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ABSTRACT. The orientation of the earth in space changes unpredictably in a rapid and irregular 
manner, in addition to the uniform rotation of the earth. Observations of extra-terrestrial objects 
from the surface of the earth are affected by these variations, and knowledge of these changes is 
required for a variety of geodetic and astrometric purposes as well as being of interest in its own 
right. The orientation of the earth (specified by a three dimensional rotation vector) is measured 
by a variety of techniques; combination of these data sets is complicated by irregular changes in 
the spacing and accuracy of the various time series, and also by the existence of lower dimensional 
measurements of different linear combinations of the rotation vector components. A Kaiman filter 
has been developed at JPL to smooth and predict earth orientation changes for application to 
spacecraft navigation by the NASA Deep Space Network. The filter, which provides estimates 
of the earth orientation changes (and of the excitation of these changes) based on whatever 
measurements are available, has been used for a number of research applications, both in the 
reduction of geodetic and astrometric data, and in research into the geophysical causes of earth 
orientation changes. The JPL Kaiman filter uses stochastic models to account statistically for 
otherwise unpredictable changes in earth orientation; these models make it possible to provide 
reasonable estimates of the error in the smoothed time series, and to automatically vary the 
amount of smoothing according to the accuracy and density of the data. The derivation of the 
stochastic models used by the filter, the implementation of the models into the filter, a statistical 
description of what the filter does, and the results of filtering specific data sets will be discussed. 

1. INTRODUCTION 

The earth does not rotate as a rigid body but undergoes very small variations in rotation (UTl) 
and in the position of the pole (polar motion). There are unpredictable rapid oscillations in 
these quantities which are primarily driven by the exchange of angular momentum between the 
atmosphere and the "solid* earth (the crust and mantle) and by deformations of the "solid* 
earth. Such changes are continuously monitored through observations of extraterrestrial objects 
from the surface of the earth using a variety of space-age techniques. These techniques include 
very long baseline interferometry (VLBI), satellite laser ranging (SLR), and lunar laser ranging 
(LLR). Two techniques, VLBI and SLR, monitor the polar motion on a regular basis with a 
demonstrated accuracy of » 2 mas (milliarcseconds) in each component (one mas « 3.1 cm at 
the surface of the earth), while VLBI and LLR are capable of similar accuracy in measurements 
of UTl. Such measurements are a factor of 5 to 10 times more accurate than those from older 
techniques (such as optical astrometry), and have enabled detection of much smaller motions 
than was previously possible. Regular independent VLBI estimates of the earth orientation are 
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routinely produced by POLARIS/IRIS (Carter and Robertson, 1984) and by the TEMPO project 
of the NASA Deep Space Network at JPL (Eubanks et al. 1982). 

There are several problems which exist in the processing of these earth rotation measure-
ments; 1) there are no deterministic models available to describe the rapid oscillations in the earth 
orientation, 2) the data from the different measurement techniques are of irregular quality and 
have a wide range of formal errors, 3) the data are taken at irregular intervals, and 4) the mea-
surements are sometimes of lower rank. Kaiman filtering and auto-regressive time series analysis 
have been combined in order to address these problems. The Kaiman filter offers a number of 
advantages in filtering and smoothing multiple dimensional time series such as UT1 and polar 
motion. It was designed to provide the NASA Deep Space Network with accurate estimates of 
earth orientation changes during periods of spacecraft navigation. With this filter, it is possi-
ble to produce both predictions and smoothings using raw measurements at irregular times with 
widely varying accuracies. The filter can be used for a variety of applications; 1) interpolation 
and prediction of earth orientation changes for application to spacecraft navigation, 2) intercom-
parision of orientation measurements from different techniques, 3) removal of earth orientation 
effects from estimates of regional and global plate motions, and 4) analysis of the excitations of 
the polar motion for various research purposes. Stochastic models have been derived for the UTl 
and polar motion changes, primarily from analysis of atmospheric angular momentum (AAM) 
data (Eubanks et al. 1985). The derivation of the stochastic model, its implementation into the 
Kaiman filter, a statistical description of the filter, and intercomparisions between various data 
sets using the filter will be discussed. 

2. STOCHASTIC MODELS FOR THE KALMAN FILTER 

The Kaiman filter is designed for sequential estimation when a stochastic model exists and when 
the data contains noise. For general discussions on Kaiman filtering, the reader is referred to the 
references (Bierman; Gelb; Nahi). The geophysical signals are all ared noises" i.e. their power 
spectra decline with increasing frequency. Since the measurement noise is assumed to be white, 
the filter, which attenuates regions of the spectrum where the signal-to-noise ratio is small, is in 
practice a time-variable multi-dimensional low pass filter. 

The input to the filter consists of raw UTl and polar motion measurements, and the 
measurement formal error covariance matrices, after removal of a model of the short period tidal 
variations to the UTl (Yoder, Williams and Parke, 1981). These tidal variations were not directly 
modeled in the filter since they can be adequately modeled theoretically and are at high enough 
frequencies to be partially attenuated by the filter. The Barnes et al. (1983) formulation is used 
in the modeling of the excitations and the earth orientation quantities. The output of the filter 
consists of estimates of UTl and polar motion, estimates of the excitation vector of the earth 
orientation parameters, and estimates of the covariance matrix. 

