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Abstract. In this paper, we investigate linear Weingarten hypersurfaces with two
distinct principal curvatures in a real space form M"*!(c), we obtain two rigidity results
and give some characterization of the Riemannian product S*(a) x S"*(+/1 — a?),
1 <k <n—1lin M""'(c)(c = 1), the Riemannian product RF x $"*(a),1 <k <n—1
in M"*'(¢)(c = 0) and the Riemannian product H¥(tanh® p — 1) x S"*(coth? p — 1),
l<k<n—1in M (c)(c = -1).
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1. Introduction. Let M” be an n-dimensional hypersurface in a real space form
M"+1(c) of dimension n + 1. It is well known that there are many rigidity results for
hypersurfaces in a real space form with constant mean curvature or with constant
scalar curvature or with the scalar curvature and the mean curvature being linearly
related. For example, one can see [2-6, 8-11].

Recently, H. L1, Y. J. Suh and G. Wei [7] introduced the so called linear Weingarten
hypersurface in a unit sphere $"*'(1). We can generalize it to a real space form M"+!(c),
that is, a hypersurface in a real space form M"+!(c) is called a linear Weingarten
hypersurface if the scalar curvature R and the mean curvature H satisfy the linear
relation «R 4+ BH + y = 0, where «, B and y are constants such that o® + g2 # 0.

We easily see that if the constant @ = 0, a linear Weingarten hypersurface reduces to
a hypersurface with constant mean curvature. If the constant 8 = 0, a linear Weingarten
hypersurface reduces to a hypersurface with constant scalar curvature. If the constant
y =0, a linear Weingarten hypersurface reduces to a hypersurface with the scalar
curvature and the mean curvature being linearly related, which was studied by H. Li
[6] for the unit sphere. Therefore, we know that the linear Weingarten hypersurface is a
natural generalization of hypersurface with constant mean curvature or with constant
scalar curvature or the scalar curvature and the mean curvature being linearly related.

In this paper, we try to study the linear Weingarten hypersurfaces with two distinct
principal curvatures in a real space form M"*!(c). In order to state our theorem
clearly, we introduce the well-known standard models of complete hypersurfaces in
M"1(c). Let Ny := RF x §"*(a). Then Nj,_; has two distinct constant principal
curvatures 0 and +/a with multiplicities k and n — k, respectively. Let My, := S*(a) x
S"*(/1 — a?). Then My ,_; has two distinct constant principal curvatures

V1 —a? a
M= =t = —, )»k.;,_l:"':)\n:_

a V1—a
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Let Ty, :={xe H*' (=) —x2+x}+ -+ x} = —cosh’p},p >0, <k<n—1.
Then Ty , has two distinct constant principal curvatures

Al =---=Ar=tanhp, Mgy =---= A, =cothp.

Moreover, Ty, is isometric to the Riemannian product HF(tanh? p — 1) x
Sk (coth? p — 1). We shall prove the following:

MAIN THEOREM 1.1. Let M" be an n(n > 3)-dimensional complete connected and
oriented linear Weingarten hypersurface in a real space form M"\(c) with two distinct
principal curvatures. Then

(1) if the multiplicities of both principal curvatures are greater than 1, then

(i) for ¢ = 1, M" is isometric to a Riemannian product S*(a) x S"*(~/1 — a2), where

l<k<n—1;

(ii) for ¢ =0, M" is isometric to a Riemannian product R* x S"*(a), where 1 <
k<n—1,;

(iii) for ¢ =—1, M" is isometric to a Riemannian product H*(tanh®p — 1) x

S"*(coth? p — 1), where 1l <k <n— 1.

(2) if M" has two distinct principal curvatures ) and p of multiplicities n — 1
and 1, assume that the sectional curvature of M" is non-negative and ) # —
ya+ao’n(n—1)c = 4(n L then

(D) forc=1, M"is zsomelrtc to a Riemannian product S'(a) x " '(v/1 — a?);

(ii) for ¢ = 0 and B # 0, M" is isometric to a Riemannian product R' x S"~!(a) or
R x SY(a);

(iii) for ¢ = —1 and B> — 4a’n*(n — 1)> > 0, M" is isometric to a Riemannian
product H'(tanh? p — 1) x $" !(coth® p — 1) or H" '(tanh? p — 1) x S'(coth? p — 1).

