid-PIC algorithm and finally discuss the interaction between the modules via the
current-coupling scheme (§ 2.7).

2.1. Kinetic description of a plasma

The kinetic description of a collisionless relativistic plasma with particles of species s with
elementary mass, m;, and elementary charge, ¢y, is given by the Vlasov equation

afy, u
— +t—-Vfi+ta -V, =0, @b
at y

where f; = f;(x, v, t) is the distribution function, # = yv is the spatial component of the
four-velocity with the Lorentz factor y = [1 + (v/c)*]""/? and c is the light speed. The
acceleration due to the Lorentz force is given by

a, = LEx. 1) + v x B(x. )] 2.2)
my

where E(x, t) and B(x, 1) are the electric and magnetic fields, respectively. The evolution
of electric and magnetic fields is governed by Maxwell’s equations

0B
ot
oE

J
& _evxB-2, v.E=L, (2.4)
ot &0 &0

=-VxE, V-.-B=0, (2.3)

where ¢ = 1/,/gy1t¢ is the vacuum speed of light, and &y and w are the permittivity and
the permeability of free space, respectively. The evolution of the electromagnetic fields
is influenced by the charge density, p, and current density, J. They are given by the
charge-weighted sum over all species of the number densities n; and bulk velocities wy,
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respectively,

p(x, 1) =Y gnyx,0) =Y g, f fix v, 0 d, 2.5)

T, 1) =Y qn(x, Dwyx. 1) = Y _ g, / of(x, v, 1) dv. (2.6)

2.2. The PIC method

We use the PIC method to solve for the evolution of plasma species that are modelled
with the kinetic description. The PIC method initializes a number of computational
macroparticles to approximate the distribution function in a Lagrangian fashion. Each
macroparticle represents multiple physical particles and, as such, each macroparticle has
a shape in position space which can be represented by a spline function. By depositing
the particle motions and positions onto the numerical grid (or computational cells), the
electromagnetic fields can be computed. This step is followed by a back interpolation of
these fields to the particle positions so that the Lorentz forces on the particles can be
computed. In our implementation, these equations are solved using one spatial dimension
and three velocity dimensions (1D3V), i.e. V = (3/dx, 0, 0)T.

The code quantities are defined as multiples of the fiducial units given for time, fields
(electric and magnetic), charge, current density and length

o = /moeo) (@), Eo = \/m} @.7)

Po = qoho, Jo = poc, Xo = Clp.
This enables us to select a fixed time step of
At = CencAx, (2.8)

where C.q < 0.5 to satisfy the Courant—Friedrichs—Lewy (CFL) condition. The value of
the reference density ny is chosen such that the code time scale, #,, obeys a)p‘2 = t(z). The
total plasma frequency is w, = (3_, @?)'/?, and is related to the plasma frequencies of the
individual species, w? = g’n,/(mye,). We define the discretized time #* = kAt, position
x; = iAx and quantities at discrete position and times as Ef‘ = E(¢*, x;). For details on the
PIC code SHARP, the reader is referred to Shalaby et al. (2017b, 2021). Here, we focus on
describing how SHARP is extended to include fluid treatment of some plasma species.

2.3. Fluid description of plasma

A straightforward way of coarse graining the Vlasov equation (2.1) is to reduce its
dimensionality. By taking the jth moment over velocity space, i.e. [v/f d*v, we retrieve
the fluid quantities and reduce the dimensionality of the 1D3V kinetic description to one
dimensions. The number density 7, and the bulk velocity w; are defined through the zeroth
and first moments of the distribution function, respectively, while the total energy density
per unit mass €, and the scalar pressure per unit mass py are related to the second moment
(Wang et al. 2015)

ny(x, t) = f fi(x, v, 1) do, (2.9)

wy(x, 1) = f n‘(i t)vfs(x, v, 1) d’v, (2.10)
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1, 3
€(x, 1) = Ev fi(x,v,1)d’v, (2.11)

r—1
po(x, 1) = / (0 — wy)*fi(x, 0, ) dPv = —5 / (0 — wy)*f,(x, v, 1) dv. (2.12)

Here, the pressure tensor is under the adiabatic assumption and the degrees of freedom are
encoded in the adiabatic index I”. The following relation is found from the definitions:
P 1
T i I + Ensw‘Y .- w;. (2.13)
The first three moments of the Vlasov equation are called the continuity, momentum and
energy conservation equations. A set of these equations is found for each fluid species, but
the subscript s is neglected here for simplicity

€, =

on
™ + V. (nw) =0, (2.14)
dnw q
— + V. [pl+nww] =—=S,(n,w,B,E), (2.15)
ot m
o€ 1 q
— 4+ V.- [(p+ew]l+ ——V:-0=—w-S,(n,w,B,E). (2.16)
ot I —1 m

We assumed the non-relativistic limit and an isotropic pressure tensor with vanishing
non-diagonal components, i.e. the inviscid limit. The notation ww indicates the dyadic
product of the two vectors and 1 is the unit matrix. Similar to the definition of the scalar
pressure in (2.12) we use a definition of the heat flux vector, which is normalized to the
degrees of freedom as well

r—1
ox, 1) = — / (0 —w)’( — w)f(x,v, 1) dv. (2.17)

The electromagnetic source term is given by
S,(n,w,B, E) = n(E +wxB). (2.18)

The general form of the fluid equations can be written as
U - -
SLAVFD) = S(D), (2.19)

where U = U (x,1) = (n, nw, €)7 is the fluid state vector at position (x, 7), F is the flux
matrix and S is the source vector.

Numerically, the complexity of solving (2.19) can be reduced by splitting the operator
into less complex sub-operators using Strang operator splitting (Strang 1968; Hakim et al.
2006). This enables us to use the most appropriate solver for each subsystem sequentially.
We split the fluid update into three parts: the flux F excluding the heat flux (see §2.4),
the electromagnetic source Se,, = Syq/m (see § 2.5.1) and the heat flux Q (see § 2.6). For
commuting operators exp(AtQ) and exp(AtS.n) a second-order accurate Strang splitting
is obtained as

Un+l/2 — e(AI/Z)F eAI‘Q eAtSem e(At/Z)FUn—1/2 + 0(At3) (220)

If Q and S, act independently on the entries p and w, respectively, then the order of
applying them can be varied and they need to be evaluated only once. In practice, the
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formulation of Q might partially depend on w. In this case, Strang splitting is performed
on this part of the operator Q as well, see (2.47). In order to apply Sen (and Q, which
depends on the direction of B) one needs to find the electromagnetic quantities at
time ¢ first. The components of E along the simulated spatial direction can only be
updated from time "~ to #* after applying exp(At/2 x F) for the first time (see § 2.5.2).
Therefore, electromagnetic quantities need to be calculated between these updates. This is
unproblematic as F is independent of the electromagnetic field, and we can defer updating
E without reducing accuracy.

2.4. Finite volume scheme

The 1D3V fluid equations are solved using a finite volume method, where the fluid
equations are averaged over the cell volume, which is an interval of length Ax in one
dimension,

U.(r) = i / o U(x, 1) dx. (2.21)

Xi—1/2

This enables us to correctly conserve the overall fluid mass, fluid momentum and fluid
energy, even in the presence of large gradients, by utilizing Gauss’ theorem

1 Xit1/2 8F(f])
Ax ox

1
dx = —[F; —F,_ 5], 2.22
Ax[ 1172 1721 (2.22)

Xi—1/2

where the flux through an interface at x; is F;(t) = F [fJ (x;, 1], leading to the update
equation
vty 1

a  Ax [—Fi+1/z+F,-1/2+ / SU(x, 1) dx]. (2.23)

Integrating equation (2.23) in time is achieved by using at least second-order Runge—Kutta
methods (Butcher 2016), which is the limit set by the operator splitting scheme. We
could not find examples yet, where higher-order Runge—Kutta methods have performed
noticeably different from second-order methods in the fluid-PIC code. In contrast
to the finite difference scheme used for electromagnetic fields and particles, where
electromagnetic quantities are point values, fluid quantities discretized with the finite
volume method are cell averages. This is useful, because the finite difference method
does not guarantee the conservation of the conservation equations (2.14) through (2.16),
which are governing the fluid; while on the other hand using the finite volume method
for the electromagnetic fields needs additional steps to satisfy the constraint V - B = 0.
Hybridization of both schemes to combine the advantages of each has been used before in
other contexts, i.e. Soares Frazao & Zech (2002).

The maximum time step in the 1D3V Euler equations, which allows for stable
simulations, is At < CqaAx/(Jw| + ¢,), with the speed of sound ¢, = (I"p/n)'/?. For all
realistic set-ups these velocities are limited naturally by the speed of light, |w| < ¢ and
¢s < ¢, and this condition is automatically fulfilled by the time step criterion in (2.8).
In practice, only (2.8) together with a suitable Courant number of C.; < 0.5 is used to
determine the time step of the simulation.

2.4.1. Reconstruction
To approximate the flux at interfaces, we need to reconstruct the fluid state at cell
interfaces. The accuracy of the reconstruction has a crucial influence on the diffusivity.
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A lower-order reconstruction can lead to excessive damping of waves, which might
suppress relevant physical effects on longer time scales.

For reconstructing the point value U (X412, 1), which is needed to compute F;/,, we
employ a central-weighted essentially non-oscillatory reconstruction (C-WENO) scheme
of spatial order five. The reconstruction computes two point values at each interface x;, 2,
an interpolation from the left- and right-hand sides. We reconstruct the primitive variables
n, w and p individually.

Our implementation of the C-WENO method is based on the fifth-order scheme
presented in Capdeville (2008). An introduction to the topic can be found in Cravero et al.
(2018a). The C-WENO reconstruction uses a convex combination of multiple low-order
reconstruction polynomials to achieve high-order interpolations of the interface values
while it employs a nonlinear limiter to degrade this high-order interpolation to a lower
order if the reconstructed quantity contains discontinuities. The fifth-order C-WENO uses
three third-order polynomials P (x), Pc(x), Pg(x) for each cell i to interpolate the four
adjacent cells in the following way:

P;(x) interpolates valuesat i—2 i—1 i
Pc(x) interpolates values at i — 1 i i+1,
Pr(x) interpolates values at i i+1 i+2,

while the optimal fifth-order polynomial interpolates all of them:
Py (x) interpolates valuesat i—2 i—1 i i+1 i+2.
We define an additional polynomial

1
Po(x) = T |:Popt(x) - > quq(x)] (2.24)

q€[L.C.R]

where dy+ d; +dc +dgr = 1. The polynomials Py, P;, Pc and Pi are a convex
representation of the P, polynomial. We use dy = 3/4, dc = 2/16 and d; = dp = 1/16.

