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Introduction. In [5] we exhibited the construction of faithful irreducible matrix
representations of p -groups E and constructed their extensions to a semidirect product
E. H, in case E and H satisfied suitable conditions. One of the major conditions was that
the prime p had to be odd.

In this paper we assume the same conditions as in [5], but now with p = 2, in order to
see if similar results can be obtained. Henceforth we will work with the following
hypothesis.

HYPOTHESIS. Let G be a semidirect product of finite groups E and H where £ is a
normal extraspecial 2-group of G, H is a complement of E in G, CH{E) = {1}.

Under this hypothesis it is well known that E has a unique (up to equivalence)
faithful irreducible representation; say D.

In [1], Theorem 1.2, Dade showed that D has an extension to G if H has a normal
subgroup K where \K\ is odd, and [E, K] = E. His proof is character theoretic and does
not describe the matrix representation associated to the extension. It is therefore
interesting to ask what the structure of this representation is.

As remarked in [5], the method developed to construct matrix representations and
their extensions for the p > 2-case cannot be applied in full generality to the p = 2-case
(see [5], for more details). Nevertheless we can build a projective extension of D to
E. Aut(£), using the ideas of [5], and this projective representation is described in detail
(see Theorem II.2.1).

We give a description of an extension in the p = 2-case for a special situation which is
suggested by Howlett's proof (see [2]) of Dade's theorem ([1, Theorem 1.2]). Howlett
shows how the extension problem for the character case be reduced to the case where H
has a cyclic Sylow 2-subgroup. It is for this last situation that we will construct an
extension of D to G.

This paper is organized as follows.
§0: We use the fact that there are only two types of extraspecial 2-groups (see [3,

Satz HI. 13.8]); the structure of an extraspecial 2-group E of the so-called first type is
discussed and we construct a faithful irreducible representation of E. We note that it is
well-known that all faithful irreducible representations of E are equivalent.

§1: A projective extension of the unique faithful irreducible representation of an
extraspecial 2-group E of first type to E. Aut(£) is constructed.

§2: It is shown how for subgroups H of Aut(£) (E of first type) with \H\ odd, the
projective extension to E. H (obtained by restriction) can be linearized (Theorem II.2.6).

§3: It is shown that Theorem II.2.6 can be generalized to hold for any extraspecial
2-group (Theorem II.3.13), by examining the extraspecial 2-groups of the second type.

§4: We construct an extension to E. H where H has cyclic Sylow 2-subgroup C
(Theorem II.4.3). This is done in two steps.

Step 1: an extension is constructed in case H is a cyclic 2-group (Theorem II.4.1).
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Step 2: we construct a 2-complement K of H (H is 2-nilpotent by [3, Satz IV.2.8])
and we build an extension to E. H out of the extensions to E. C and E. K (Proposition
(II.4.2)), using Theorem II.3.13.

Our notation is standard and is adapted from [3] and [4]. Additional notation will be
introduced if necessary.

0. Preliminaries. We assume E to be an extraspecial 2-group to E/Z(E) is
elementary abelian and Z(E) is cyclic of order 2. We investigate the semidirect product
G = E. Aut(£).

It is clear that Z(E) c Z(G). By [3, Satz 13.8] there are two types of extraspecial
2-groups. The groups of the first type are central products of dihedral groups of order 8;
each group of the second type is a central product of a quaternion group and a group of
the first type.

In Sections §0-§2, E will be an extraspecial 2-group of first type.
An extraspecial 2-group E of the first type has the following property.

There exist involutions c, xt, i = 1,. . . , 1m such that every * in £ can be uniquely
written in the form ca"x\xx^. . . xa& with a, = 0 or l , 0 < i < 2 m , (c)=Z(E), and
\E/Z(E)\ = 22m, where the xt satisfy the following relations: [xhxm+i] = c, if l < / < m ,
and [xj, xk] = 1 if {/, k} =£ {/, m + i}.

The elementary method of constructing irreducible faithful representations of E, as
given in [5, Section 4] for odd primes p, can be performed in the present case as well.
This leads to Theorem (II.0.1) which gives the unique (up to equivalence) non-linear
faithful representation of E in this way.

NOTATION. We will denote, for any y eE, the coset yZ(E) by y.

The subgroup E2= (Z(E),xm+1,. . . ,x2m) is a maximal abelian normal subgroup of
E with index 2m. We have that W : = C[E2/Z(E)] is a 2m-dimensional C-vectorspace.

THEOREM II.0.1. Let 0 be the bilinear map defined on ¥f"X¥f" by (p(a,P) =
m
E am+fi, with a = (or,,. . . , a2m), j8 = (fiu ..., p ^ ) . Define the map D: E^ End(W)
' 1

by D(x)(y) = (-\)°°+<H*y^. (x^:\.xa^2...x
a^yy, where x = c"°xV .x?... xa

2%, yeW.
Then D is an injective group homomorphism and it induces the unique {up to equivalence)
faithful irreducible representation of E which we also denote by D.

Proof. See [5, Theorem 4.6]. •

DEFINITION. We denote by A' the transpose of the complex square matrix A.

Note that for any x eE, the entries of D(x) are ±1. The following result can be
easily derived from the definition of D.

COROLLARY II.0.2. For allxeE we have that D(x)' = D(x~') = (D(x))~l.

1. Construction of a suitable transversal. We will show that a suitable transversal of
Inn(£) in Aut(£) can be constructed which gives us the possibility to exhibit a projective
extension of the faithful representation D of E, in the spirit of [5]. For convenience we
introduce some notation.
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NOTATION. (1) For aeZ define a = amod2. Let aeFf", a = (aud2,. . . ,a^,),
a, e Z. Then x" is defined as xVxa

2
2. . . x%%.

(2) Let yeFf". Then i(y) is the inner automorphism of £ determined by
Kr)(y) = xYy(xY)~l for all y e £.

m

(3) Define the bilinear map 0 on Fl"1 X Fl"1 by <p(a, /3) = £ a-m+,A, with a =
/ ' = 1

(<* 1 ; . . . , a 2 m ) , /3 = ( / 3 , , . . . , / 3 2 m ) . B y a b u s e o f n o t a t i o n w e d e f i n e , f o r z , z ' e Z ( E ) ,
(t>(zxa,z'xp)tobe (j>{a,P).