B
2an(n—1)’

Denote by P(¢) and S() the following functions:

p n=2,
da(n — l)t 2 r (1.0

P(t)y=c—

and

_ (n—2) B’
S0 = Z T do(n — 1)“r 16a2(n — 1)2° (1.2

From Lemma 3.3, we know that P(¢) has two distinct real roots #1, t,. From (3.29),
we know that S(z) is the squared norm of the second fundamental form of M". We can
prove the following:

MAIN THEOREM 1.2. Let M" be an n(n > 3)-dimensional complete connected
and oriented linear Weingarten hypersurface in a real space form M"(c) with two
distinct principal curvatures A and w of multiplicities n — 1 and 1. If 1 # %
ya+o’n(n—1)c = m and the squared norm of the second fundamental form of M"
satisfies one of the following conditions

(1) min(S(#1), S(£2)) < S < max(S(t1), S(t2)) or

(2) § = max(S(11), S(12)) or

(3) S < min(S(#1), S(12)), then

(i) for ¢ = 1, M" is isometric to a Riemannian product S'(a) x S""'(v/1 — a?);
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(ii) for ¢ = 0 and B # 0, M" is isometric to a Riemannian product R' x S"~'(a) or
R1 « Sl(a);

(iii) for ¢ = —1 and B> — 4a*n*(n — 1)> > 0, M" is isometric to a Riemannian
product H'(tanh® p — 1) x S"~!(coth? p — 1) or H" !(tanh? p — 1) x S'(coth? p — 1),
where t1, ty are the two distinct real roots of (1.1) and S(¢) is denoted by (1.2).

REMARK 1.3. If @ = 0, thatis, M" is a hypersurface with constant mean curvature,
the result of (1) in Main Theorem 1.1 reduces to the result of G. Wei [11] for ¢ = 1. If
B =0, that is, M" is a hypersurface with constant scalar curvature, the results of (1) in
Main Theorem 1.1 reduce to the results of Cheng [3,4]forc = 1,c = 0and Z. Huetal.
[5] for ¢ = —1, respectively. We should notice that our Main Theorems also generalize
some important results of [3-5] and of authors [10], in which the hypersurfaces with
constant mean curvature or with constant scalar curvature were investigated, to linear
Weingarten hypersurface in a real space form M"*+!(c).

2. Preliminaries. Let M"+!(c) be an (n + 1)-dimensional connected Riemannian
manifold with constant sectional curvature c. Let M" be an n-dimensional hypersurface
in M"*1(c). We choose a local orthonormal frame ey, ..., e,+1 in M"+1(c) such that
el,...,e,aretangentto M". Let wy, ..., @, be the dual coframe. We use the following
convention on the range of indices:

1<A,B,C,...<n+1; 1<ijk, ... <n

The structure equations of M"*+!(c) are given by

doy = ZCUAB ANwp, wyp+ wpy =0, (2.1)
B
1

dwsp = Z wAc N ocs 5 Z Kupcpwe A wp, (2.2)

c c.D
Kapcp = c(8u4cdp — SupdBC)- (2.3)

Restricting to M",
Wy = 0. 2.4)
Wpt1i = Zhg‘wj, /’ly' = hj,’. (25)
J

The structure equations of M" are

dw; = Zwy- ANwj,  wj+wi;=0, (2.6)
j
1
dwj = Zwik Ay — 5 Z Rjrior N oy, 2.7)
k k1
Rij = c(Sixdji — Sudjic) + (hichji — hithy), (2.8)
n(n—1)r—c)=n’H* -8, (2.9)
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where n(n — 1)r = R is the scalar curvature, H is the mean curvature and S is the

squared norm of the second fundamental form of M.
We choose ey, ..., e, such that h; = A;6;. From (2.5) we have

Wpt1; = Aiw;, I=1,2,...,n.
Hence, we have from the structure equations of M”

dwpi1i = dhi A w; + Aidw;

:d)LiAwi—i-)\iZwy/\wj.
J

On the other hand, we have on the curvature forms of M"+!(c),

1
Qi =—5 > Kupticpwc A wp
cD

1
==3 Z c(Bns108ip — Spy1p8ic)wc A wp
C.D
= —cwpr) Aw; = 0.