In general, we would like to use the reconstruction provided by the P,, polynomial as
frequently as possible because of its high-order nature. But this high-order reconstruction
can cause oscillations similar to the Gibbs phenomenon at discontinuities. Therefore, we
need to employ a limiting strategy to avoid such behaviour. In order to accomplish this, we
re-weight all of our d-coefficients by taking the smoothness of the associated polynomial
into account (Jiang & Shu 1996). We define

2
T
—d, |1 for g € [0, L, C, R], 225
% q|:+(IS[Pq]+10—9Ax)j| org el ] o

where 7 is a measure for the overall smoothness of the reconstructed variables, and IS[P,]
defines a smoothness indicator of the low-order polynomials. Because the formulae for
these smoothness indicators are quite cumbersome, we list them in Appendix A. These
coefficients define a new set of normalized weights given by
Yy
w, = forqg € [0, L, C, R]. 2.26)
T wtotactag 1 (

The final reconstructed polynomial is then given by the convex combination of the
low-order polynomials using this set of normalized weights

Prec(x) = woPo(x) +wiPr(x) + wePe(x) + wgPr(x), (2.27)
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which we evaluate at the cell interfaces to calculate the required left- and right-handed
interface values for the Riemann solver. We detail how these polynomials are evaluated in
Appendix A.

The smoothness indicators IS[P,] vanish if the underlying polynomials are smooth.
In this case, the re-weighted coefficients reduce to their original value o, — d, and the
reconstructed polynomial reduces to the optimal polynomial Piec(x) — Pop(X).

2.4.2. Riemann solver ~

The previous reconstruction step determines two, potentially different, values U, and
Uy, for each quantity to the left and right of every interface, thereby providing the initial
conditions for the Riemann problem

aU .
Y V.FD), (2.28)
at
~ f]L x<0
=17 . 2.2
U(x, 0) {UR >0 (2.29)

An (approximate) Riemann solver is employed to compute the numerical flux F(U).
While a number of different families of Riemann solvers have been developed with
individual strengths and weaknesses, we have decided to implement multiple solvers which
can be changed on demand. Implemented solvers in fluid-SHARP include a Roe solver
with entropy fix (Roe 1981; Harten & Hyman 1983) and an HLLC (Harten-Lax—van
Leer contact) solver (Toro, Spruce & Speares 1994). While the Roe solver yields more
accurate solutions and fewer overshoots in our tests in comparison with the HLLC solver,
it becomes unstable in near vacuum flows and strong expansion shock waves. Even though
differences between the solvers are easily visible in some shock set-ups and artificially
extreme conditions, they are typically negligible in most applications common for thermal
plasmas. We opt to employ the HLLC solver as our standard for stability purposes and use
the Roe solver in cases where stronger shocks with overshoots are expected.

2.4.3. Importance of wave characteristics in approximating stable numerical fluxes

The characteristic curves of the Euler equations without sources correspond to the
eigensystem of the flux Jacobian dF/0U. Approximate Riemann solvers use these
characteristics for computing fluxes across small time steps and to introduce numerical
dissipation to suppress spurious instabilities. For the hydrodynamic Euler equations in
1D3V (without a heat flux), five characteristics emerge with characteristic wave speeds
A =w, — ¢, w, + ¢;, wy, where the last eigenvalue w, has a multiplicity of 3. In particular,
the Roe solver (without the entropy fix) computes the numerical flux at an interface by
averaging the physical fluxes as follows (LeVeque 2002):

Foum = 3[F(U,) + F(Ug) — Dy(Ug, Up)]. (2.30)

The d1351pat10n vector D, = R|A|R™ '(U R— U 1) vanishes for U R = =U .. The matrices
R(UL, UR) and |A|(UL, UR) are composed of eigenvectors and a diagonal of the
absolute eigenvalues |A(U,, Ug)|, respectively, where an appropriate averaging of
left- and right-hand states at the interface is used to derive these eigenvectors and
eigenvalues. That is, the dissipation is directly based on the jump at the interface of each
wave multiplied by its characteristic wave velocity. The dissipation vector satisfies the
subcharacteristic condition, i.e. in characteristic coordinates each eigenvalue is bounded
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by the dissipation —D,; < A; < D, ;, and thus stabilizes the scheme without introducing
excessive dissipation (Whitham 1974; Chen & Liu 1993; Hsiao 1997; LeVeque &
Pelanti 2001). In multi-dimensional scenarios, computing the projection of the difference
(fJ R— U 1) from a Cartesian grid onto the characteristics can result in violations of this
condition or excessive dissipation. In these instances, it can be advantageous to artificially
alter the wave speeds entering D,. Reduced wave speeds can be used to successfully
counter excessive dissipation leading to a wrong convergence for low Mach number
flows (Dellacherie 2010), however, this leads to numerical instabilities when applied to
high Mach number flows. On the other hand, increased wave speeds have been found to
eliminate numerical instabilities at shocks (Peery & Imlay 1988). While the HLLC solver
makes more sophisticated approximations to the wave speeds of the nonlinear system, the
principle of artificially increasing selected wave speed estimates yields the same result
(Simon & Mandal 2019).

To provide an understanding of how these characteristics influence the operator splitting,
suppose the following decomposition of the total flux F, = F, + Fp into two fluxes.
Hence, we need to compare the numerical estimate of the total flux with that of the
individual subsystems, denoted by F, and Fp. The expansion of nonlinear systems
provided by Strang (1968) yields U = U7 + Af[AF; ,(U") + AF,; 3(U"] + O(Af),
where we only use terms up to first order for simplicity. The intracell flux AF; =
—(Frum,it172 — Froum,i—1/2)/ Ax is used for updating U (see (2.23)). The numerical flux at
an interface for one time step is thus

{ HF(Up) + F(Ug) — Dy, (Ug, U] if unsplit
Fom= . (23D

HF(UL) + Fi(Ug) = Dya(Ug, Up) — D, (U, U] if split

Both numerical fluxes converge to the total physical flux; for vanishing dissipation vectors,
e.g. Up = Uy, both formulations are equal. Intuitively, the total strength of the dissipation
matrix in the unsplit scheme is smaller tr|A,| < tr|A4| 4 tr|Ag|, while the split scheme is
stable provided that the subsolvers are stable (Strang 1968). As an important consequence,
a split Riemann solver only needs to account for the characteristics in the subsystem.
This conveniently allows us to use specific solvers for each subsystem without taking
into consideration the other systems of equations. Another possibility is to convert the
divergence of a flux into a source term, which eliminates the need for a Riemann solver
but results in the loss of guaranteed conservation in the finite volume scheme. We provide
two applications, for which this is useful.

First, the heat flux vector Q, which is indeed a physical flux, results in a non-trivial
change of the wave characteristics. Instead of including this complexity in the Riemann
solver here, it is simpler to treat its divergence (V - Q) as a source term instead (see § 2.6).

Second, in the MHD Ilimit, the evolution equation of the -electromagnetic
momentum €y0,ExB = —pE —JxB+ VT, collapses to the constraint JxB ~
V(BB — 1B%/2)/11o (see, e.g. Braginskii 1965), where the Maxwell stress tensor is
givenby T, = €oEE + BB/ 1y — 0.5(€0E* + B?/110)1 ~ (BB — 1B%/2)/110. That is, the
electromagnetic source term can be expressed as a divergence of an electromagnetic flux
tensor. The MHD solvers make use of this constraint and, by including electromagnetic
fluxes into their total flux, the MHD Riemann solvers add dissipation based on the full
MHD wave characteristics. Failing to do so leads to numerical instabilities, especially
for large magnetic field strengths, as in general the fast magnetosonic wave is faster
than the characteristic waves treated in our scheme. However, because this source-flux
equivalency is invalid without the MHD assumptions, we must include the Lorentz force

https://doi.org/10.1017/50022377823001113 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377823001113

12 R. Lemmerz, M. Shalaby, T. Thomas and C. Pfrommer

as a source term (see the following §2.5.1) and consequently do not use the MHD
characteristic velocities in our Riemann solver. In § 3.2, we demonstrate the accuracy of
our implemented algorithm for propagating MHD waves, demonstrating that the numerical
dissipation is sufficient to suppress potential numerical instabilities.

2.5. Electromagnetic interaction with charged fluids

In this section, we first introduce the Lorentz force as a source term in (2.15). Furthermore,
we describe how the fluid influences the electromagnetic fields. With these two additional
parts, the description of an uncharged gas in § 2.4 is expanded here to include plasmas.

2.5.1. Treatment of electromagnetic source term
Instead of integrating the energy equation (2.16), which would require evaluating the
source term on the right-hand side, we convert € into p before applying the source update
exp(AtSenm) (see (2.20)). Consequently, we compute the time evolution of the primitive
pressure variable, for which the electromagnetic source term conveniently vanishes
op
E%—FpV-w—l—w-Vpﬁ—V-Q:O. (2.32)
Then, only the computation of the source term for the momentum equation (2.15) is left.
Up until now we have only applied the C-WENO method for conservation laws, however,
by adding the source term, we are left with a balance law. In C-WENO formulations
for balance laws it is customary to approximate the integral of the source term ((2.23))
numerically to higher orders as well (Cravero et al. 2018b). We use Simpson’s formula for
approximating (2.23)

Xit1/2 - ~ ~ ~
/ S(U)dx = ¢(S(Ui_1) +4S(U)) +S(Uis12) + O(AX), (2.33)

Xi—1/2

where the intracell values U i+1,2 are interpolated by the same C-WENO scheme as used for
solving the hydrodynamical equations, and the centre value is computed self-consistently
with the numerical integration formula, i.e. U,» = (6U, — (7i+1/2 — (~J,<_1/2)/4. We also
need to interpolate the electromagnetic field values to a comparable spatial order. This
is achieved by performing finite difference interpolations for each component from the
Yee mesh discretized fields, that is

150(E; + Ei1y) — 25(Ei—y + Eiyn) + 3(Eis + Eiys)
256

E. )= +0(AX%),  (2.34)

and temporal order, B" = (B"""/? 4 B"~'/?)/2, again, for each component necessary.
Lower-order approximations produce, in our tests, similar results, but converge to slightly
lower wave frequencies when compared with the analytical solution of the dispersion
relation. We apply S(U,) by using an implicit velocity update