(4) Let T E GL(2m, 2). Then CT = \{a e ¥f" \ Ta = a}\.
Quadratic forms over F2 will play an important role in our investigations; therefore

we recall their definition.
DEFINITION II.1.0. Let V be a vector space defined over a field K. Then a quadratic

form on V is defined as a map x: V —* K satisfying the following conditions
(i) T(CV) = c2x(y), for all c e K, v e V;

(ii) the map Br:VxV^>K, defined by
Bv(v, w) = T{V + w) — r(v) — T(W)

is a symmetric bilinear form.
See [6, p. 24] for more details.
Finally we define a special quadratic form q on Ff" by

m

q(a) = <t>(a,a) = 'Z am+ia>i, where a = (or,, a2,. . . , a2m)
1 = 1

We denote the symmetric bilinear form Bq by /.
LEMMA II.1.1. Let 6 e Aut(£). Then for each a, Oix") = t. xa' for unique elements

t e Z(£) and a' e Ff". The map T:F%"-*Flm given by T(a) = a', is a linear transforma-
tion preserving the quadratic form q.

Proof. The map T is bijective and linear, as 6 e Aut(£). Moreover T fixes q, as
shown by the following argument. As E/Z(E) is elementary abelian, (xa)2 e Z(E) and
therefore (xa)2 = 0(OO2) = (dix*))2. Also (xa)2 = c<*a'a) and {d^f = {xTaf =
c<HTa,Ta) rsee 1.4.6.1]. So q(a) = <p{a, a) = <p{Ta, Ta) = q{T{<x)). This proves the
lemma. •

Every element of Aut(£) induces a linear transformation on the 2m -dimensional
F2-vectorspace E/Z(E). We just saw that this linear transformation is an element of the
group consisting of all those linear transformations on a 2m-dimensional F2-vectorspace,
that preserve the quadratic form q. We denote this group by Ot(2m,2). We now show
how for any element T of Ox{2m, 2) an automorphism of E can be constructed that fixes
Z(E) and induces T as a linear transformation on the F2-vectorspace E/Z(E). Hence
Aut(£)/Inn(£) = O,(2m, 2).

THEOREM II.1.2. Let T e Oi(2m, 2). Define the map n'T: £-» £ by

where T(a) = T(a{, a2,. . . , a2m) = (a[, a2,..., a2m), and qT(a) = E #(&,, k,)a'ah with

•<i
k. = 7(e.) where {e,: = (0,. . . , 0,1, 0,. . . , 0) | 1 < i < 2m) is the standard basis of F\m.

i - i
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Then fx'T is an element of Aut(E) and it induces T as a linear transformation on
E/Z(E).

Proof. We need to show that

Note that n'-Ax^) = <:•<»•« . n'-Ax"*1*) = c*<<r-«c«'-(flr+«je7'<<ir+«

The proof can now be derived in the following way. By definition of n'T,
<*««)+'*W)++l™'Tai». xT(a+p); furthermore

= <t>(2 a.Tied, 2 W*<))

= 2
[as 4>(J{e,), T{e,)) = 4>(e,, e,) = 0 as T s O^m, 2)]

= 2 4>{T{et), neftiafi, + afa) + *{*, p)

[as <t>{T{e,), T(et)) + 0(r(ey), T(e,)) =f(T(e,), T{e,)) =f(et, e,) = 0
unless/ — i = m].

(II.1.2.1)

So qT(a) + qT(P) + <l>(T(a),T(P)) = qT(a + P) + 4>(a,P). This proves that n'T is a
homomorphism; as T is bijective we find that fi'Te Aut(E). By definition \i'T induces T.
This proves the theorem. •

The proof of [5, Theorem 5.13) can be used to obtain the following result which will
be denoted in the sequel by (TH).

(TH) Let G be a finite group, N a non-abelian normal subgroup of G. Put
A = N/Z(N) and let {xa \ a e A} be a transversal for Z(N) in N. Assume that

(i)Z(AOeZ(G).
(ii) S is a G-invariant irreducible representation of N, defined over a splitting field k

ofk[N] with char{k)\\N\,
(iii) tr(Z) = 0 on N-Z(N).

Let % = {g,, | i = 1,. . . , \G:N\}, gx = 1, be a transversal for N in G. Define the map

where g, e %, and neN. Then the following holds.
(a) IfWis some transversal for N in G with 1 e 9* and CA(t) = CN(t)/Z(N) for all

t e 9t, then 9?^, defined as in (*), is a projective k-representation of G extending S.
(b) Suppose that N/Z(N) is abelian and S is faithful. Then out of the transversal S£

and the group structure of N/Z(N), a transversal ty can be determined for which 31^ is a
projective representation of G, extending S. Moreover, for every g,e^8 we have that

l) = CN(g,)/Z(N).
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REMARK. In the sequel we will apply part (b) of this theorem with k = C and N an
extraspecial 2-group. Observe that if (TH)(i)-(iii) holds and (\N\, \G/N\) = 1, then there
indeed exists a transversal di for N in G with 1 e 9? and CA(t) = CN{t)lZ{N) for all t e di.
This follows from Theorem 6.2.2 in Gorenstein's book Finite Groups (1980). So in this
situation we can conclude from (a) that 9lm, defined as in (*), is a projective
^-representation of G extending S, and then a result of H. E. Becker [Archiv der
Mathematik, 27 (1976), 588-592, Lemma 1] can be applied to linearize 31^ in order to
calculate an explicit extension of H. The following lemma will enable us to apply (TH), as
it shows that pt'T can be modified in such a way that the condition of (TH(a)) is satisfied.
Recall that by Notation (2) any /} e ¥%", affords an inner automorphism i(/?) of E.

LEMMA II. 1.3. Let T eOi(2m,2) and let \i'Tbe defined as in Theorem II. 1.2. Then
there exists some pT e F%" such that

(a) i(pT)n'T is an automorphism of E which induces T, and
(b) iipT)p'i{x) = tx for some x with t € Z(E) only ift = l.

Proof. Put F = {x e E | p'-fe) = tx,te Z(E)}. Then for x e F, we have x = c"xa and
T(a) = a. There are two possibilities. The first is that qr(cx) = 0 for all a with T(a) = a.
In this case i(pT) can be chosen to be the identity automorphism of E. The second
possibility is that there exists some xa e F with qT((x) — 1- Put Fo := {x e E \ jx'-^x) = x}.
Then F = F0UxaF0. Let F0/Z(E) = (xp'Z(E): 1 < / < « ) and F/Z(E) =
(x"Z(E), FJZ{E)), for some integer n. Any inner automorphism of y of E, fixes every
coset.yZ(£)i,.ye£, as E' = Z{E). Hence if {xa'Z(E,. . . ,xa*»Z(JE)} is a basis for
E/Z(E), we get that y(xai) = cix

c", with cteZ{E), l < i < 2 m . As |Inn(£)| = 22m, and
|Z(£)| = 2, we have that for any choice of central elements dh i = 1,. . . , 2m there exists
an inner automorphism y' such that

y'{xa') = dix
a', i = l,...,2m.

In particular we have that some inner automorphism i(pT) exists such that

i(pT)(xa) = c.x", i(Pr)(*A) = *A, l = s i s « .