Therefore, from the structure equations of M”+!(c), we have

dwyy1i = E Opr1j A Oji + Opg1ngl A Onyli + Qpyti

J
= Z Ajwj N\ ;.
J
From (2.11) and (2.13), we obtain
d)\.j N Wi+ Z()», — k])wy AN wj = 0
J

and can write

Vi = (A — A)w;.

As Yy = ¥j;, (2.14) can be written as

> (W + 8ydig) A w; = 0.
J

By E. Cartan’s Lemma, we get

Vi + Sgd)xj = Z Ojikwy,
k

where Qji are uniquely determined functions such that

Oiik = Qi
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3. Proof of main Theorems. We firstly have the following Proposition 3.1 original
due to Otsuki [8].

PrOPOSITION 3.1 ([8]). Let M" be a hypersurface in a real space form M"*'(c) such
that the multiplicities of the principal curvatures are constant. Then the distribution of
the space of the principal vectors corresponding to each principal curvature is completely
integrable. In particular, if the multiplicity of a principal curvature is greater than 1, then
this principal curvature is constant on each integral submanifold of the corresponding
distribution of the space of the principal vectors.

Proof of (1) in Main Theorem 1.1. Let A, u be the principal curvatures of
multiplicities k and n — k respectively, where 1 <k <n—1. By (2.9) and eR+ BH +
y = 0, we have

ank(k — V)A? + 2ank(n — k)au + an(n — k)(n — k — 1)u?
+BkA + B(n — k) + yn + an’(n — 1)c = 0. (3.1)

Denote by D, and D, the integral submanifolds of the corresponding distribution
of the space of principal vectors corresponding to the principal curvature A and pu,
respectively. From Proposition 3.1, we know that A is constant on D;. From (3.1),
we infer that p is constant on D;. By making use of Proposition 3.1 again, we
have u is constant on D,. Therefore, we know that pu is constant on M”. By the
same assertion we know that A is constant on M". Therefore M" is isoparametric. By
E. Cartan [1], we know that M" is isometric to the Riemannin product R€ x S"*(a)
for ¢ =0, or S¥(a) x " *(V/T=a?) for ¢ = 1, or H¥(tanh? p — 1) x §"*(coth? p —
1) for ¢ =—1, where 1 <k <n—1. This completes the proof of (1) in Main
Theorem 1.1.

REMARK. In fact, we note that Theorem 1.1 is right for general Weingarten
hypersurfaces satisfying a differentiable function relating the mean curvature and the
scalar curvature of M", i.e. a Weingarten relation W(R; H) = 0.

Let M" be an n-dimensional complete linear Weingarten hypersurface with two
distinct principal curvatures one of which is simple, that is, without loss of generality,
we may assume

AM=h=-=h_1=A, Ay =u,

where A; for i = 1,2, ..., n are the principal curvatures of M". From (2.9) and ¢ R +
BH + y = 0, we obtain that

an(n — D(n — 22> + 2an(n — DA + Blu + B(n — DA+ yn+ an’*(n — 1)c = 0. (3.2)

Since we assume that A # _#;1—1) and ya + a?n(n — 1)c = #2_1). By a direct

calculation, (3.2) can be written as

(3.3)

Ran(n — 1) + f] |:l/«+ 20(n — 1)(n—2)k+ﬂ:| _o.

da(n—1)
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Thus, we have

2a(n—1)(n—2)r + B
B 4a(n—1) ’

(3.4)

and

_ 2an(n—1r+ B
A— = n—4om(n - (3.5

Let w = |[2an(n — 1)\ + ,3]2|_%. We denote the integral submanifold through
x € M" corresponding to A by M’ T’*l(x). Putting
n n
di=) hior du=) pior. (3.6)
k=1 k=1