WV g 1 , ,

L =2 |E+ - +u ) x B, 2.35

At m[’+2(w' o ) x B (239

which is solved using the Boris velocity integration (Boris ef al. 1970). The splitting of
fluid flux update and Lorentz force ((2.20)) is reminiscent of pushing a particle with the
PIC-method, where the Lorentz force for a full-time step is calculated in between half-time
step updates of the position vector.
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2.5.2. Deposition of charges

Equations (2.4) govern the electric field evolution, where Faraday’s or Gauss’ law might
be used to compute E. In this section we focus on the one-dimensional set-up without
particle contributions, which are explained in §2.7. The perpendicular components’
update, E\ and £, is received straightforwardly by discretizing Faraday’s law

At At
n+1 n+1/2 n+1/2 n+1/2
(EV)HJ-FI/Z (E )1+1/2 ; E—OC]s(”wy),-H/z,s - A_x[(BZ)M - (Bz)i 1, (2.36)
At ; At 0 ;
(Eifip = Edip = ) - qs<nwz>,:f/§s — B = @)L @37

s

where the sum is taken over all fluid species s and nw are components of the fluid vector U.
For the E, component in spatial direction however, in order to enforce charge
conservation, Gauss’ law in discretized form needs to be enforced for all i > 1 as well

i—1 ™
n n CIs n n qs ! ~n
(Ex)i = (Ex)() + E a E nj+1/2,SAx == (EX)O + g E_O / nS dx, (238)
s Jj=0 K Xo

where the second equality uses the definition of cell averages in the finite volume scheme
(see (2.21)) and shows, that this numerical formula is exact. Another formula for updating
(Ey)o to the time step 7 is still needed. In the analytical case Gauss’ law in combination
with the density conservation equation (2.14) for the analytical flux (or cell values)
J, o gnw, can be shown to be equivalent to Faraday’s law; in the numerical case this
equivalency is shown using the discretized conservation equation and corresponding
numerical flux J, o an(f] ) =~ gnw, for the current density J,. Taking the time derivative
of (2.38) in conjunction with the discretized density update (2.23) leads to the expression

(mﬁ—@w(mm (E)
At At

—Z%m/[@m+mmw (2.39)

The integration in time using Runge—Kutta methods is the same as used to solve (2.23).
Faraday’s law using fluxes in one spatial dimension is then given by

n+l __ n_ % e rm\1.
(E)H = (E)! ;%L TN (2.40)

and enables us to identify J, by comparison with the charge conservation equation ((2.14)
multiplied by ¢;)

f»t+l -
CWM=Z%/[MWML (2.41)
B tn

Note that the numerical flux also includes numerical diffusion and is directly related
to changes in p. Due to this, other formulations for J, violate the charge conservation
equation and can lead to numerical instabilities.
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2.5.3. Magnetic field evolution
Because the fluid evolution influences the magnetic field only indirectly, the finite
difference time-domain (FDTD) update for the magnetic field is unchanged from the

previous SHARP code. For completeness we reproduce the formulae here (Shalaby et al.
2021)

n n— At n n

(By)i+l/2 = (B)); 12 4 B((EZ)”l/z — (ED} 1) (2.42)
n+1/2 n—1/2 At n n

(Bz)i = (Bz)[ - A_x((EZ)HI/Z - (Ey),;1/2)- (243)

Here, B, is constant in the 1D3V model because of the requirement V - B = 0.

2.6. Landau closure for fluid species

The highest retained fluid moment, which is in our case the specific heat flux Q, is not
evolved in our set of equations. Instead, we need to estimate its value dynamically using an
appropriate closure. The simple ideal gas closure sets Q = 0, which, however, prevents the
energy dissipation of plasma waves. One important mechanism of such a dissipation is the
collisionless damping of electrostatic waves achieved through Landau damping. Landau
damping is a microphysical kinetic wave—particle interaction, where particles resonate
with the wave to exchange energy as a function of time. In essence, the resonant particles
accelerate or decelerate to approach the wave’s phase velocity, thereby picking up energy
or releasing it, respectively. For Maxwellian phase-space distributions, there are more
particles at velocities smaller than the phase velocity, which yields a net damping, i.e.
energy loss of the wave (Boyd & Sanderson 2003).

Various attempts, e.g. by Hammett & Perkins (1990), were carried out to approximate
the heat flux Q of an almost Maxwellian distributed plasma, such that the kinetic
phenomenon of Landau damping is mimicked in the linearized fluid equations. Landau
damping is a non-isotropic effect, which can be reflected in the fluid descriptions.
Accounting for the gyrotropy of the system around the magnetic field, the double-adiabatic
law with two adiabatic coefficients parallel and perpendicular to the magnetic field can
be adopted, which might be extended using an appropriate heat flux vector (Snyder,
Hammett & Dorland 1997; Hunana et al. 2019a,b). This is achieved by first decomposing
the pressure tensor in a coordinate system that is aligned with the direction of the
magnetic field b = B/|B|, yielding p = pbb + p, (1 — bb). The transport of parallel
and perpendicular heat along the magnetic field then corresponds to the terms Qb and
Q. b, respectively. In this publication, our algorithm is restricted to pressures with only
one common adiabatic coefficient for parallel and perpendicular pressures. We leave
the possibility of implementing anisotropic double-adiabatic systems open for future
extensions of our algorithm. Hence, we model only the scalar heat flux Q = b - Q, which
is a simplification of the double-adiabatic modelling from the aforementioned literature,
ie. 20/(I' = 1) = Q) +2Q,. In our model, we can assume an isotropized pressure
tensor p = p1 using the adiabatic coefficient I" = 5/3. To do this, we set p = p; = p,
everywhere without explicitly modelling Q, and the corresponding perpendicular pressure
equation. Instead, we choose Q such that the linear Landau-damping rate of the isotropic
system is comparable to that of an anisotropic electrostatic system with the same p; (for
details refer to comments below (2.46)). This is a simplifying assumption, which does
not follow from the kinetic equations, because a rigorous treatment necessitates solving
the perpendicular pressure equation. Furthermore, isotropization mainly results from
collisions, while collisionless systems are rarely isotropic and Maxwellian as we assume.
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Nevertheless, this is a convenient choice for damping waves with an isotropic background
plasma when particle heating is negligible compared with their thermal energy. A more
physically motivated anisotropic pressure tensor p = pe.e, is attained for I" = 3, where
e, is the unit vector in the x-direction. This approximates the kinetic equations well when
p = py. Since we model only components of Q parallel to b, the heat flux enters into the
pressure evolution equation (2.32) as

ap
— x =V - (bQ). (2.44)
at
In practice, we make the assumption of locally constant (or slowly varying) magnetic
fields on top of the 1D3V geometry, thatis V « (bQ) =~ cos(®)0d,Q, where the angle O is
measured between the background magnetic field B, and the x-axis.

Here, we will introduce two different formulae for heat flux closures. The first and most
popular collisionless electrostatic closure was proposed by Hammett & Perkins (1990).
We refer to it as the R3, closure throughout this paper, and it approximates the heat flux at
afixed I" = 3, in Fourier space, by
T
m

0= —is,ign(k)i\/ﬁcnokB = Or. (2.45)
Jr

Here, hats are used to denote quantities in Fourier space along the magnetic field
line, i.e. Q = F|(Q), and the subscript O refers to simulation box averages, that is ny =
Z?io n;/N, is an average over all N, cells. Furthermore kg is the Boltzmann constant, and

kT = (mp — kgTon)/ny. Since the plasma average or equilibrium temperature evolves
slowly as a function of time, we adjust the background temperature 7, after every time
step to synchronize it with the mean pressure, kg7 (f)/m = po(t)/ng, while the density
conservation ensures that ny stays constant. Note also that Qo = 0. The dimensionless
mass-normalized temperature is 6y = kgT/(mc?).

A more recent approximation was proposed by Hunana et al. (2018), who restricts this
closure to I" = 3 only, for reasons mentioned already. We use an ad hoc formulation
of their closure with a variable I, thereby allowing our simplified model to be used.
They also introduce the nomenclature R, adopted here, which is used to denote that the
kinetic plasma response function R is mimicked for this closure by a Padé approximant
with polynomials P,,/Q, = R, of orders m and n. We refer to their closure as Rz and it
approximates the heat flux, in Fourier space, by

0= (i — F) Pol + (—i sign(k)
4—m

. (2.46)

Qu Or
The R; closure may be seen as a generalization of the Rz, closure with an additional
degree of freedom in @, which can mimic the kinetic damping more accurately over
a broader spectrum. We choose this closure as our fiducial model because it requires
only a relatively inexpensive local derivative to compute the additional term dependent
on . This additional term effectively increases the speed of sound obtained from the
non-electromagnetic fluid equations and allows us to retrieve the correct damping rate
with our ad hoc assumption of a specific value of I", see Appendix C. This means, that
adopting a value of I", e.g. I' = 5/3 in our isotropic model, does not change the linear
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dispersion relation associated with this closure. For I" = 3, we retrieve the coefficient for
w from the aforementioned literature 4/(4 — 1) — 3 = 31 — 8)/(4 — ).

In only one spatial dimension, as assumed in our code, the global integration along
a magnetic field line is approximated to be along the spatial direction, i.e. Fj = F,.
An extension to multiple spatial dimensions with an anisotropic pressure tensor is not
straightforward because, in this case, this approach can lead to spurious instabilities
(Passot et al. 2014) and the integration would need to be carried out along magnetic field
lines.

A kinetic code does not need global communication to accurately reproduce Landau
damping, since each particle (or particle bin) tracks its own interaction with each
wave mode as a function of time and accumulates this information in the particle
velocity. However, after integrating out the individual particle velocities when building
the evolution equations for the phase-space distribution function, i.e. (2.14)—(2.16),
information about the individual particle-wave interaction is no longer collected. Because
some information about this interaction is also contained in the wave, such non-local
information can be used to approximate the gradient of the physical heat flux, i.e. a
closure of the fluid moments that incorporates such missing information. This non-local
information is approximated in (2.45) and (2.46), and is manifested by the term i sign(k)
in Fourier space, which is also referred to as the Hilbert transform.