We have that i{pT)n'T induces T on E/Z(E). If i(pT)[t'i{x) = tx for some x with t e Z(E)
then n'7(x) = sx, for some seZ(E), hence xeF. If xeF0, then A: is fixed by \{pT)fi'T;
otherwise x=xa.y with yeF0 and i(p7-)ju^{;c) = i(p7-)0iK-;O • y) = c xpTxa(xPT)~1y =
jt")' =x. This proves the lemma. •

From now on we assume that elements i(pT) have been chosen such as to satisfy the
lemma above, and denote i(pT)n'T by \iT. Note that nT{x") = c

qT(a)+npT-Ta)xna\

An application of (TH) immediately gives that the matrix P(fiT) defined by

^ (l)«r(«)+/(p'-r

is invertible and satisfies F(/ir)~
1D(o:)P(ju7-) = D(HT\X)).

We now study the relation between P(nT) and P(JUT-I). The following holds
There is some p* e F ^ such that

. nT-i(xT")(xT")-1 for all a e ff". (II.1.3.1)

https://doi.org/10.1017/S0017089500008399 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008399


328 ERIC B. KUISCH

Indeed, working out the left-hand side of the equation gives

whereas
_1(x

Ta)(x
Ta)-1 = c<n-'(Ta)+f(PT-i,a)+<p(a+Ta,Ta) X<*+Ta

By II.1.2.1 we have for all T e Ox(2m, 2) that <t>(T(a), T(v)) = BT(a, v) + <j)(a, v) where
BT is the bilinear form satisfying BT(a, v) = qT{<x) + <7r(v) + 9r(# + v)- Now

(p(a, v) = <t>{T~\Ta), T~\Tv)) = BT-^Ta, Tv) + <p(Ta, Tv)

= BT->(Ta, Tv) + BT(a, v) + (f>(a, v). (II.1.3.2)

Conclusion: BT-\{Ta, Tv) = BT(a, v).
As we have that qT{oc) + qT(v) = BT{a, v) + qT{a + v) we see that the form

qrict) + qT-\(Ta) is linear. This gives the result. •

The following lemma is a consequence of (II. 1.3.1).

LEMMA (II.1.4). Let T e Ov{2m, 2) then

P(HT)' = A-lP{nT-x)A with A = D(JC") for some suitable a e F%".

Proof. By definition of P(nT) and using II.0.2 we have that

2

-
CT

By definition of P(nT) the quadratic form q'{a) = qT-\{Ta) +f(pT-<,
<t>(a+ Ta, Ta) has the following property:

For such I we have that /(/3, a+ Z)=f(fi, a). This follows as 1 =xs(Jur(xs)"1 =
</«"•«>. biT-tx1*))^-1 = cf^\ using II.1.3(b).

By an observation similar to [5, proof of Lemma (6.2)]), we conclude that there
exists a linear mapping L: lm(T + I)^>Ff" such that

(*)= X f-l\1r-KT
aelm(7"+/)

where

aelm(T+I)
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Now there is some a such that/(p\ La) =f(o, a) for all a, as the map a—»/(/3, L(a)) is
a functional. For this choice of a, we get that A := D(xa) satisfies the statement of the
lemma.

This finishes the proof of the lemma. •

Let T,S e Ot(2m, 2). As any automorphism of E which fixes every coset xZ(E) is
inner, we have that nT[is = h . fiTS where h e Inn(£). Choose /? e F\m, such that h = i(/3).
Using the definition of the matrices P(jur), T e O,(2w, 2), we conclude that

(P(liT)P(lis)) • D(x). (P(i*T)P(ps)rl = D{ws{x))

= D(x")D(nn(x))D(x'1)-1 = (Dix^Piurs)) • D(x). (D(x")P(jMn))-
1.

As D is an irreducible representation of E, Schur's lemma applies, and we get that

P([iT)P(Hs) = A . D(xp)P(fiTS) for some A e C*.
The following theorem shows what the value of A is when 5 = T~l. As in [5], we define
COT- = codimension of the eigenspace of T associated with the eigenvalue 1, for
TeGL(2m,2).

THEOREM (II.1.5). Let Te O,(2m,2). Then

det(P(nT)) = ±22""'COT and P(fiT)P(nT-,) = ±2COr. D(xY) for some y e Ff.

Proof. We compute the product P(nT)P(fiT-i). By definition of P(fiT) we find that

P(Vr)P(t*T->) = (1/cr)2 2 (-l)*<«-« . D(;c<r+'><">). D(x<T

where

k(a, 0) = qT{a) +f(pT, Toe) + <j>((T + I)(a), a) + qT

As P(nT)P(ixT->) = A. D(xY), for some yeFf", we find by equating the coefficients of
D(xY) on both sides of the equation (using that the set {D(xa)\ aeFf") is linearly
independent) that for every a, we only need to consider those /3 for which (T~l + /)(/3) =
(T + /)(a) + y.

So then y e lm(T +1), say y = T + /(v), and for any such pair {a, /3} we find that
P = T(a + v) + £ with T(i) = £. We recall the following facts

I) 9T~'(5) = / (p r - s ?), and 9 r ( a ) + 97-(r(ar)) = / ( T , a-) for some T e I?",
II) 0(a , 5) = 57-1(70-, C) + 0(Ta-, £) if TS = C (by formula (II.1.3.2)).

Now
ft(a, j8) = 97-(a) +f{pT, Ta) + <t>(T + I(a), a) + qT->{T{a + v) + £) +/(p7- . , a + v + £)

+ <t>{T{a) + a+y, T(a + v) + £)

= 97.(a) + / (p r , Ta) + 4>(T + /(or), T + /(a)) + 97-.(r(flr)) + qT-^)

+ BT-,(rcr, ?) + BT-I(TV, ?) + Br-,(rar, Tv) + qT->(T(v)) +f(pT-i, a+t)

+/(Pr-, v) + 0(T(a) + a, Q + 4>(T{a) + a, Tv) + 4>{y, T(a + v) + f)

, a-) +f(pT, Ta) + / (p 7 - , a) + <̂ (T + /(or), T + I(a)) + BT->(Ta, £

T-,(rv, S) + flT-^rar, Tv) + 97--.(r(v)) +/(pr-., v) + «(T(a) + or,

) + or, Tv) + <p(y, T(a + v) + £)
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by=V(T, a) +f(pT, Ta) + / ( P T - « , or) + <j>(T + l(oc), T + /(or)) + B^Ta, Tv)

-., V) + <f>(T(a) + a, Tv) + 0(y, T{a + v))

= L(a) + <(>(T + / (a) , T + /(a-)) + dr ,

where L is a functional and dT =f(pT->, v) + <t>(y, Tv) + qT-\(T(v)). So therefore

(^T-ixTv))(xTv)-1 = ( - l ) d r • x\ (II

and we conclude that

(1/cr)2 • 2 S (-l)*«*-r«*+v)+?). D(x( r + / ) ( f f ) ) . z>(x(r"+/) (r( f f+v)+C)) = A . D(
cr CeFix(r)

Therefore

A =

The exponent of - 1 is a functional so E (-i)*<«+r«.r>+t(«) = 0 Or 221". The first possibility
or

doesn't hold as A # 0. Apparently

k = (l/cT)(-l)dT.22m = ( - l ) " ^^ .