From Proposition 3.1, we have

Ai=An=--=h,1=0 on M'(x). (3.7)
From (3.4), we have
-2
du=-""= . (3.8)
2
Hence, we also have
MalZM»ZZ"':M»nflzo on M?il(x)' (3'9)

In this case, we may consider locally A is a function of the arc length s of the integral
curve of the principal vector field e, corresponding to the principal curvature x. From
(2.17)and (3.7), we havefor 1 <j<n-—1,

dr = d)»j = Z Ojrwy.

k=1
n—1
= Z Qﬂkwk + Qj/‘nwn =X, 0. (310)
k=1
Therefore, we have
Q.17k:O’ 1 Skfl’l—l, and Qj/'n:)\an- (311)

By (2.17) and (3.9), we have

d,bL = d)\n = Z anka)k
k=1

n—1

= Z ankwk + anna)n = Z/-’Lsia)i = WU,n Wy. (312)
i=1

k=1
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Hence, we obtain
Owmk =0, 1<k<n-—1, and Qum = i.y. (3.13)

From (3.8), we get
-2
Onwmn = Uon = _nT)hn . (3.14)

From the definition of ¥, if i # j, wehave ¢y =0for1 <i<m—land1 <j<n-—1.
Therefore, from (2.17),ifi #jand 1 <i<n—1land 1 <j <n—1we have

Qjk =0, forany k. (3.15)
By (2.17), (3.11), (3.13), (3.14) and (3.15), we get

n
Vin = ) Qjnkeok

k=1
= Qjnwj + Qjunwn = A,y ;. (3.16)

From (2.15), (3.5) and (3.16) we have

)"7}1

n 2an(n—1)A+ @j
4an(n—1)

_ Aan(n— DA, '
= n2an(n — Da+ A1

(3.17)

Thus, from the structure equations of M" we have

n—1
dw, = Za)k A O + Opn A 0, = 0.
k=1

Therefore, we may put w, = ds. By (3.10) and (3.12), we get

di

dr = kpds, Ap,= T

and

d
dp = pds, = g
ds
Then we have
dan(n — DA,, .
n2an(n — 1)1 + ﬁ]w‘/
4an(n — 1)%
n2an(n — D+ B
d{log IR2an(n — )% + BI|+)
- ds -

@jn =

(3.18)
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From (3.18) and the structure equations of M"*!(c), we have

n—1
da)jn = Z Wik A Wk + Win A Wpp + Wijn+1 A Wpy1n + an
k=1
n—1
= ijk A Ok + Wjnt1 N Wpplp — COF N\ Wy
k=1
d{log|[2an(n — D)x + B[} =t
= { ell (ds ) 'B]|}ijkAwk—(Au+c)ijds.
k=1

From (3.18), we have

d*{log [2an(n — 1)» + BPI7)
ds?
25
dflog |[2om(nds D + B117} doy
_ d*{log|2an(n — 1) + P} s no
- ds? J

{log |[2an(nd— DA+ B Z o A Ok

[ @*{log|Ran(n — )i + BT ;}
N { B ds?

P
N |:d{log|[2an(nds DA+ BT }} }a)j/\ds

da)jn = ds A w;j

{log |[2an(nd— DA+ B Z o A e,

From the above two equalities, we have

2 _ 2|5 — 211
d*{log |[2an(n 1+ AP b {d{loguzan(n DA+ A1) } — Ot o) =
dS dS

(3.19)
Since we define w = |[2an(n — 1)1 + ﬂ]Ql’%, we obtain from the above equation

2

o T Elut o =0. (3.20)

We can prove the following Lemma:

LEMMA 3.2. The positive function @ is bounded if ¢ > 0, or ¢ =0 and B # 0, or
¢ < 0and B> + 4ca’n*(n — 1)> > 0.
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Proof. From (3.4) and (3.20), we get

o B n-2_,
To _ A=t 5e 2o 21
a2 T [C =1 2 } 0 (3:21)