Numerically, we do not include the heat flux in the Riemann solver used to compute the
fluid fluxes. Instead, we compute the spatial derivative of the heat flux V - Q separately.
We use Strang splitting for the w-dependent part Q, and the temperature dependent part
O, to expand (2.20) into

Un+1/2 — e(At/2)F e(At/2)Qw eAtQT eAtSem e(At/Z)Q“, e(AI/Z)F[]n—l/Z + 0(At3), (247)

such that only one non-global evaluation of Q; is needed. Using Heun’s method together
with the fast Fourier transform (FFT) the update formulae for the pressure with respect to
operators Q, and Q. are, respectively,

P, = et p" = p" + Ata,poV - w, (2.48)

At .
P g, =e0p" = p" 4 ALF]! [|k|aT (1 + 7|k|aT) T"] , (2.49)

where the derivative in Fourier space was obtained by multiplying with ik and the inverse
FFT is denoted by F~!. For the R3; closure the coefficients are given by a,, = 4/(4 — )
and a; = (4 — 7)1 (216y)"/*cnokg /m, while for the R, closure these are given by a,, = 0
and a; = 2(26y/7)"*>cnokg /m. Both closures compute a term proportional to T (cf. (2.49))

ikQ o« —isign(k)ika;T = |k|arT. (2.50)

Computing this term naively using the FFT is expensive. This is why, in the following,
we present local, semi-local and efficient global (Fourier transform-based) numerical
approximations of the Landau closures, which we have implemented in the fluid-SHARP
code.

2.6.1. Local approximations of the Hilbert transform

The phase shift between the wanted derivative ikQ and the input of T in (2.50) is
exactly 0, while the amplitude is proportional to |k|. This is therefore a special case (a = 1)
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of the fractional Riesz derivative 9“/d|x|* with Fourier representation

9% (x)
d ( d|x|

) = —[k[“f (), (2.51)

where a € R. Note that all approximations mentioned here only introduce errors in
the amplitude of |k|, but not in its phase. This makes them easier to integrate into
simulations in comparison with approximations which are not designed to prevent
phase errors, because large phase errors (between m/2 and 3m/2) in any wave mode
transform the damping term into an exponentially growing numerical instability. The
local approximations make use of the fact, that the fractional Riesz derivative is local
and cheap to evaluate for the special case a = 2m with m € N°, where it reproduces
the usual derivative 82" /d|x|*" = (—1)"+19?"/3x>". Wang et al. (2015) use a = 0, while
Allmann-Rahn et al. (2018) and Ng et al. (2020) approximate the non-isotropic pressure
tensors with a = 2. These approximations are scaled to a characteristic wavenumber k at
which the damping is expected to occur.
The choice of a = 0 means that the approximation is a scalar

kO o |kol|T, (2.52)

while the gradient-driven closures with a = 2 use

2
O o 7, (2.53)
kol
The gradient-driven closures are equal to the FFT solution at two wavelengths, 0 and
ko, while the scalar closure is only exact at kg, see figure 1. Since ikQ is not computed
alongside the conserved fluxes in the Riemann solver, energy conservation is only
preserved if the mean energy does not increase. To achieve this, the approximation
for the derivative of the heat flux needs to vanish at wavenumber O, which the scalar
approximation does not fulfil.

Because fluid closures are only approximately mimicking kinetic Landau damping
anyway, these local approximations to the fluid closures are useful to save computational
cost. Furthermore they are easier to implement, especially when the full pressure tensor is
computed. However, they may lead to misleading results in multiscale simulations, where
multiple characteristic damping lengths are present and depend on the estimate of k. For
example, Allmann-Rahn, Lautenbach & Grauer (2022) show a case where ion and electron
heating intensities are switched qualitatively.

2.6.2. Semi-local approximations of the Hilbert transform

While the less accurate local approximations use an arbitrary value of ko, the FFT is
expensive and depends on periodic boundary conditions. Here, we aim to have a fallback
algorithm as a compromise between both approaches.

A digital FIR filter can be designed to approximate the non-local effects by convolving
the simulation data with adjacent auxiliary data points, where the filter length determines
the maximum distance. For example, an asymmetric filter with an even number of entries
is applied on an input x using filter coefficients b;, producing the output y

N;/2—0.5

Yi+0.5 = Z bixiyjos- (2.54)

J=—N;/2-0.5)
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FIGURE 1. The magnitude of the frequency response, which is a quantification of how much
the amplitude at a specific frequency is amplified or suppressed, of different approximations of
the derivative of the Hilbert transform. Here, k is given in normalized frequencies (with regards
to the Nyquist frequency), while the negative frequencies in the interval [—t, O] are not shown
here due to the symmetric dependence of all plotted values on |k|. The FFT-based approach
reproduces the correct, linear response. The scalar- and gradient-driven closures are given by
(2.52) and (2.53), respectively, with the parameter ky marked as a grey vertical line. The FIR
filter is described by (2.55).

A numerical derivative is then an asymmetrical filter with Ny =2 and coefficients
bios = £1/Ax, such that y;, o5 = (x;11 — x;)/Ax. Figure 1 shows the magnitude of the
frequency response. The gradient-driven case shows a quadratic k> dependence, which is
suppressed for larger k. This is due to the relatively small uneven filter length of 7 used
here; the filter length is an important parameter, since it influences the accuracy of the
approximation. With a filter length corresponding to the simulation box size the results can
converge to the FFT-based algorithm (i.e. the k> dependence is not suppressed at higher k),
if the filter is designed appropriately. As noted previously, the local closures do not
converge to d/d|x|. A correct convergence for approximating d/9d|x| is obtained through
the high-order formulation by Ding, Li & Chen (2015). However, this filter violates energy
conservation for smaller filter length and is thus not suitable for our case. Instead, we
construct the filter by adopting a convolution of two sub-filters, each of which has an odd
amount of asymmetric entries (termed a type IV filter) similar to the numerical derivative
mentioned already. By design, their output has a vanishing mean, thereby guaranteeing
energy conservation. A symmetric splitting into the sub-filters 9/9|x| = (39'/2/d|x|'/?)? is
possible, however, its frequency response is not monotonic (and has visible ripples) for
small filter lengths. This leads to the non-physical case that some waves at a particular
wavenumber k are damped less than their slightly larger scale waves at k — §k.

Instead, we opt to use the intuitive splitting of d/d|x| = d/dxH where the
Hilbert-transform filter H is equivalent to —isign(k) in Fourier space. The filter H has
coefficients b; = 1/(7tj). We derive an equivalent formulation to (2.49), which is first order
in time, by applying the derivative and Hilbert-transform filters successively, i.e.

Nf/2—0.5
s/ 1

pn+1 =pn + AtaTa Z _~Ti’f|-j+0.5' (255)
Jj=—N¢/2-0.5) ]

https://doi.org/10.1017/50022377823001113 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377823001113

Fluid-particle-in-cell method with Landau closures 19

Note that the derivative is also computed by convolution and has a separate filter length
corresponding to its spatial order. We opt to use the same spatial order as in the C-WENO
reconstruction for the finite volume scheme.

Even for small Hilbert-transform filter lengths in comparison with the number of
cells, e.g. Ny/N. = 0.04 as shown in figure 1, this formulation dramatically improves the
accuracy of multiscale problems in comparison with local approximations. Here, Ny is
critical for the accuracy at small wavenumbers k, while the spatial order of the derivative
is critical for the accuracy at large k. Most importantly, this semi-local approach does not
require setting of an arbitrary damping scale k, such as the local approximations mentioned
before. The only parameter of this approach is the filter length, which should be chosen to
be sufficiently large.

2.6.3. Efficient FFT-based computation of the Hilbert transform

Provided the plasma background is uniform and periodic, the most accurate while
computationally most expensive results are achieved by computing the heat flux of the fluid
in Fourier space. While the FFT is easy to compute on a single computer using standard
numerical libraries, our code is parallelized using MPI and an efficient one-dimensional
FFT is needed. The computation of the Fourier transform is expensive for two reasons:

(i) globally, each Fourier component needs to be informed about data from every other
computational cell (which may be stored on a different processor); and

(i1) the Fourier transform is not easily parallelizable in one dimension, which precludes
an efficient scalable Fourier algorithm.

This naturally limits the overall computational scalability of the fluid part of the code.
Communication over multiple MPI processes is time consuming because of latency
and finite bandwidth. For this reason, parallel FFT algorithms are prone to become
a computational bottleneck. However, using non-blocking MPI routines to perform
communication in the background can be used while the high computational load of the
particles is carried out. Thus, in our case of a combined fluid and PIC algorithm, the
communication required for an accurate FFT-based heat flux computation is comparatively
computationally cheaper, even with relatively small numbers of PIC particles. Hence, in
our case the FFT algorithm does not necessarily become a bottleneck for larger problems.

In order to distribute the computational load of the FFT, we employ a four-step algorithm
in the first step of the computation (Bailey 1990; Takahashi & Kanada 2000), which
extends the Cooley—Tukey algorithm (Cooley & Tukey 1965) for multiple processors.
We shortly describe the algorithm for complex input data as found in the literature
and afterwards adapt the parallel FFT for real input data in our implementation. The
four-step algorithm interprets the complex data vector x; of length N as a two-dimensional
vector x; = x;, ;, with lengths n; and n,, respectively, and volume n;n, = N. The mapping
Jj=Jji1+Jjn and k =k, + kin, is inserted into the definition of the discrete Fourier
transform, where ¥ = exp (—27i)

N—-1
Be= ) qwN, (2.56)
j=0
nj—1n,—1
‘%kZakl — Z Zij,jZWj2k2/n2lpjlkZ/N(I/jlkl/nl . (2.57)
J1=0 j2=0
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This way, a complex-to-complex parallel FFT of length N is distributed to n; local
FFTs of length n,, a multiplication by the twiddle factors ¥/***/N and finally n, FFTs of
length n;, with a communication intensive transpose in between. All-to-all communication
takes place two times, in the first step — cyclically distributing j to j; and j, — and for
the transpose. A third all-to-all communication would be needed to properly sort the
values in Fourier space. However, a scrambled output suffices for computing the heat
flux. Furthermore, since often two FFTs, i.e. electrons and ions, need to be computed
simultaneously, they can be computed on different nodes. This has the advantage that the
second all-to-all communication for the transpose is not completely global resulting in
reduced communication times.

Adapting this algorithm to a real-to-complex FFT, where, due to Hermitian symmetry,
only values of k < |[N/2] need to be computed, a large amount of computational and
communicational savings can be realized. A real-to-complex parallel FFT of length N is
distributed to n; local real-to-complex FFTs of length n,, a multiplication by the twiddle
factors ¥/"**/N and, now only, |n,/2| + 1 complex-to-complex FFTs of length ;. Up to
two of the latter FFTs can be replaced by real-to-complex FFTs, along the axis k, =0
and, if n, is even, k, = n,/2. A scrambled output is received, which, due to Hermitian
symmetry, needs to be partially complex conjugated.