Now it follows immediately that

det(P(/xr)P(/ir-,)) = det(/>(Axr))
2 (by II.1.4) = 2co-2m

As det(P(/xr)) is integral, for P(fiT) is a s u m °f matrices with integral coefficients, and as
det(D(xY)) = ±1, we have det(P(nT)) = ±22""' ̂  (and det(D(xY)) = 1). This proves the
theorem. •

In order to proceed with our investigation we now need a result on quadratic forms.

LEMMA II.1.6. Let r be a quadratic form on a F2-vectorspace V then E (—l)r(u) = 0
or ±2k for some positive integer k.

Proof. As r is a quadratic form we have that the mnpQ.V xK->F 2 defined by
Q(v, w) = r(v) + r(w) + r(v + w), is a bilinear form. Now

2

2 (-i)r(1

weVveV

wzV

\ ) r ( W \ - \ ) Q ( V - W ) .

As Q{ , w) is linear S {-\)Q(v'w) = 2dim(V) if Q( , w) is identically zero on V, and
u e V

E (-1)G ( U I V ) = 0 otherwise. We introduce the set W = {weV\Q( , tv) = 0}.
veV
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Observe that W is a subspace of V, and that r is linear on W. Hence

and we conclude that ( £ (-l) r ( u )) = 0 or 2dim<H'>+dim(v'>.

As £ (- l ) ' ( u ) is integral we find that £ (- l ) r ( u ) = 0, or dim(W) + dim(V) = 2e for
ueV veV

some integer e and £ (- l) r ( u ) = ±2". This proves the lemma. •
veV

Lemma II. 1.6 has the following important consequence.

THEOREM II.1.7. Let T,S eOt(2m,2). Then P(nT)P(ns) = ±2e. D(xp)P(ixTS) for
some positive integer e, where 0 is such that ixT(is = i(j8). nTS.

Proof. The set {D{xa) \ a e Ff"} is linearly independent; so equating the coefficients
of D(xp) on both sides of the equation P(nT)P(ns) = A. D(xp)P(pTS), using (H.l.4.1),
yields that A = £ ( - l ) r ( a ) where

-T6

r(a) = qT{T-xNa) +f(pT, Na) + 0(or, T^Na) + qs(S~lMa + /S)

+f(ps, Ma + p) + (t>(a + p, s^Ma + )3) + <f>(a, a + /3),

N and M are linear mappings (see H.l.4.1), T := Im(7 + /) nim(5 + /)) and Y+d =
Im(r + / ) n (Im(5 + / ) + j8). Let c0 be the constant ^5(5~1M/3)+/(p5,/3) + tf>(/3,/3).
Using (II. 1.0) we get that

r(a) = qT(T-lNa) +f(pT, Na) + <f>(a, T^Na) + qs(S-lMa) + Bqs(S-lMa, S~lM/3)
+ qsiS-'MP) +f(Ps, Ma) +f(ps, 0) + </>(a, S~lMa) + <j>(p, S^Ma) + 0(0, p) + g(a).

Now the map a—>r(a) + c0 is a quadratic form by the following considerations. Let
L be a linear mapping, R e Ox{2m,2). Then ^R is a quadratic form and we have that the
map a—>qR(L(a)) is a quadratic form as well. This is immediate by (II.1.0).

Furthermore the map a—* <t>(a, L(a)) is also a quadratic form. Indeed, as L is linear
and 0 is bilinear we have that

0(ar, L(a)) + 0(0, L(0)) + 0(or + 0, L(or + 0)) = 0(0, L(a)) + 0(or, L(0))

hence (H.l.O(ii)) is satisfied; note that (Il.l.O(i)) is trivially satisfied.
Finally, functionals over F2 are quadratic forms and if q and q' are quadratic forms

then the map a—* q(a) + q'(a) is a quadratic form. Now Lemma II.1.6 gives that A = ±2e

for some integer e. This proves the theorem. •

REMARK. It is possible to determine the element 0 e F\m of Theorem II.1.7 explicitly.
We have that

0 = T(ps) + pT + pTS + TS((qT(S(em+l)), qT(S(em+2)),...,

) , qT(S(e,)),..., qT(S(em)))).

This can be derived immediately from the definition of the automorphisms nT, using that
PrUs = i(0). HTS a°d 9r(^i) = 0> for all standard basis vectors e, of F%" and all
TeOx{2m,2).
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2. Extending D. In this section we investigate under which conditions we can
construct an extension of D to E. H where H is a subgroup of Aut(£).

NOTATION. Let T,S eO^lm,!). Then [iTfis = i(f})(iTS for a unique fieFf"; for
convenience we denote this j8 by a)(T,S). Hence i(a>( , )): O1(2m,2)x Oi(2m,2)—>
Inn(£) is a well-defined map. We recall that the kernel of a projective representation
R:X-> GL(n, C) of a group X is defined to be the set {xeX:R(x) = v. /, v e C*}.

DEFINITION. Let T e Ox(2m,2). Define E(fiT) = V2~ctV P(jur).

NOTE. We have that

E{(iT)D{x)E{liT)-' = E{fxT{x)) for all x e E, Te

det(S(Mr)) = ±l for all TeOx{2m,2), and S(^) = 3(1) = /2~.

THEOREM II.2.1. Lef G = E. Aut(E) where Aut(E) c G operates in the natural way
on E. The map 3 : G-»• GL(2m, C) de^wed by 3(xi (y)^ r ) = D(A;)D(xy)3(Ju7-) is a
projective representation of E. Aut(£) which extends D. Let 5R be the factor set
corresponding to 3 . Then 3l(x,y) = ±1 for all x,y e G. Moreover Ker(S) c £ . Inn(£).

Proof. It is clear by the note preceding Theorem II.2.1 that 3 is a projective
representation extending D. We now prove the statement concerning 3?.