Since @ = |[2an(n — )i + BI*|~#, we have

- 2an(n — 1)

Thus, we have from (3.21) that

_n _n 2
T [—ﬁ(iw ) _-d(tw z_ﬁ)}zo. (3.22)

ds? 8aln(n— 172 8a2n?(n — 1)?
By making use of the following integral formula

" (a + budy apq
pg+m+1 pg+m+1

/ u"(a+ bu?yY du = / W"(a + bulyY~" du,

where all m, p, ¢, a, b are not zero and all m, p, g are rational number, we have

do

(n—2w(+w i —p)
,/ 8aZn?(n — 1)?
o(+oi—-p) [ Bo(twi—p)

= dw. 3.23
8aZn?(n — 1)2 + 8aln(n — 1)? @ (3.23)

Integrating (3.22) and from (3.23), we have

de \? (:I: w1 — ,3)2
(%) ”’2[” 4 (n = 1)? ] -C o9

where C is a constant. Thus, we have

} <C. (3.25)

If the positive function @ is not bounded, that is, lim_, o, @ (s) = 4+00. From (3.25),
we have

+oo<c + ﬁ—z) <C. (3.26)

da?n?(n — 1)2
Since ¢ + = > >0ifc>0;0orc=0and B #0; or c <0 and B2+ dca’n*(n —

nz(n 1)
1)> > 0. We have a contradiction from (3.26). This completes the proof of Lemma 3.2.

Proof of (2) in Main Theorem 1.1. If the sectional curvature of M" is non-negative,
that is, forl;éj, dw <0.

Thus, 4= ‘Tlisa monotomc functlon of s € (—00, 400). Therefore by the similar assertlon
in Wei [11], we have @ (s) must be monotonic when s tends to infinity. From Lemma 3.2,
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we know that the positive function @ (s) is bounded. Since @ (s) is bounded and
monotonic when s tends to infinity, we know that both lim,_, _, @ (s)and lim,_, @ (s)
exist and then we get

dw (s) — lim dw(s) —0

li 3.27
s—lr—noo S s§— 400 dS ( )
From the monotonicity of dzd”s(s), we have dZZS(‘Y) =0 and @ (s) = constant. From

o = |[2an(n — D) + B*|~+ and (3.4), we have A and u are constant, that is, M"
is isoparametric. According to Cartan [1], we know that M” is isometric to the
Riemannin product R' x §""!(a) or R"~' x S'(a) for ¢ =0 and B # 0; or S'(a) x
S"1(/1T=a?) for ¢ = 1; or H'(tanh? p — 1) x S"!(coth? p — 1) or H" !(tanh® p —
1) x S'(coth? p — 1) for ¢ = —1 and B% — 4a*n*(n — 1)* > 0. This completes the proof
of (2) in Main Theorem 1.1.

We can also prove the following Lemmas:

LEMMA 3.3. Let

B n—2,
P(t)y=c— t— t, 3.28
D= -~ 2 (3.28)
an;l = —4a(n_‘19)(n_2). If c+ 40[2"2'3(;71)2 > 0, then P(t) has two distinct real roots ty, t;
an
(@) ift> 1, then t > ty holds if and only if P(t) <0 and t < t, holds if and only if
P(t) > 0.
(@) if t < t, then t < t) holds if and only if P(t) <0 and t > t| holds if and only if
P(t) > 0.
Proof. We have
dP(1) B
= - —(n—2).
dt da(n—1) (n—=2)

it follows that the solution of % =0i1st = — m. Therefore, we know that if
t < ¢ if and only if P(¢) is an increasing function, ¢ > ¢ if and only if P(?) is a decreasing
function and P(¢) obtains its maximum at ¢t = ¢'.

Since P(f) is continuous and ¢+ % >0, we have P({)=c+
WM > 0. Therefore, we know that P(¢) has two distinct real roots #;, ¢, and
<t <t.

() If t > ¢, from the decreasing property of P(¢), we obtain that ¢ > t, holds if and
only if P(t) < P(t;) = 0 and ¢ < 1, holds if and only if P(¢) > P(t;) = 0.