A key point in ensuring the efficiency of the parallel four-step algorithm consists
in choosing large n; and n,; n; >~ ny >~ +/N is the optimal choice for the distributed
complex-to-complex FFT, the real-to-complex FFT should prefer n; >~ |n,/2| + 1 ~
(W/2N + 1+ 1)/2. The computational scaling with P processors and roughly optimally
distributed n; and n, is akin to O(N/Plog N), but degrades if N is a prime number or, more
generally, if n; or n/2 is smaller than the number of processors. This easily avoidable
because N is a free parameter, and so are n; and n,. While this does not scale favourably
in comparison with the O(N/P) scaling that dominates the rest of the fluid code, still,
the FFT is trivially independent of the numbers of particles per cell N,.. The PIC module
on the other hand scales as O(N,.N/P) and typical applications have N,. 2 100. In many
applications the cost of the Fourier transform is, even with worse scaling, subdominant in
comparison with the cost of the PIC part. In the remaining cases, local approximations,
discussed above, are favourable.

2.77. Current-coupled fluid-PIC algorithm

The coupling in our code between various fluid and kinetic (PIC) species is achieved
through a current-coupling scheme. Namely, both fluid and kinetic species contribute to
the charge and current densities. The electromagnetic fields then evolve in response to
the total contributions. The fields are staggered on a Yee mesh and are updated with the
FDTD scheme. Subsequently, both fluid and kinetic species evolve in response to the new
electromagnetic fields. That is our current-coupling scheme does not make any assumption
on the velocity distribution of the species modelled using the kinetic description (Park
et al. 1992).

The PIC species, using fifth-order spline interpolation, are deposited to specific points
on the Yee grid for which the charge density is defined at full-time steps while the current
density is defined at half-time steps, as discussed by Shalaby et al. (2017b, 2021). Table 1
gives an overview on the staggering of our implementation of the fluid-PIC method. We
initialize the staggered quantities directly, with one exception: (J,);, see (2.41), necessitates
an integral over the flux from 7° to !. We approximate the integral between ° and ¢'/? using
an interpolation at x; of the cell centre values J, ~ gnw|, 2, while the remaining part of the
integral to ¢! is obtained through the fluxes again. If E, is updated using J,, then p does
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Xi Xit1/2

! EX E}:,Ezs P
m+1/2 By, B, J, (Jy, J2), Uy

TABLE 1. The grid assignment and time staggering of the fluid-SHARP 1D3V code. Here, Uy
refers to the fluid state vector. Note that it is sufficient to compute either p or J,, but not both.

not need to be calculated and vice versa. Otherwise, another complication may be seen
when obtaining p from (2.5), which necessitates U to be defined at full-time steps. While
U is formally defined only at half-time steps, we define U™ = exp(At/2 x F)U"™'/?
(i.e. the first part of the splitting in (2.20)), from which p is obtained. Note that p;, = gn;
stays constant when computing the Lorentz force and heat flux updates and therefore
p" = p™ is defined consistently, while bulk velocity and pressure are not well defined
at full-time steps.

Our algorithm does not apply any approximations to the electrical field components or to
Ohm’s law, requiring electron time scales and motions to be fully resolved. Consequently,
we apply the same algorithm to fluid electrons and protons. This is accomplished using
the modular design of the fluid SHARP code, where each fluid species is represented
by initializing a fluid code class. Each instance of this code class is initialized using the
values of the mass and the charges of their respective particle species. The algorithms
which define the evolution of each particle species are implemented as functions of the
fluid class. This allows us to set up simulations with multiple species, all of which are
evolved with the same numerical algorithms, with little effort.

In figure 2 the main loop of the fluid-PIC algorithm is presented schematically. It can be
seen that the usual PIC-algorithm loop of electromagnetic update, interpolation to particle
position, particle push and field deposition, is retrieved when no fluid species is initialized.
On the other hand, without PIC particles, we retrieve a multispecies fluid plasma code.
While our fluid-PIC algorithm can simulate an arbitrary mixture of species, it is most
efficient if fluids are used for background species and particles for non-thermal particle
distributions. Possibilities for task parallelization are shown in figure 2 by dashed lines,
which allows maximizing of computation—communication overlap. The full main loop of
our algorithm can be schematically described as follows (referencing the corresponding
equations):

initialize quantities at corresponding grid points(table 1)
particle deposition
while 1 < .
fluid deposition of Jy, J, (equations 2.36-2.37)
fluid flux update by half—step (Section 2.4)
fluid deposition of J, or p (equation 2.41)
electromagnetic update on Yee grid (Sections 2.5.2-2.5.3)
w-dependent heat flux update by half step (equation 2.48)
start 7-dependent heat flux update (FFT, equation 2.49)
fluid electromagnetic source update (Section 2.5.1)
particle interpolation
particle push
particle deposition
end 7T-dependent heat flux update (FFT, equation 2.49)
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FIGURE 2. Schematic representation of the interaction of the different modules in the
fluid-SHARP code. Red boxes belong to the particle class, violet boxes to the electromagnetic
class and blue boxes to the fluid class. Dashed lines show branches which are task parallelizable,
i.e. where non-blocking MPI communication can be used for overlapping communication and
computation. The particle and fluid modules might be instantiated arbitrarily often, where each
instance represents a species.

Lorentz force Heat flux

Flux - half step

w-dependent heat flux update by half-step (equation 2.48)
fluid flux update by half—step (Section 2.4)
t=1t+ At

Our fluid implementation is included within the SHARP code, which uses a fifth-order
spline function for deposition and back-interpolation for PIC species (Shalaby et al.
2017b, 2021). The PIC part of the code does not make use of filtering grid quantities
and results in comparatively small numerical heating per time step, which (if present)
would affect the reliability of the simulation results on long time scales (see § 5 in Shalaby
et al. 2017b). This property is important because we are specifically interested in studying
microphysical effects on long time scales with our fluid-PIC code. Noise generated by the
PIC particles could influence the fluid through the electromagnetic coupling. The CFL
condition keeps the propagation of this noise within a single cell during one time step, and
the PIC noise at the next time step will be uncorrelated with this noise so that we do not
expect a systematic numerical error emerging from this. Indeed, we have not yet observed
a case where this leads to a numerical instability. It has also been observed, that the larger
physical dissipation through Landau closures replaces the need for numerical dissipation
completely (Passot et al. 2014).

Due to the modularity of our code, each part can be tested individually. These tests,
ranging from the uncharged fluid solver to full fluid-PIC simulations, are shown in the
next section.

3. Code validation tests

In this section, we present the results of various code tests. We start with two
shock-tube tests in § 3.1, where only the fluid solver presented in § 2.4 without sources
(electromagnetic module) is used. Next, we provide tests of the electromagnetic coupling
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Test X0 ny wy DI ny Wy Pr
1 0.3 1 0.75 1 0.125 0 0.1
2 0.8 1 —19.59745 1000 1 —19.59745 0.01

TABLE 2. Parameters adopted for the shock-tube tests described in § 3.1; xo divides the domain
into two halves, where values to the left of xo (x < x¢) are initialized by the parameters with
subscript /. Similarly, subscript r indicates parameters to the right of xo.

between ion and electron fluids, as described in § 2.5. The two-fluid model consists of
an ion and electron fluid described by (2.14)—(2.16), coupled via Maxwell’s equations
(2.3) and (2.4). We show that our code is able to accurately capture all six branches of
the two-fluid dispersion relation (§3.2). The Landau closures are tested for Langmuir
wave damping of only one electrostatic electron fluid with a fixed ion background (§ 3.3)
and, using the two-fluid model, for two interacting Alfvén waves generating a new,
longitudinal wave along the magnetic field (§ 3.4). In § 3.5, we test the entire fluid-PIC
code with a simulation of the gyrotropic CR streaming instability, where PIC CRs are
streaming in a stationary electron—proton fluid background, utilizing two fluid and two
PIC species coupled through Maxwell’s equations. Finally, we demonstrate the successful
parallelization strategy of our code by performing scaling tests in § 3.6.

3.1. Shock tube

As the fluid approximation will be primarily used for background plasmas without
excessive gradients, the accuracy of resolving sharp discontinuities is of secondary
importance in practical applications. Still, we stress test our implementation of the fluid
equations without electromagnetic coupling to ensure its numerical robustness and to
compare the numerical dispersion for different Riemann solvers. For the shock tests a
numerical grid of 100 cells is used with a constant CFL number C.qg = 0.2. The boundary
conditions are transmissive and the initial conditions for the tests are given in table 2
with the adiabatic coefficient of I" = 1.4. These test set-ups are the same as used by Toro
(2009), where, unlike the tests performed here, a CFL number of 0.2 x 0.95 is used only
in the first five steps and 0.95 afterwards. The units used for these non-electromagnetic
tests are arbitrary units and do not coincide with the usual simulation units.

Test 1, as shown in figure 3(a), is a modified Sod shock-tube test. The sonic rarefaction
wave on the left-hand side as well as the shock front on the right are well resolved
without noticeable oscillations. The contact discontinuity in the middle introduces small
oscillations in the density and is smeared out more than the shock front. While the Roe and
HLLC solvers yield almost the same results, the HLLC solver is slightly better at resolving
the sonic point at the head (to the left) of the sonic rarefaction wave, which the Roe solver
can only resolve because an entropy fix is applied.

Figure 3(b) shows a test of a stationary contact discontinuity with a shock front of a
high Mach number travelling to the right and a rarefaction wave to the left. It can be seen
that, while the HLLC method introduces more oscillations, it is also better at resolving the
contact discontinuity.

In low-density flows the Roe solver is not suitable because it is not robust without further
modifications (Einfeldt er al. 1991), making the HLLC method slightly more robust while
the Roe method is slightly less dispersive. We use the HLLC solver as our default, however,
for most practical applications, both methods produce similar results.
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FIGURE 3. The 1D1V hydrodynamical shock-tube tests with initial conditions given in table 2.
The simulations carried out with the HLLC and Roe Riemann solvers are compared with the
exact solutions. Density, bulk velocity in the x-direction and pressure are plotted for each test.