As yi{xe,ye') = ^l{x,y) for all x,yeG and e, e' e E (see [4, Theorem 11.7]) we only
need to describe 3l(i(Y)fiT,Kp)l^s) with y,pe¥lm and T,Se Ox(2m,2). Let T,Se
O!(2/n,2). Then nTns = i(a)(T,S))tiTS. By definition, 3(/*T) = ^/2~corP(fiT).
Furthermore P(nT)P(ns) = ±2eD(x<o<T'S))P(iiTS) and det(D(xO)(7'"5)))= ±1, so
det(P(/xr)). det(P(/is)) = ±2e 2m . det(P(/irs)). Therefore, invoking Theorem II.1.5, we
conclude that e = l/2(cor + co5 — cors). Hence 3(jur)3(/i5) = ±E(nTfj,s).

Furthermore,

whereas

3i5) = 3(i(y

= 3(i(y + r (p) + a>(T,

= ±D(xY). D(nT(xp)). E(nTHs) (by definition of fiT).

We see that 9l(i(y)pT,i(p)[is) = ±1. Now we prove the last statement of the
theorem. Suppose y = xi(y)nT, y € Ker(3). Then S^i^jUy) = v. / ^ with v e C*. So we
have by definition of the matrices P(nT) that

with ca e C*. By the linear dependence of the matrices D(xa), with a e Ff", we have that
Im(T + /) = 0, so T = I and y eE. Inn(£). This proves the theorem. •
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We now restrict our attention to subgroups of Aut(£) with odd order. Let H be a
subgroup of Oi(2m, 2) of odd order and suppose T eH. Then n i(u>(T, L)) e Inn(£), so

ZHZ-eH

there is a unique K(T)eFf" such that i (*(r))= n i(a>(7\ L)). We now have that
LeH

i(jc(r))/i7-i(jr(5))/if1 = i(a>(r,S))|H|.i(jf(r5)); this is not difficult to see. As |Inn(£)| =
22"1 and H has odd order we conclude that there is an odd integer b such that

i(<o(7\ 5)) = (i(/c(r))//ri(ic(5))M?1. KK(TS))-1)" = i(K(T))fiTi(K(S))^rl . i(*(rS))

(note that Inn(£) is an elementary abelian 2-group). Using this we derive that

H := {i(jc(r)). HT I T e H} is a group with H n Inn(£) = {1}. (II.2.2)

Let X be any subgroup of odd order of Aut(£), then X ninn(E) = {1} and X is
isomorphic to a subgroup X of Oi(2m, 2). By the Schur-Zassenhaus theorem applied to
the group Inn(£) .X=>Xwe find that Xis Inn(£)-conjugate to X in Inn(£).X.

We proceed with proving a fruitful result on vector spaces over a field of
characteristic 2. Besides that we will give an argument showing that for any T e O\{2m, 2)
with odd order there exists a pT such that f(pT, 0) = 0 for all 6 e lm(T +1).

LEMMA II.2.3. Let V be a vector space over a field K of characteristic 2. Let T be an
operator on V. Suppose that T2k+i — I for some integral k. Then V = Fix(T) © \m{T + /).

Proof. We know by the dimension theorem on linear mappings that

dim(Fix(r)) = dim(Ker(T + /)) = dim(F) - di

Furthermore Im(T + /) D Ker(T + /) = {0} as can be seen in the following way. Suppose
that .y e Im(r + / ) n K e r ( r + /). Then there is some x such that y = Tx+x and
(T + I)(T + I)(x) = 0. Now K is of characteristic 2 so (T2 + I)(x) = 0. So, by T2k+X = /, it
follows that Tx = x whence y = 0. This proves the lemma. •

COROLLARY. Let V be a non-degenerate symplectic vector space over a field of
characteristic 2. Let T be a symplectic transformation of odd order. Then V =
Fix(7) 1 Im(r + /) ; moreover Fix(7") = Im(r + I)x.

Proof. Let ( , ) denote the symplectic form on V. If Tv = v then (v, T + I(w)) =
(v, Tw) + (v,w) = (T~1v,w) + (v,w) =0. So Fix(T)cIm(r + /)-L. As V is nonde-
generate we have that dim(Fix(r)±) + dim(Fix(T)) = dim V. By Lemma II.2.3 we
conclude that Fix( T) = Im( T +1)x. •

We return to one of our earlier results. Consider the proof of Theorem II. 1.3. In case
of T e O\{2m, 2) having odd order we can extend the basis of F/Z(E), given in the proof
of Lemma II.1.3, by a basis 38 of lm(T + /) to a basis S3' of E/Z(E) and choose pT such
that

i(pT)(x") = c.xa; i<j>T)(x*) = xPl, 1 : s i : £ n ; i(pT)(x")=x" if *" .Z(E)e f lB .

If we now look at the expression for P(fiT) we see that the exponent of —1 can be
described independently of pT. Indeed, if (T + I)(o) = 0 then aeFix(T) and the
exponent is 0. If (T + I)(o) ¥* o we may assume by the previous lemma and (II. 1.4.1) that
a e l m ( 7 + /). The exponent of - 1 is then qT(o)+f(pT,T(o)) + (j)(To + o,o) =
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qT(o) + <p(To+o,o), this follows as T(o) e lm(T +1) and f(pT,d) = 0 for all 0e
Im(T + /) by choice of pT. We conclude

THEOREM II.2.4. Let reO,(2/n,2) with order(7) odd. Let P(nT) be defined as in
(II.1.3.0) (so P(fiT)~lD(x)P(nT) = D(HT\X)) holds). Then pT can be chosen such that

Let H be a subgroup of Ox(2m, 2^ of odd order. Choose {[iT \ T e H} such that every
[iT satisfies Theorem II.2.4. Define H as in II.2.2 and the projective representation of
£ . H as in Theorem II.2.1. By Theorem II.2.1 we have that 9l(x,y) = ±l for all
x,yeE.H. In particular 9J(x,y)|f i | = $l(x,y) for all x,y e H.

DEFINITION II.2.5. For xeH define sign(x) = II M(x, z).
zeH

With this definition we have that sign(*)sign(_y) = ^(x^y'sigr^xy) =
yi(x,y)sign(xy). We have therefore linearized the cocycle 31.

For convenience we denote sign(i(je(T))|Ur) by sign(T). We are now able to describe
representations of E. H, extending D, whenever H has odd order.

This description is one of the major results of this paper and can be formulated as
follows.

THEOREM II.2.6. Let E. H be a semidirect product of an extraspecial normal
2-subgroup E of first type with a group H of odd order such that Z(E) c Z(E. H).
Suppose CH(E) = {1}.

Then H is isomorphic with a subgroup of Ox{lm, 2) say H. Choose {fiT \ T e H} such
as to satisfy Theorem II.2.4 and define H ax in (II.2.2). There is some i(y) e Inn(£) such
thatE.H = E. (H)i{y). Define the map t on E . (H) by

aelm(T+I)

where t = yi(ic{T))nT,yeE,TeH.
Then S is a faithful representation of E . (H) extending D, and so the map <& defined

on E . (H)i(y) by

is a faithful representation of E . (H)i(y) (and therefore E. H) extending D.