(i) If t < ¢, from the increasing property of P(¢), we obtain that ¢ < ¢, holds if and
only if P(t) < P(t;) = 0and ¢ > t; holds if and only if P(¢) > P(¢;) = 0. This completes
the proof of Lemma 3.3.

From (3.4), we have the squared norm of the second fundamental form of M" is

S(t) = (n— DA2 + u?

2 2
_”_ 2 (n—2)B B
=M o0 e — 12

(3.29)
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Putting 7 = X, we have the following Lemma:

LEMMA 3.4. Let

(n—-2)B B>
dai— 1) T T2 =11’

S(r)y=—r+ (3.30)

andt’ = —% If e+ =iy 7(’1 >0 then
() If't > 1, then t > t, holds if and only if S(t) > S(t;) and t < t; holds if and only
if S(1) < S(t2).
(@) If't < v/, then t < t holds if and only if S(t) > S(t1) and t > t; holds if and only

if S(t) < S(1).
Proof. We have

2 —
ds@ _n , (n-2)p

dt 2 da(n—1)’

(n-2)8

it follows that the solution of dS(’) =0i1st = Therefore, we know that if

T 2an’(n—1)"
> —% if and only if S(t) is an increasing function, ¢’ < —% if and only
if S(7) is a decreasing function and S(¢) obtain its minimum at " = —Z(”Zi.
an’(n—1)

Since ¢ + 422"‘2—111)2 > 0, we have P(1") = ¢+ 5 (=2 ), Thus, we have ¢ <

207 (n=T)
U <t

() If t = ¢, from the increasing property of S(z), we obtain that ¢ > t, holds if and
only if S(¢) > S(¢;) and ¢ < t; holds if and only if S(¢) < S(2,).

(i) If t < ¢, from the decreasing property of S(f), we obtain that ¢ < ¢; holds if
and only if S(¢) > S(¢;) and ¢ > ¢ holds if and only if S(¢) < S(¢#;). This completes the
proof of Lemma 3.4.

Proof of Main Theorem 1.2. Putting t = A, from (3.21), we have

d2

—a toPH=0. (3.31)
(1) If min(S(11), S(1)) < S(f) < max(S(11), S(1»)), then we have S(t;) < S(f) <

S(12) or S(12) < S(1) < S(1).

() If S(71) < S(¢) < S(t2), we consider two cases t > " or t < t”.
Case (i). If t > t’, we also consider two subcases ¢’ > ¢ or " < 1.

Subcase (i). If " > ¢, we have t > . Since S(¢) < S(t,), from Lemma 3.4, Lemma
3.3 and (3.31), we have S(¢) < S(#,) holds if and only if ¢ < t, if and only if P(z) > 0
and if and only if ‘il’? < 0. Thus ‘i,—’*;’ is a monotonic function of s € (—oo, +00).
Therefore, by the similar assertion in Wei [11], we have @ (s) must be monotonic
when s tends to infinity. From Lemma 3.2, we have the positive function @ (s) is
bounded. By the same assertion in the proof of Main Theorem 1.1, we know that
M" is isometric to the Riemannin product R! x S"~!(a) or R"~! x S'(a) for ¢ = 0 and
B #0; or S'(a) x S (/1= a?) for ¢ = 1; or H'(tanh? p — 1) x S"!(coth? p — 1) or
H"'(tanh® p — 1) x S'(coth? p — 1) for ¢ = —1 and B2 — 4a?n*(n — 1)* > 0.
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Subcase (ii). If " < ¢,sincet > t’,wehave " <t <t ort>"r.

If"<t<? from the increasing property of P(t), we have P(¢) > P(¢") > 0. From
(3.31), we have 4 d £Z < 0. This implies that dws(s) is a strictly monotone decreasing
function of s and thus it has at most one zero point for s € (—oo, +00). If =5= dw(s) has no

zero point in (—oo, +00), then z (s) is a monotone function of s in (—oo, +oo) If == dw(v)
has exactly one zero point sy in (—o00, +00), then @ (s) is a monotone function of s 1n
both (—o0, so] and [sg, +00).