A natural extension to the hydrodynamic shock tubes are the MHD shock tubes, which
also test the evolution of shocks in the electromagnetic variables. A two-fluid model is
not expected to exactly replicate the MHD shock tubes used to test MHD codes, because
the characteristic waves are different for both system of equations. Finite volume two-fluid
models have been used to replicate the MHD shock tubes with some success, even without
informing the Riemann solver about the MHD characteristic wave velocity (Shumlak &
Loverich 2003; Hakim et al. 2006). Because the Maxwell solver in our implementation
uses the finite difference scheme, the most common choice for PIC codes, it is unable to
capture electromagnetic shock tubes properly. Their relevance for two-fluid codes rarely
extends beyond testing purposes, as physical shocks stretch over a length scale larger than
c/w; > c/w,, which appears smooth in simulations resolving the electron skin depth.
However, shock acceleration is not properly captured using the fluid-PIC algorithm at
the shock interface. This is because efficient shock acceleration mechanisms are only
experienced by the computational particles, but not the fluids. Injection prescriptions for
CRs might be used to mitigate this (e.g. Pfrommer et al. 2017). We focus on cases where
the electromagnetic quantities are smoothly varying, i.e. wave transport. The choice of the
Riemann solver and its characteristic waves are less important for smooth waves, especially
when employing a high-order interpolation routine. This is because different Riemann
solvers should converge to the same results when the interface state is unambiguous, for
example if U, = Uy (cf. (2.29)).

3.2. Two-fluid dispersion relation

To test the interplay of the fluid solver with the electromagnetic coupling, we perform
a test where the linear waves of an ion—electron plasma are reproduced. For an ideal
two-fluid plasma the dispersion relation can be solved for six different wave branches (Stix
1992). We show the solutions to the dispersion relation of a two-fluid plasma in figure 4
for a realistic mass ratio of m; = 1836m,, B; = nkgT;/ [Bg /(2i9)] = 0.2 in an isothermal
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FIGURE 4. The six branches of the two-fluid dispersion relation are shown as lines, with two
electrostatic wave branches (Langmuir and ion acoustic) as well as four electromagnetic wave
branches, of which two are left- and two are right-hand circularly polarized (LCP and RCP).
The lower RCP is referred to as the whistler or electron cyclotron branch and the lower LCP
as ion cyclotron branch; for parallel propagation their phase velocities approach the Alfvén
speed at small k. The upper RCP and LCP are modified light waves. We mark the six local
extrema of the discrete Fourier-transformed fluid simulation outputs at each wavenumber with
circles encapsulating the error bars extending over the frequency bin. For comparison, we plot
the dispersion relation of the three MHD waves at scales larger than the ion inertial length,
1/k > c/w;.

plasma and I" = 3. Here, B, is oriented along the x-axis and the Alfvén velocity is vy =
Bo/(uonim;)'? = 5.83 x 1073¢. Multiple simulations at different wavenumbers have been
initialized that have all six wave modes simultaneously present and were run for a total time
of 14 x 27t/ min(w)(20 x 27/ min(w) for the smallest scale), where w denotes the wave
frequencies, which are always completely real for an ideal fluid. Consequently, the waves
should be undamped in the linear regime. Initial conditions for all of our fluid simulations
of waves are obtained as eigenvectors (in U, E, B) while theoretical predictions of w are
obtained as eigenvalues using an extended algorithm based on the dispersion solver by Xie
(2014), which can take into account the effects of both heat flux closures. We calculate
the initial conditions to double precision, the machine precision of the simulation code.
We normalize the amplitude of the eigenvectors by setting the maximum amplitude in
any quantity to 10~* for each wave mode, to suppress nonlinear effects. The resolution
is Ax = 0.1c/w, for all simulations. The box size for the intermediate scale is L, =
214.2¢/w., covering waves with k = n,,ky of n,, = 1, 3, 5, 10, 25, where ky = 2n/L,. The
largest and smallest scales use box sizes of L, = 2142¢/w. (n,, = 1) and L, = 2lc/w.
(n,, = 3), respectively. A Fourier analysis in time has been performed and the six largest
local extrema are shown as encircled bars extending over a Fourier bin in figure 4. It can be
seen, that the simulation results are in excellent agreement with the analytical results. In
the Fourier analysis of the slowest two waves, the Fourier mode closest to the theoretical
wave frequency is always observed. The largest error measured in this analysis occurs in
the whistler branch for k ~ 31¢/w; with less than 0.5 %.
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FIGURE 5. An oblique fast magnetosonic wave in a highly magnetized plasma. We plot the
absolute of the perturbations of the magnetic field strengths in the top panel, as well as the ion
bulk velocity and electric field along the domain in the bottom panel. The theoretical predictions
are shown as black-dashed lines while the black-dotted lines indicate the amplitude. Electric and
magnetic field strengths are expressed in code units, denoted by the subscript c.

Because our Riemann solver is not explicitly informed about MHD wave speeds, for
which the coupling between fluids and electromagnetic fields is especially strong, one
could naively expect large errors or numerical instabilities in the MHD limit. In order
to test the fidelity of the coupling, we set up a wave with a wave speed well separated
from the propagation speeds of the uncoupled fluid Riemann and electromagnetic solvers,
ie. ¢ K vy = w/k <K c. We test a fast magnetosonic wave (v, = 0.03728¢ in two fluid
V8. Ve = 0.03703¢ in MHD) at very low B = B = 0.02 (corresponding to an oblique
propagation angle of § = 45° in the B, — B, plane). The parameters of k, Ax, etc. are
the same as for the parallelly propagating waves in the MHD limit in the previous test.
While parallelly propagating electrostatic (electromagnetic) waves can be described using
ID1V (1D2V) models, oblique propagation requires the 1D3V model. In figure 5 the time
evolution of two representative quantities along and perpendicular to the box size direction
are shown. The time evolution of the different quantities are taken from the first cell in
the simulation box. The fast magnetosonic wave is captured well, short and long term,
without introducing numerical instabilities at low dissipation. The simulated wave velocity
is 0.027 % slower than the theoretical prediction. In conclusion, the current-coupled fluid
and electromagnetic solvers numerically approximate the analytical dispersion relation
with high fidelity.

3.3. Langmuir wave damping

The electrostatic wave modes are directly subject to linear Landau damping, and thus
present a good test for the heat flux closures. To test this, we initialize standing Langmuir
waves in an electron plasma with immobile ions. We use the same grid layouts as in table 1
of Shalaby et al. (2017b), supplemented with fluid simulations run at k/kp € {0.1, 0.2, 0.3}
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FIGURE 6. The linear dispersion relations of a Langmuir wave with immobile ions. Shown
are, on the left-hand side, the real frequency components and, on the right-hand side, the
negative imaginary frequency components (which are responsible for damping). The crosses
present data points obtained from simulations with the respective closure while the theoretical
result is shown with a solid line. The relative error between simulation and theoretical results
(@™ — @theor) /theor i shown in the lower panels. For reference, the red crosses display the
data points as given in table 1 of Shalaby et al. (2017b).

with a resolution of 1/ Ax = 68 cells per wavelength and a domain size of length L = 104
wavelengths. The wavenumber associated with the Debye length is the ratio of plasma
frequency to thermal velocity, i.e. kp = w,/6'?c. The amplitude of the wave is chosen,
such that the density fluctuation to background ratio is fixed to dn/ny = 107.

In order to find the numerical dispersion relation we perform curve fitting with the
Powell algorithm on the time series for times up to 80w, !, while the simulations at k/kp =

0.01 and 0.05 with small damping are analysed up to 240w '. The computation of the heat
fluxes for the R5; and R3, closures is performed using the FFT-based method. The results
are shown in figure 6, where the ideal gas closure and the kinetic results are also depicted
for reference (using I" = 3).

Generally, it can be seen that, at small scales, the closures show larger deviations from
each other, which is also where the fluid description starts breaking down naturally as
the particle distribution is not in equilibrium. At larger scales, the various descriptions of
Landau damping converge and approach zero. The numerical relative error of the fluid
code is small and stays below 0.003 % for real frequencies and below 0.02 % for decay
rates in this set-up. The simulation at k/kp = 0.05 performs worse than the one at k/kp =
0.1 due to the significantly lower resolution. The error in @ decreases at second order with
increasing spatial resolution, as shown in Appendix B.

3.4. Interacting Alfvén waves

A single Alfvén wave is purely transversal and not directly affected by Landau damping.
However, two or more Alfvén waves drive a longitudinal electrostatic wave, which is
susceptible to Landau damping, see figure 7. This leads to particle heating as a result of
the collisionless damping of the Alfvén wave, also known as nonlinear Landau damping
(Lee & Volk 1973).

Restricting ourselves to a set-up of pairwise interacting waves, we can identify two
distinct cases. In the first case counter-propagating waves are interacting. In consequence,
both waves damp, lose energy to the longitudinal wave and subsequently heat the particles.
In the second case the waves are co-propagating. Here, the wave with the smaller
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FIGURE 7. Two different Alfvén waves, with magnetic and velocity vectors By, By and
wi, w>, propagate transversally along the x-axis, where the electromagnetic vectors rotate
(counter-)clockwise around it. Because of their phase difference Akx the overall Lorentz force
(w1 + w2) x (B + B) in the x-direction is non-zero, thereby generating the longitudinal wave
shown in dark yellow.

wavelength will not only transfer energy to the particles, but also to the other Alfvén
wave. Lee & Volk (1973) describe this mechanism in detail and formulate the following
coupled set of differential equations while adopting a measure for the magnetic energy of
a wave, [; = |B;|%, where j € {1, 2}:

d

alj =2I,. (3.1)
The coupling between the differential equations is implicit because the damping
coefficient has the dependency I o I,. For the counter-propagating case with an
isothermal ion—electron plasma in the high beta limit 8; = 2uon;ikgT; /BS = 2> 1, where
By is the background magnetic field strength, the damping rate I} is approximately equal
for both wave polarizations with similar frequencies w; and may be approximated by
(Holcomb 2019)

VTl
I = "6 B Biw:. (3.2)
Note that I is found by substituting the subscripts 1 — 2 and 2 — 1. This prediction
is using kinetic physics and also includes damping effects due to modulation in B, (see
figure 5), which can electromagnetically heat or even trap particles, analogous to Landau
damping in the electrostatic case. This is not captured in the Landau fluid approximation.
Therefore, we do not expect our analytical and simulated damping rates to exactly match.