Proof As D is a faithful representation of E, we conclude from Theorem II.2.1 that
a is faithful. The other statements are clear. •

3. Extraspecial 2-groups of the second type. In the previous sections we have
treated the extension problem for extraspecial groups of the first type i.e. central products
of dihedral groups of order 8.

Now we try to find analogous results in case we are dealing with extraspecial 2-groups
which are of the second type; i.e. groups which are central product of a group of the first
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type and a quaternion group of order 8. We will show that essentially all what we have
done in the previous sections holds for these groups as well, once we replace Ox(2m, 2) by
O2(2m,2); (see Remark II.3.4).

In this section E will always denote an extraspecial 2-group of the second type.

The structure of E can be described as follows. E contains 2m — 2 involutions
xx,x2, • • • ,*m-i, xm+x,. . . ,*2m-i and elements xm,x2m of order 4 such that (c) = Z(£),
c2 = 1, x2 = c if i = m or i = 2m.

The non-trivial commutator relations among the xt are given by [xm,x2m] =
[x,;Xm+i] = c for l < t ' < m — 1. Suppose ae¥f" then there exists a unique element
xa = x<

x"x2'
2. • .x%% where a, = 0 or l , l < i < 2 m , such that a = (dx,a2,. . . , a^), with

a := a mod 2. Any x e E can be written uniquely in the following way

x = caaxVxa22 ...xa& where 0 < a, < 1 for all i.

DEFINITION II.3.0. We define the bilinear form <p* on F|m X Ff" by

• + ambm.

LEMMA II.3.1. Let a, fie Ff". Then xa.xfi = c^(a^xaJr?.

Proof. We have xa. xp = czr-i*.+A. ^.+^2+62 *2^
+''2»..

The a,'s and 6,'s, 1 £ 1 s 2m, are 0 or 1. The JC,'S are involutions except if i = m or 2m
and therefore ^?'+6lxl2+62. . . x^"2" = xa+p unless am + fem = 2 or a^ + b2m = 2. In the
first case xa

rx
+bm = c = c"mbm and in the second case x%z+t>2m = c = ca2mb2m. The lemma is

proved. •

The group E can be written as QF where Q = (xm,x2m), F = (jt(-1 i = 1,. . . , m -
1, m + 1 , . . . , 2m — 1) is a group of first type. In Section 0 we showed how the unique
irreducible faithful representation 5 of F can be described. Now Q has a unique
irreducible faithful representation T given by

NOTATION. We define by A* the matrix ,4' where A is the complex conjugate of the
square matrix A.

THEOREM II.3.2. Define D(xy) = T(x) <8> S(y), the Kronecker product of the matrices
T(x) and S(y), when xeQ and y eF. Then D is a well-defined faithful irreducible
representation of E. Moreover D*(e) = D{e~x) for all eeE, and det(D(e)) = l for all
eeE.

Proof. The mapD is well defined, irreducible and faithful as T and S agree on
FHQ = Z(E) and F and Q centralize each other. Now (D(xy))* = (T(x)®S(y))* =
T*(x)®S*(y) [by definition of Kronecker product] = T(x~1)<S)S(y~l) = D(x~1y~1) =
Diixy)-1) for all xeQ,yeF. Moreover det(D(x)0) = det(r(x))deg(5). det(5(y))deg(r);
but deg(r) = 2, det(r(*)) = 1 for all xeQ, and det(5(y)) = ±1 as F/F' is an elementary
abelian 2-group, so det(D(jc>')) = 1 for all x e Q, y e F. The theorem is proved. •
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REMARK. For extraspecial 2-groups E of the first type we have shown that
D(x) e GL(2m, U) for all x e E (Theorem II.0.1). We lose this property in case E is of the
second type. In fact it can be shown (with [4, Cor. 4.15]) that D is not even similar to a
real representation. The following results show that the methods in the previous sections
need only some slight modifications to hold for the groups that we are studying now.

LEMMA II.3.3. Let 6 be an element of Aut(£) . Then 6(xa) = t.xa for some t in
Z(E). The map T: or—» a' is a symplectic transformation preserving the quadratic form q*

defined by q*(au a2,. . . , a^) = E am+i<Xi + {amf +
11=1

Proof. Same argument as in Lemma II. 1.1 replacing <f> by <f>*. •

REMARK II.3.4. We see that every element of Aut(E) induces a linear transformation
on the 2m-dimensional Fp-vectorspace E/Z(E) which preserves the quadratic form q*.
Denote the group of linear transformations on a 2m-dimensional vectorspace which
preserve the quadratic form q* by O2(2m,2). Note that <t>*(a, /?) + 0*03, a)=f(a, /?)
and <p*(a, a) = q*(ac).

THEOREM II.3.5. Let T e O2(2m, 2). Define the map n'T:E-+ E by

where T(a) = T(aua2,..., a^) = (a[,a2,..., a'2m), and qT(a) = E <£*(£,, fc>,a;, with
<</

ki = T{et) where {e,: = (0,. . . , 0,1,0,. . . , 0) | 1 < i < 2m} is the standard basis of ¥f".
i - i

Then fi'T is an element of Aut(£) and it induces T as a linear transformation on
EIZ{E).

Proof. Mimic the proof of Theorem II.1.2. Working out (/>*(T(a), T(/3)) gives

r& a,7\*,), 2 btT{e,)) = 2

a2mb

unless i = m or i = 2m, as T e O2(2m, 2)]

= 2 Fine,), Tietfiaft + a,b,) + «*(ar, |8)

[as Fined, Tie/)) + Fine,), Tied) =/(r(«y). Tied)
=fieit ed = 0 unless; - i = m). (II.3.5.1)

The rest of the proof is exactly the same. •

LEMMA II.3.6. Let TeO2(2m,2) and let n'T be defined as in Theorem II.3.5. Then
there exists some pT e F%" such that

(a) i(pT)fi'T is an automorphism of E which induces T
(b) i(pr)/i^(jc) = tx for some x with t e Z(E) only if t = 1.

Proof. Just follow the lines of the proof of Theorem II. 1.3.
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From now on we assume elements \{pT) chosen such as to satisfy Lemma II.3.6, and
denote i(pT)fi'T by nT.

THEOREM II.3.7. Let T e O2(2m, 2). Then the matrix P{fiT) defined by

= — y (_l\qA<x)+f(pr,T(a)) + <t>-(T«+a,a) £)(X(T+1)(<*)\
cTaeff"

is invertible and satisfies P(nT)~lD(x)P([iT) = D(juf \x)).