On the other hand, from Lemma 3.2, we know that @ (s) is bounded. Since @ (s)
is bounded and monotonic when s tends to infinity, we know that both lim;_, _, @ (s)
and limy_, , o, @ (s) exist and (3.27) holds. This is impossible because d’j(s) is a strictly
monotone decreasing function of s. Therefore, we know that the case t” < ¢t < ¢’ does
not occur and we conclude that ¢ > 7.

Ift > ¢, then > ¢”. Since S(¢) < S(t), from Lemma 3.4, Lemma 3.3 and (3.31),
we have S(7) < S(#;) holds if and only if 7 < #, if and only if P(f) > 0 and if and
only if “Z—f < 0. Thus dd—? is a monotonic function of s € (—oo, +00). By the same
assertion in the proof of Main Theorem 1.1, we know that (1) in Main Theorem 1.2 is
true.

Case (ii). If t < ¢’, we also consider two subcases t” > ' or ¢’ < 1.
Subcase (i). If " > t',sincet < t’,wehavet <t <t"ort<t.

Ifr<t<?, from the decreasing property of P(f), we have P(¢) > P(¢") > 0.
From (3.31), we have < d €2 < 0. This implies that dw(” is a strictly monotone decreasing
function of s and thus it has at most one zero pomt for s € (—o00, +00). By the same
assertion in the proof of Case (i), we know that the case ¥ < ¢ < ¢’ does not occur and
we conclude that 1 < 7.

Ift <7, since t < t” and S(f) > S(¢1), from Lemma 3.4, Lemma 3.3 and (3.31),
we have S(7) > S(¢1) holds if and only if ¢ < ¢, if and only if P(f) <0 and if and
only if ‘ﬁ—\’ﬁ’ > 0. Thus d—”y’ is a monotonic function of s € (—oo, +00). By the same
assertion in the proof of Main Theorem 1.1, we know that (1) in Main Theorem 1.2 is
true.

Subcase (ii). If " <, since t < t’, we have t < ¢'. Since S(¢) > S(t1), from
Lemma 3.4, Lemma 3.3 and (3.31), we have S(¢) > S(ll) holds if and only if <
if and only if P(z) < 0 and if and only if £&F d 2 > (. Thus < 7> is a monotonic function
of s € (—00, +00). By the same assertion in the proof of Main Theorem 1.1, we know
that (1) in Main Theorem 1.2 is true.

(i) If S(t;) < S(r) < S(t1), we also consider two cases t >t or t < t’. By the
same assertion in the proof of (i), we know that (1) in Main Theorem 1.2 is
true.

(2) If S(¢) = max(S(¢1), S(#;)), we consider two cases t > t" or t < ¢”.
Case (i). If t > t’, we also consider two subcases ” > ¢ or " < t'.

Subcase (i). If ¢ > 1, we have t > t'. Since S(¢) > max(S(t;), S(¢2)), we have
S(?) = S(;), from Lemma 3.4, Lemma 3.3 and (3.31), we have S(¢) > S(¢;) holds if
and only if # > t, if and only if P(z) <0 and if and only if d Z > 0. Thus d—av’ is a
monotonic function of s € (—o0, +00). By the same assertlon in the proof of Main
Theorem 1.1, we know that (2) in Main Theorem 1.2 is true.

https://doi.org/10.1017/5S0017089510000480 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089510000480

LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM 647

Subcase (ii). Ift" <t ,sincet> 1", wehavet’ <t <t ort>"1.

If " <t < ¢, from the increasing property of P(¢), we have P(¢) > P(¢") > 0. From
(3.31), we have ‘g;’ < 0. This implies that dws(s) is a strictly monotone decreasing
function of s. By the same assertion in the proof of Case (i) in (1), we know that the
case 1’ < t < ¢ does not occur and we conclude that ¢ > 7.