However, they provide a good insight into whether wave modes are qualitatively correctly
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FIGURE 8. Time evolution of the magnetic energy of a linearly polarized Alfvén wave in our
fluid simulations with Landau damping. Time is measured in units of the period of the mean
wave frequencies P, = 4m(w; + w>)~!. Analytical predictions for the damping rate are taken
from Lee & Volk (1973, labelled L& V) and Hollweg (1971). The fluid simulations are presented
with the different heat flux closures R3; and R3p. We compare the time evolution of the total
magnetic wave energy (a) and the magnetic wave energy of the different polarization states (b).
The RCP wave has a higher phase velocity and loses energy more quickly in comparison with
the LCP wave.

captured. Another prediction by Hollweg (1971) uses the fluid picture to derive the
amplitude of the secondary, electrostatic wave, which is then damped according to kinetic
prescriptions. This prediction agrees with our model. However, this analysis does not
differentiate different wave types and therefore does not make individual predictions
about interacting waves. In the case considered in the following, the damping rates are
coincidentally similar.

In figure 8 we show simulations of a linearly polarized Alfvén wave, which consists
of two counter-propagating waves of equal amplitude. The pure fluid simulations are
shown with a box size of L = 252¢/w; and wavelengths 4 = L/3. Right- and left-hand
circularly polarized waves are initialized with phase velocities wgcp/k = 0.0342 and
w.cp/k = 0.0318 with a perpendicular magnetic field amplitude of §B = 0.1B,. A reduced
mass ratio of m;/m. = 100 is adopted here.

Our simulations are carried out with the different heat flux closures Rs;, and Rj;, as
shown in figure 8. Both closures reproduce the theoretical predictions quite well. A PIC
simulation with similar parameters has been shown in figure 6.4 by Holcomb (2019), which
reproduces half of the predicted damping rate until ¢ ~ 2P, and shows a quenching of the
damping rate afterwards. In comparison with kinetic simulations, there is no saturation of
the Landau-damping effect in fluids. This is because the distribution of the fluid particles
is always assumed to be roughly Maxwellian and resonant particles are not depleted as a
function of time. Hence, Landau fluids are implicitly assumed to have small thermalization
time scale in comparison with the damping time scale. On the other hand, PIC simulations

https://doi.org/10.1017/50022377823001113 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377823001113

30 R. Lemmerz, M. Shalaby, T. Thomas and C. Pfrommer

are plagued by Poisson noise and an insufficient resolution of velocity space might lead to
areduced Landau damping rate.

3.5. Gyrotropic CR streaming instability

To test the entire code, we run CR streaming instability simulations, where electron and ion
CRs are modelled with the PIC method and the background electron and ion plasmas are
modelled as fluids. The initial CR momentum distribution for ions (electrons) is assumed
to be a gyrotropic distribution with a non-vanishing (zero) pitch angle, while both CR
electrons and ions are assumed to drift at the same velocity vy, Namely, the phase space
distributions for the electron and ion CR species s € {e, i} are given by (Shalaby et al.
2021, 2023)

ncr s
Jers(x, u) = 2—'5(14\\ — VsUar)8 (U1 — VU1 ), (3.3)
U |
where y, = (1 — v3,/c* — v} /c*)~"/* is the Lorentz factor and v, , is the perpendicular
component of the CR velocity. We choose v, . =0 and v, ; = 13.1vs, where the ion
Alfvén velocity is given by vy = By/(onim;)'/? = 0.01¢ with the background magnetic
field pointing along the spatial direction, and vg, of Sv, resulting in a pitch angle for the
ions of tan™! (v, ;/vg) = 69.1°. The thermal background species are isothermal with the
temperatures kg T/ (mc?) = 10~* and a mass ratio m; /m. = 1836. We use a periodic box of
length L, = 10 971.5¢/w, and resolution Ax = 0.1¢/w,. The CR to background number
density ratio a = n,;/n; = 0.01.

We run two simulations where the background plasmas are modelled as fluids. The first
one uses an ideal gas closure without accounting for Landau damping (FPIC ideal gas)
while we include the heat flux source term in the second simulation to mimic the impact
of linear Landau damping using the R3; closure of (2.46) (FPIC Landau R;;). We compare
these two fluid-PIC simulations against PIC simulations where both CRs and background
plasmas are modelled as PIC species. The number of CR ions per cell is N, = 25(75) and
we call this simulation ‘PIC normal (high) N,,.” (Shalaby et al. 2021). Like the ‘PIC normal
Np.’ simulation, the fluid-PIC simulations also use 25 particles per cell for modelling CRs.

Growth rates of the instability in the linear regime can be computed from the linear cold
background plasma dispersion relation (Holcomb & Spitkovsky 2019; Shalaby er al. 2022)

01 K*c? N w? N w? N aw? w — kvg,
N 0 oo+ R oot vew? \kvg— o+ 2.,
N aw? o=k /P ket — o) . (3.4)
yiw? \kvg — o £ 2, 2(kvg — o £ £2;)?

The non-relativistic and relativistic cyclotron frequencies of each species are given by
£2,0 = q;Bo/my and §2, = 2/ v;, respectively. The wavelength of the most unstable wave
mode at the gyroscale is A, = 27 (vgr — va)/$2i, which is properly captured in our set-up
using a box size of L, ~ 10.154,.

We show the amplification of the perpendicular magnetic field components as a function
of time for this unstable set-up in figure 9 for various simulations. It shows that the noise
level of the fluid-PIC simulations is orders of magnitude lower in comparison with the
‘PIC normal N, resolution, even though the number of CR particles per cell is the same.
Especially up to the saturation point (¢§2; ~ 10) the fluid-PIC simulation compares more
favourably with the PIC results with lower noise than with the PIC simulation with fewer
Npe.
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FIGURE 9. Growth of the perpendicular magnetic field as a function of time for a gyrotropic
CR streaming set-up. The maximum growth rate expected from the linear dispersion relation at
intermediate scales is Iiner = 2.29952; and shown in dashed grey. Because of the different initial
seed populations for the particle species, the onset of the instabilities is not expected to happen
at the same simulation time. Hence, we choose an arbitrary ¢ = 0 so that the different simulated
growth phases roughly coincide.

After saturation, i.e. when Alfvén waves at many scales have built up and their
interaction has created an electrostatic field, these waves start to lose some energy to
Landau damping of the electrostatic waves (see § 3.4). At that point, the Landau closure
becomes relevant. Qualitatively the ideal gas closure has no efficient mechanism for
dissipating such electrostatic waves, resulting in a prolonged growth period leading to
saturation at higher values at the cascading and intermediate scales. Utilization of a
Landau closure leads to some damping, albeit it is quantitatively smaller than in the
PIC simulations. While figure 6 indicates faster damping for the Landau closures in
comparison with the kinetic results in the electron electrostatic branches, damping in the
ion-acoustic branch might be underestimated in the Landau closures. We have compared
the expected damping between kinetic and Landau fluid in the ion-acoustic branch for
multiple wavenumbers, which confirmed that this is a likely scenario. The accuracy of
this approximation is not the same at all scales, which can be seen in figure 10, where
the magnetic field amplifications at various ranges of scales are compared. Especially at
the highly Landau-damped scales, differences between fluid-PIC and PIC emerge. At ion
gyro-scales, where most of the magnetic energy is stored at saturation, there is a good
agreement over the entire time period. Exponential growth at every scale is also in good
agreement between PIC and fluid-PIC simulations at all scales. The initial exponential
growth can also be compared with the expected growth rates from the linear dispersion
relation. The growth rates of the two local maxima are plotted alongside the simulated
data, one at the intermediate scales around ck = 4.91w; and one at the gyro-scale at
ck = 0.38w;. The intermediate scale starts an inverse cascade to larger scales almost
immediately, which causes a reduced growth rate in comparison with the expectation
from linear theory. By contrast, the gyro-scale instability follows linear expectations to
very good approximation.

While our fluid-PIC and PIC results are promisingly similar, differences after the
saturation level might be attributed to multiple reasons. First, the Landau closures do not
exactly reproduce the correct damping, and therefore will deviate quantitatively. Second,
due to the high electron temperature chosen, relativistic effects might occur in PIC, but
not in the non-relativistic fluid that we assumed for the background plasma. Third, the
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FIGURE 10. Growth of the perpendicular magnetic field as a function of time at different scales
for a gyrotropic CR streaming set-up. We show mean values of the fields that are averaged
over a range of wave vectors k, as indicated in the legends. The maximum growth rates at the
gyro-scale and the intermediate scale are given by I'gyro = 0.49882; and Iinter = 2.29962;, and
indicated by the grey dotted and dashed lines, respectively. At wavenumbers corresponding to
cascading scales, there is no instability expected according to the linear dispersion relation, and
wave growth solely arises as a result of cascading from other (unstable) scales.

PIC method might exhibit more numerical dissipation at the given N, in comparison
with the fluid method. However, figure 10 seems to indicate numerical convergence at the
intermediate and gyro-scale.

Even though our simulations were run at unrealistically high «, the background particles
did not deviate significantly from the Maxwellian distribution at the end of the simulation
time. The pressure anisotropy measured from the PIC thermal particles is below 2 %. This
indicates that an isotropic fluid description for background species is a valid approach for
this set-up, especially for smaller, more realistic values of «.

3.6. Computational scaling

We show the strong scaling properties of our fluid-PIC code in figure 11. The tests were
run on Intel Cascade 9242 processors with 96 processors per node at the HLRN Emmy
cluster. Simulations with 3000 processors or more typically cause severe bottlenecks due
to the latency and/or the finite bandwidth of input/output operations. For this number of
processors the Fourier-based closures are roughly 20 % more costly in comparison with
the ideal gas closures. This is in stark contrast to pure PIC simulations, which scale with
the inverse ratio of CR-to-background density o~!, consequently the fluid-PIC algorithm
leads to a speed up of a factor of 100 for the simulation performed in § 3.5, which adopted
unrealistically large o.

The bottleneck in the communication procedure of our implementation is currently the
‘Ialltoallv’ MPI routine, which is not optimized for hierarchical architecture networks
as of now. Further optimizations to this might provide fruitful in increasing the code’s
scalability further if necessary.
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FIGURE 11. Strong scaling of the fluid-PIC code, with and without Fourier-based Landau
closures. Shown is the wall-clock time needed to simulate 1250 time integration steps with
180 000 cells at 1000 particles per cell at a varying number of processors. We show the perfect
strong scaling that is proportional to the inverse number of processors as the grey dashed line for
reference. For the disabled fluid module no background plasma was initialized and only CRs are
initialized, showing that the bulk of the computational work is performed by the PIC routines.