Proof. Apply (TH). •

LEMMA II.3.8. Let T e O2(2m, 2). Then

P(HT)* = A-1P(HT-,)A with A = D{x°) for some suitable o e F2"1.

Proof. Mimic the proof of Lemma II. 1.4 using Theorem II.3.2 instead of Corollary
II.0.2, and Theorem II.3.6 instead of Theorem II.1.3. Moreover by (II.3.5.1) we see that
(II.1.3.1) holds for T e O2(2m, 2). This proves the lemma. •

THEOREM II.3.9. Let T €O2(2m,2). Then there exists an integer k and a suitable
Y e F2"1, such that det(P(nT)) = ik. 22""'-COT and P(nT)P(nT->) = ±2C°T. D(xY).

Proof. Following the proof of Theorem II.1.5 we obtain that P(nT)P([iT->) =
A . D(xY) where A = 2COr. Now Lemma II.3.8 gives |det(P(Ju7-))|

2 = 2COr2m.
We know already from the construction of D that D(x) e GL(2m,Z(i)) and so, by

definition of P, P(^T) e GL(2m,Z(i)). Hence det(P(jur)) € Z(i). The equation \y\2 = 22r

has only the solutions y e {2r, -2r, i. 2r, -i. 2r} in Z(i'). So the theorem is proved. •

Although it is possible that det(P((tT)) is not a rational integer the cocycle
determined by P can be described in the same way as in the case of extraspecial 2-groups
of the first type. This could be expected as P(fiT) 's defined as a linear combination of the
matrices D{x) where the scalars in this combination are (as earlier) 1 or - 1 , and as these
scalars determine completely the values of the cocycle belonging to P. Hence this cocycle
will have essentially the same range of values as the cocycle that we've investigated
earlier, as we can apply the same arguments as in the proof of Theorem II. 1.7. So we
have the following result.

THEOREM II.3.10. Let T,S eO2(2m,2). Then fj,Tfis = h. fiTS where h is an inner
automorphism of E. Let h(x) = xpx(xp)-\ Then P(fiT)P(ns) = ±2e. D(x^)P(nTS) for
some integer e.

Proof. See the proof of Theorem II. 1.7. •

We now introduce a projective extension of D in the same way as in Section 2.

THEOREM II.3.11. Let T e O2(2m, 2). Define S(/iT) = V2-co^. P(pLT). Then the map £
defined on G = E. Aut(£) by

is a projective representation of E. A u t ( £ ) extending D.

Let 31 be the factor set corresponding to S . Then 3l(x, y) = ± 1 for all x,y eG.
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Proof. We follow the proof of Theorem II.2.1. We only need to establish that
ziHr^Hs) = ±E((iT(is). This can be done as follows. By Theorem II.3.10 P(nT)P(ns) =
±2e. D ( J C " ) P W .

Taking determinants gives det(P(jU7-))det(P(jus)) = I2"'. det(P(Jurs)) (note that
det(Z>(jt")) = 1 by Theorem II.3.2), and an application of Theorem II.3.9 yields that there
are integers a, b, c such that

Conclusion: a + b=c mod4), e = l/2(cor + cos — core). Hence using the definition
of 3, we conclude that E(fiT)E(fis) = ±'E(fiTns). The proof of Theorem II.3.11 is
complete. •

We construct H, where H is a subgroup of odd order of O2(2m,2), in the same way
as in (II.2.2). Furthermore we define

{$ if E is extraspecial of the first type
(f>* if E is extraspecial of the second type.

Now it is clear that the analogue of Theorem II.2.4 holds with 02(2m,2) instead of
Oi(2m, 2), so we arrive at the following theorem.

THEOREM II.3.12. Let TeO2(2m,2) with order(T) odd. Let P(nT) be defined as in
(II. 1.3.0). Then pT can be chosen such that

P(HT)= 2 (-l)qH°!)+*'iTa+0''a:). D(x(T + I)(a)). M
aelm(T+l)

The next result is proved along the same lines as in the proof of Theorem II.2.6.

THEOREM II.3.13. Let E.H be a semidirect product of an extraspecial normal
2-subgroup E with a group H of odd order such that Z(E) c Z(E. H). Suppose
CH(E) = {1}.

Let E be an extraspecial 2-group of /th type (i = 1,2). Then H is isomorphic with a
subgroup of Oi(2m, 2), say H. Choose {fiT \ T e H} such as to satisfy Theorem II.2.4 or
Theorem II.3.12 as the case may be. There is some i(y)elnn(£) such that E.H =
E. (H)i(y). Define the map S on E. (H) by

aelm(T+l)

where t = yi(K(T))fiT,y eE,TeH.
Then S is a faithful representation of E. (H) extending D, and so the map <& defined

on E. (H)i(y) by

is a faithful representation of E. (H)l(v) (and therefore of E. H) extending D. •

4. Extending D if the complement has a cyclic Sylow 2-subgroup. Let the Sylow
2-subgroup of H be cyclic. We conclude from [3, Satz IV.2.8] that H = PK where P is a
cyclic Sylow 2-subgroup of H, and K is a normal subgroup of H satisfying H/K = P.
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In this section we describe an extension of the unique faithful irreducible character
DE of an extraspecial 2-subgroup E to G = E. H, under the extra hypothesis that
[E, K] = E. Note that the structure of D depends strongly on the type of E (see Theorem
II.0.1 and Theorem II.3.2). We describe first how D extends to E. C if C is a cyclic
subgroup of Aut(£) and show that this extension is faithful if C n Inn(E) = {1}. We have
the following theorem; for the definition of 3 and 3(?( , ) see Theorem II.2.1.

THEOREM II.4.1. Let C be a cyclic 2-subgroup of Aut(E), of order 2". Let C = i(y)fiT

be a generator of C, and let i(£)fis be the unique involution of C.
Define D(e. cm) = D{e). Am for e e E and 0 < m < 2" - 1, where

(ii) T2" = ( - )
Then D is a representation of E. C extending D; if C (1 Inn(£) = {1} then D is faithful.

Moreover D(cm) = A(cm) . S(cm), with k(cm) = rm . 3l(c, c)3l{c2, c). . . yi{cm~\ c).

Proof. Let 3 be the projective representation as defined in Theorem II.2.1. It is
evident that the map R:E. C-* GL(2m, C) defined by R{e. cm) = D{e)R{c)m, for e e E,
is a representation of E. C extending D, if and only if there exists r eC* , such that
R(c) = T. S(c) and (R(c))2" = I. Now S(c)2"= e. I, so T2" = e"1 in the former situation,
and we can determine T once we know e. By Theorem II.2.1 we have that (S(c'))2 =
±S(c2') for all / e N; whence (5(c2""'))2 = e. I with e = ±1. As c2""' is an involution, we
must have that c2""' = i(£)jus, 5 = T2"'\ S2 = /. So 5 = / or S has order 2.