If ¢ > t then ¢t > ¢”. Since S(#) > S(t;), from Lemma 3.4, Lemma 3.3 and (3.31),
we have 2 d > 0. By the same assertion above, we know that (2) in Main Theorem 1.2
is true.

Case (ii). If t < t”, we also consider two subcases 1’ > 1 or t” < 1.
Subcase (i). If " > ', sincet < t’,wehavet <t <t"ort<t.

If ¥ <t <?, from the decreasing property of P(¢), we have P(f) > P(¢") > 0.
From (3.31), we have ‘;2;*;’ < 0. This implies that dw“) is a strictly monotone decreasing
function of s. By the same assertion in the proof of Case (1) in (1), we know that the
case ' < t < t” does not occur and we conclude that r < 7.

If t <7, since t < ¢’ and S(r) > max(S(t1), S(t,)), we have S(z) > S(¢;), from
Lemma 3.4, Lemma 3.3 and (3.31), we have S(r) > S(¢;) holds if and only if 7 < 1;
if and only if P(#) < 0 and if and only if £F d Z > 0. Thus ‘if’ is a monotonic function
of s € (—o0, +00). By the same assertion in the proof of Main Theorem 1.1, we know

that (2) in Main Theorem 1.2 is true.

Subcase (ii). Ift" < t',sincet < t s we have ¢t < ¢'. Since S(¢) > S(t1), from Lemma
3.4, Lemma 3.3 and (3.31), we have > 0. By the same assertion above, we know
that (2) in Main Theorem 1.2 is true.

(3) If S(¢) < min(S(#1), S(2)), we consider two cases t > t" or ¢t < 1.
Case (i). If t > 1", we also consider two subcases t” >t or t’ < 1.

Subcase (i). If " > ¢, we have t > ¢'. Since S(7) < min(S(¢;), S(z2)), we have
S(1) < S(t2), from Lemma 3.4, Lemma 3.3 and (3.31), we have S(¢) < S(#;) holds if
and only if 7 < #; if and only if P(¢) > 0 and if and only if d Z < 0. Thus ‘il—’zs’ is a
monotonic function of s € (—oo, +00). By the same assert1on 1n the proof of Main

Theorem 1.1, we know that (3) in Main Theorem 1.2 is true.

Subcase (ii). If " < t,sincet > t",wehavet" <t <t ort>"r.

Ift" <t< t from the increasing property of P(¢), we have P(¢) > P(¢’) > 0. From
(3.31), we have ‘72 < 0. By the same assertion in the proof of Case (i) in (1), we know
that the case ¢’ 5 t < ¢ does not occur and we conclude that ¢ > ¢.

Ift > Y, then ¢ > t’. Since S(¢) < S(t,), from Lemma 3.4, Lemma 3.3 and (3.31),
w < 0. By the same assertion above, we also know that (3) in Main Theorem

1.21s true

Case (ii). If t < t’, we also consider two subcases t” > ' ort” < 1.
Subcase (i). If " > ', sincet < t’,wehavet <t <t"ort<t.

If7 <t<?, from the decreasing property of P(t), we have P(f) > P(t") > 0.
From (3.31), we have ¢ ‘77 < 0. By the same assertion in the proof of Case (i)
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in (1), we know that the case ¥ <t < ¢’ does not occur and we conclude that
t<t.

If t <7, since t < ¢’ and S(¢) < min(S(¢#1), S(#2)), we have S(¢z) < S(¢#1), from
Lemmas 3.3 and 3.4 and (3.31), we have S(#) < S(¢#;) holds if and only if ¢ > 7, if

and only if P(¢) > 0 and if and only if ‘J(;T? < 0. Thus il—i’ is a monotonic function of

s € (—o0, +00). By the same assertion in the proof of Main Theorem 1.1, we know
that (3) in Main Theorem 1.2 is true.

Subcase (ii). Ift” < t',sincet < t’,wehavet < 7. Since S(¢) < S(¢1), from Lemma

3.4, Lemma 3.3 and (3.31), we have ‘i,—f? < 0. By the same assertion above, we know
that (3) in Main Theorem 1.2 is true. This completes the proof of Main Theorem 1.2.
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