The fluid-PIC simulations in § 3.5 used only N,. =25 and seem to be sufficiently
resolved. For such a low particle number, the FFT is the bottleneck for scalability
because the overlap of communication and computation is small, i.e. we measure a 260 %
increase in time with 2880 processors, while at 192 processors the increase is below
20 %. This indicates that scalability of fluid-only simulations is dominated quickly by
the FFT, while the cost is almost negligible for fluid-PIC simulations. Still, simulations
with only a few particles per cell are computationally inexpensive so that there is
no reason for performing such a simulation on thousands of processors. Furthermore,
the example of a mono-energetic cold CR beam is not very demanding regarding the
phase-space resolution. More realistic scenarios include power-law distributions for the
CR population as well as larger spatial density inhomogeneities, both resulting in an
increased requirement for the number of particles per cell in order to accurately resolve
the velocity phase-space distribution along the entire spatial domain.

4. Conclusion

In this paper, we introduce a new technique termed fluid-PIC, which uses Maxwell’s
equations to self-consistently couple the PIC method to the fluid equations. This technique
is particularly aimed at simulating energetic particles like CRs interacting with a thermal
plasma. This enables us to resolve effects on electron time and length scales and to emulate
Landau damping in the fluid by incorporating appropriate closures for the divergence
of the heat flux. The underlying building blocks of our implementation are the SHARP
1D3V PIC code extended by a newly developed fluid module and the overall algorithm is
second-order accurate in space and time. While an ideal fluid does not exhibit Landau
damping, we have implemented two different Landau fluid closures and studied their
performance. Here we summarize our main findings:

*  We developed a multi-species fluid code that is coupled to explicit PIC algorithm.
In order to couple multi-fluid equations to Maxwell’s equations, very often implicit
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and semi-implicit methods have been used for stability reasons. However, the
resulting interdependency between all fluids complicates their coupling to explicit
PIC methods. To ensure numerical stability, Riemann solvers that provide some
numerical diffusion are used. However, we demonstrate that the level of numerical
diffusivity needs to be small enough so that it does not numerically damp physical
small-amplitude plasma waves or quench plasma instabilities. We confirm the
numerical stability and small dissipation of our implementation by employing
a diverse range of test set-ups that test the coupling between the fluid and
electromagnetic modules. Most importantly, our new fluid-PIC code fully resolves
the electron time scales, precluding the need to adopt any simplifying assumptions
to the electrical field components or to Ohm’s law. This enables the versatility of
our implementation, allowing us to instantiate an arbitrary number of species, which
can be modelled individually either as a fluid or as particles.

*  We compare various Landau fluid closures and demonstrate that local closures
only produce reliable results close to a characteristic scale while they are prone
to fail in multi-scale problems. By contrast, semi-local spatial filters or global
(Fourier-based) methods to estimate Landau fluid closures produce reliable results
for a large range of scales. Most importantly, we demonstrate that the inclusion
of communication intensive (Fourier-based) fluid closures only have a minimal
impact on our code performance (through the usage of non-blocking background
communication) because the majority of the computational workload is taken up
by the much more cost-intensive PIC module. This enables us to make use of the
more accurate Fourier-based Landau closure for the fluid instead of relying on local
approximations only.

e In numerical tests, our implementation of the multi-species fluid module showed
excellent agreement with theoretical frequencies and damping rates of Langmuir
waves, oscillation frequencies of various two-fluid wave modes, as well as the
nonlinear Landau damping of Alfvén waves.

e First simulations of the CR streaming instability with our combined fluid-PIC code
provide very good agreement with the results of pure PIC simulations, especially
for the growth rates and saturation levels of the gyro-scale and intermediate-scale
instabilities. This success is achieved at a substantially lower Poisson noise of the
background plasma at the same number of computational CR particles per cell.
Most importantly, the numerical cost of the fluid-PIC simulation is reduced by
the CR-to-background number density ratio. However, we find that the late-time
behaviour of the CR streaming instability differs for our fluid-PIC and PIC
simulations. More work is needed to understand the reason for this, which could
be either resulting from (i) numerical damping due to Poisson noise resulting from
the finite number of PIC particles, (ii) missing relativistic (electron) effects in our
non-relativistic fluid dynamics or (iii) missing physics in our fluid closures that may
be underestimating other relevant collisionless wave damping processes.

Three possible future extensions of the algorithm are left open here. (i) Extending
the fluid formulation with a full pressure tensor, (ii) extending the code to two or
three spatial dimensions and (iii) the inclusion of direct interaction terms between the
various fluids to explicitly incorporate scattering processes such as ion—neutral damping.
The novel fluid-PIC framework greatly extends the computationally limited parameter
space accessible to pure PIC methods whilst not compromising on some of the most
important microphysical plasma effects. This opens up many possibilities for studying
CR physics in physically relevant parameter regimes, such as the growth and saturation of
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the CR streaming instability in different environments, and including the effect of partial
ionization, ion—neutral damping and inhomogeneities of the background plasma.
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Appendix A. The C-WENO coefficients

We list all coefficients needed to implement the C-WENO reconstruction in this section.
Because our reconstruction procedure is applied component-wise to each of the primitive
variables, we assume for this appendix that we are reconstructing a single quantity u. The
smoothness indicator for the low-order polynomials are given by Jiang & Shu (1996)

IS[P] = 3 (uia — 2u;-y + u)* + Ty — duy + 3u;)?, (A1)
IS[Pc] = %(ui—l —2u; + ui1)” + i(ui-i—l — Ui’ (A2)
IS[Pg] = 35 (u; — 2u;yy + Ui2)” + 1 Gu; — 4uiy + Ui2)’, (A3)

while four auxiliary variables are defined

(6w — 1) (Ui + i) — 218wy — 1) (U1 — uit1)

D, = : Ad

: 48W() ( )

D, = Rwo = 3) (Wi + i) — 2Q2wo + Nu; + 12(u;—; + uH—l) (AS5)
16W0

Ds = —Uj_o + 2(ui—y — Uiyy) + Mi+2’ (A6)
12W0

D, = wio — 4wy + 6u; — 4uipy + Mi+2’ (A7)
24W()

to define the smoothness indicator for the P, polynomial

IS[Pol = D} + 2D} + 3203 + S81D} + 1DsDy + 2DuDs. (A%)

The overall smoothness indicator is given by Cravero et al. (2018a)

T = |IS[P.] — IS[Pr]|. (A9)

https://doi.org/10.1017/50022377823001113 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377823001113

36 R. Lemmerz, M. Shalaby, T. Thomas and C. Pfrommer

The low-order polynomials are evaluated at the left-hand interface of a given cell via

Pr(xic12) = £(—uin + Suimy + 2uy), (A10)
Pe(xi12) = ¢ Quiy + Su; — i), (All)
Prxic1) = (1 — Ty + 2u0), (Al2)
while they evaluate to
Pr(Xiy12) = é(ZMi—z = Tui—y + 1uy), (A13)
Pc(xit12) = é(_ui—l + Su; + 2uiy1), (Al14)
Pr(xip1y2) = 3 Qui + Sui1 — i), (A15)

at the right-hand interface. The optimal polynomial evaluates to
Pop(xi—12) = %(—3%,2 + 27wy + 47w, — 13y + Tuiyn)
= %[3PL(X1'71/2) + 6Pc(xi_12) + Pr(xi—12)], (A16)
Popi(Xiy12) = %[PL(xiH/z) + 6Pc(Xiy12) + 3Pr(xit12)], (ATT)

at both interfaces of the cell. The interface values of P, can be derived from (2.24).

Appendix B. Convergence order

In order to numerically prove a second-order scaling of the plasma frequency for the
different heat flux closures, the linear dispersion of the Langmuir wave set-up described
in §3.3 is simulated at different resolutions of A/Ax. We concentrate here on the
convergence of a wave with wavenumber k/kp = 0.05. The results are shown in figure 12
and demonstrate a very good match with the predicted errors assuming a second-order
convergence. At first sight, the Landau closures do not seem to scale ideally for higher
resolutions. However, this is the result of physical plasma heating due to wave damping in
our set-up leading to a nonlinear increase in the expected plasma frequency. The accuracy
of the spatial integration of our code is currently limited by the Yee grid to second order;
the time integration of the code is also second-order accurate, which is limited by the
operator splitting of the fluid, the Yee grid as well as the leapfrog integration of the
particles.

Appendix C. The R3; closure and adiabatic coefficients

While the R3, closure assumes a fixed adiabatic index I” of 3, the R3; closure introduces
a term proportional to @ which alters the pressure equation in such a way that it increases
the effective adiabatic index. To show this, we simplify (2.46) by introducing the numerical
coefficients a, and ar which are defined by comparing

0 = aypolv + isign(k)arT (C1)

with (2.46). Using this ansatz and perturbing the pressure equation (2.32) with p = py +
p1, where p; is the perturbation to the mean pressure p,, in the absence of direct Landau
damping (ary = 0), we have

ap

~, = TP —ap)V w—w-Vp=(~Tapo = Ip)V -w—w-Vp, ()
where [ =a, + 1" =4/(4 — ) >~ 4.66 can be interpreted as the effective adiabatic
index of the fluid. The evolution of sound waves of a non-electromagnetic fluid in the
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FIGURE 12. Relative error |(o%™ — ™) /™€ of the simulated frequency of a Langmuir
wave at k = 0.05kp. The same simulation set-up is used in figure 6, where we use a resolution
of 68 cells per wavelength. The resolution here is varied between 68/4 = 17 and 68 x 10 cells
per wavelength. The grey line is a reference line for the second-order scaling of the error.

linear regime is governed by the linear term I.xpoV - w while the term I'p;V - w adds
nonlinearity to this equation. In the linear approximation, the speed of sound becomes
¢y = (Fygpo/no) /%, which coincides with the typical expression for the sound speed
¢; = (I'py/n)"/? in the limit of @, = 0. This implies that the speed of sound is increased
for the R3 closure even if direct Landau damping is not present (a; = 0). Interestingly,
the effective adiabatic index and the speed of sound are independent of the choice of I". If
direct Landau damping, as described by the R3; closure, is affecting the fluid (i.e. ar # 0),
then the effective adiabatic index attains somewhat smaller values in comparison with
a, + I' while the wave frequency becomes complex because of the associated damping.
Both are still independent of the choice of I".

This has consequences for simulations that model mildly relativistic fluids. If a
simulation set-up includes a fluid with an associated speed of sound near the speed of light
¢; < c, then a simulation that uses this set-up with the R3; closure can become unstable

~

because ¢, can now exceed the speed of light because of the aforementioned reason.
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