If 5 = / then S(c2""') = D{x^), and e = (-l)*e ( £ C ) . So suppose 5 has order 2. Then
2 ' 2 ^ x « ) ) . (S(^))2, so

where (fis(x
si))(xs^)-1 = ( -1 )* . xi+Si (by II.1.5.1).

We conclude that

e. / = Dix^DbisixtyDbisixSty5*1 ^ V ^ V ^ ' 6

= D(xi)2, as S2 = I,

Now D(JCE)2 = ( - 1 ) * E « ? ) . / . Hence e = (-\)<t>Mf. This proves that D is a repre-
sentation of E. C extending D. Moreover Ker(Z)) c E. Inn(£) D E. C (see Theorem
II.2.1); so C PI Inn(£) = {1} gives that E. Inn(£) n E. C = E, whence Ker(D) = {1} as D
is faithful. The last statement is obvious. The theorem is proved. •

We will now construct an extension of D to E. H with H c Aut(£), if H has a cyclic
Sylow 2-subgroup U, such that the 2-complement K of H (see [3, Satz IV.2.8]), has the
property that [E, K] = E.

In fact we can prove somewhat more. Let H be 2-nilpotent with Sylow 2-subgroup U
and 2-complement K. Let S be the projective representation of G = E. H, which extends
D (see Theorem II.2.1). We will show how an extension of D to G can be obtained if 2 can be
linearized on both E. U and E. K, and [E, K] = E.

PROPOSITION II.4.2. Let 31 be the cocycle associated to S. Suppose that functions
o:E.K^>C* and n:E. £/->C* exist such that ^{x,y) = a{x)o{y){o{xy))~\ for all
x,yeE.K and 9l(x,y) = Jt(x)n(y)(n(xy))~l for all x,yeE. U. Define the map H* on
G = E.H by £*{ab) = (ji(a))-lZ(a)(o(b))-lE(b) for all aeU,b eE. K. Then 3* is an
irreducible representation of G extending D.

https://doi.org/10.1017/S0017089500008399 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008399


340 ERIC B. KUISCH

Proof. Theorem II.3.11 shows that the cocycle 5R has values 1 or — 1. We now
introduce the set G* = {(g, e) \ g e G, e = ±1} which is a group under the law of
composition defined by (gu E)(g2, e') = (g1g2, ee'^l(gug2)). We have that E* =
{(e, £ | e e E, e = ±1} is a normal subgroup of G* and C = {(1, e) | e = ±1} is a central
subgroup of G*. Define the map D* on E* by £>*((e, e)) = D(e) for all eeE. Then £>* is
an irreducible representation of E*.

The map So defined by S0(g, e) = E. S(g) is an irreducible representation of G* and
S0|£, = 6* . D* where 8* is the invariant linear character of E* defined by 6*{e, e) = e.
Note that Ker(0*) = N = {(e, l)\e e E}. Let n and a be as assumed by the proposition.
By the assumptions on n and o, we conclude from the definition of G* that
L:= {(r, (a(r))"1) | r e£. /C} is a subgroup of G* isomorphic to E.K, and T: =
{(t, (jr(t))~l):t eE. U} is a subgroup of G* isomorphic to E. U, observe that N = LC\
T, as jr(jt) = o(x) = 1 for all x e E. Furthermore L n C = {1} = T n C, so 0* extends to
both LC and TC as C is central.

Now TC is a Sylow 2-group of G*, and as L/N = K, L contains a Sylow r-subgroup
of G* for any odd prime r. Hence for any prime p there is a group //p such that 6*
extends to Hp and Hp/E* e Sylp(G*/E*). Hence 0* extends to G* [4, Theorem 6.26] and
G * ' n c = {i}.

So CG*'/G*' is cyclic of order 2. As [£ ,£ ] = £, we have that Afc[L,IV]cG".
Hence LG*'/G*'= O2(G*/G*'), and CG*' nLG*' = G*'. So Cc£LG*' and LCn
LG*' = L, as L has index 2 in LC. Now LC is normal in G*, by construction of G*;
hence L, being an intersection of normal subgroups, is normal in G*.

As L n T = TV, we have that LT has index 2 in G*. So C is not contained in LT, as
TC is a Sylow 2-subgroup of G*. Hence Cx LT = G*, LT = G.

Put A' = LT say AT = {(g, p(g)) | g e G}. As T c X we see that p(0 = {,n{t))~l for all
teE.U indeed, if (f, p(f)) = (f,-(jr(f)r1) this would imply that ( 1 , - 1 ) 6 * , a con-
tradiction. In the same way we get that p(r) = o(r) for all r e E. K. As X = TL we
conclude that (tr, p{tr)) = {t, {]t(i)Yx)(r, (o(r))~l) if t e E. U, r e E. K. Hence

p(tr) = M(f, r)(jr(0r VCO)"1 for all f e E. I/, re E.K. (f)

We have that 5R(g, /i) = (p(g))"1(p(/i))"1p(^) as X is a subgroup of G*. So

, *V) = {p{tr)Y\p{t'r'))-'p{trt'r')

for all/ e £ . U, re E.K. ($)

We finish the proof of the proposition by showing in a straightforward way that the map
S* is a well-defined homomorphism. Let a,a' eU and b,b' eE. K. Then

a', 6')
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= (jt(aa'))-l(o(ba'b'))-l3l(aa', ba'b')S(aba'b') (using ($))

= {n(aa'))-lo{bab')${aal)Z{babt)

= Z*{aa'b"'b>)

= t*(aba'b').

The proposition is proved. •

Let H have a cyclic Sylow 2-subgroup C with 2-complement K such that [K, E] = E.
Let H be a subgroup of Oj(2m,2)(i = l,2) isomorphic to K. Let i(y) be an inner
automorphism such that K = (H)iM (see II.2.2). Let A and sign be the functions defined
in Theorem II.4.1 and Definition II.2.5 respectively. Then A and sign can be extended to
functions on E. C viz E. K such that A|E = sign^ = 1. We have that

3t(b, b') = signflM&Ky))"1. sign(i(y)fe'i(y))-1. sign(i(y)66'i(y)) for all b, b' e E. K;

yi{a,a') = (l(a))-\k{a'))-\aa') for all a, a' e E. C.

Hence we finally arrive at the main theorem of this section.

THEOREM II.4.3. Let H have a cyclic Sylow 2-subgroup C with 2-complement K such
that [K,E] = E. Define the map H* on G = E.H by Z*(ab) =
A(a)a(a)sign(i(y)fei(y))a(fe) for all aeC, b e E. K. Then a* is an irreducible repre-
sentation of G extending D.
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