The power spectra of the excitation functions largely control the design of the filter. In 
filter design, the most important region of the spectrum to model accurately is the region where the 
geophysical signal-to-noise power ratio is near unity, but this is generally difficult to model since 
the signal is obscured by noise. The AAM data provide a means of extrapolating the observed low 
frequency geodetic spectrum to the higher frequencies dominated by geodetic measurement noise. 
The agreement between the raw and smoothed data has been used to establish the adequacy of the 
model and to "fine-tune" the strength of the stochastic forcing. To simplify filter implementation, 
the total stochastic model was chosen to be a sum of simple stochastic processes. 

The polar motion is dominated by the Chandler wobble, the resonant oscillation predicted 
by Euler refined to include the elasticity of the earth. This oscillation involves deviations of about 
200 mas of the rotation axis about the axis of greatest moment of inertia. The observed polar 
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motion is the response of the Chandler wobble resonance to the excitations, denoted by χ ι and 
X2, and is described as follows; 

i(îïïO-.(-.f 4) (™Mt-*)(£) 
where Q is the polar motion quality factor, taken to be 170, and σ is the Chandler wobble 
frequency (2π/433 day" 1 ) , χ ι and X2 are themselves also modeled as stochastic processes, the 
combination of a random walk μ and a seasonal process S. 

The seasonal variations in χι and χ2 are best described by study of long time series of 
polar motion from the International Latitude Service (ILS). Such studies reveal that the annual 
variation is nearly linearly polarized and that the major variation is fortuitously along the X2 axis. 
The X2 excitation component model contains an auto-regressive process which characterizes the 
annual wobble. It was decided to model this variation explicitly by the addition of a second-order 
auto-regressive process, S, which is essentially a resonant oscillator driven by noise. S is described 
by the equation S + αχέ + aa$ = ws, which can be rewritten; 

4) (in:) » 
αχ and α2 are coefficients describing the auto-regressive process where the dissapation 

time is given by ~ and the resonance period is given by 2π(α2 — ^ J - ) - 1 / 2 . The coefficients αχ 
= .002 d a y - 1 and ct^ = 2.9692338 * 10~ 4 d a y - 2 were chosen to give a resonance period of one 
year and a damping time of 1000 days. The white noise, ω s, was chosen to have a power spectral 
density Qs = 4.26 * 10" 4 mas 2 /day 3 . The strength of the white noise function implies a steady 
state seasonal X2 variation of « 42 mas amplitude. 

The model for the two components of polar motion excitation also contains an isotropic 
random walk with equal noise (ωμι and ω μ 3 ) forcing both components and having a white noise 
power spectral density Qß of 246.6 mas 2/day. The full model for the polar motion excitations is 
thus χ ι = μι and χ2 = μ2 + S, where μ» denotes the random walk process on χ,-. 

Figure 1 displays the spectra of the meteorological excitation estimates for χ ι and X2 
along with the spectrum of the random walk model flanked by its 99 percent confidence limits. 
The spectra were derived from pressure term AAM data. In order for the filter to work properly, 
the stochastic model must be appropriate in the region of the spectrum where the signal-to-noise 
ratio lies near unity, which for this case is the region with periods of 20 to 40 days. As a result 
of this spectral analysis, a stochastic model for the two components of excitation to the polar 
motion has been chosen. A more complex model may be implemented in the future whose power 
spectra more closely fit the observed excitation spectra. 

The UT1 filter requires a statistical model to describe the unpredictable high frequency 
UTl fluctuations. Conservation of angular momentum implies that the variation in length of day 
(LOD) is equal, aside from a change of units, to X3, the polar component of AAM (Eubanks et 
al. 1985). The power spectrum of the X3 derived from the AAM wind data is displayed in figure 2 
along with the / ~ 2 power law of the random walk model flanked by its 99 percent confidence limits. 
The strong annual and semiannual peaks visible in the raw data can be removed by subtraction 
of best-fit sinusoids resulting in the seasonally adjusted power spectrum. The seasonally adjusted 
spectrum fits the random walk model very well at virtually all frequencies. The UTl can thus be 
modeled as an integrated random walk described by the following equation; 

d2 I d 
--UT1R = LOD R = u)L 

dt2 LODq dt 

where UT1R is the earth rotation universal time with tides removed, LODR is the variation of 
the length of day with tides removed, LODq = 86400 sec, and ωχ, is a white noise process. The 
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Figure 1. Power Spectra of and Derived from AAM Data (Pressure 
Term) with Superimposed Random Walk Model. 
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Figure 2. Power Spectrum of χ^ Derived from AAM Data (Wind Term) 
with Superimposed Random Walk Model. 
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excitation to the UTl is modeled as a random walk forced by white noise of power spectral density 
Ql = 0.0036 msec 2/day 3. The resulting system of equations is given by; 

d_ 
a t 

( UT1R \ _ (0 - l \ / UTlR \ ( 0 \ 
\LODRr) " \0 OJ \LODRr)

 + \,a; L J (3) 

where LODRr = LODR/LOD0. 

3. KALMAN FILTER FOR UTl AND POLAR MOTION 

Given a linear stochastic model, it is easy to derive the corresponding optimal Kaiman filter. We 
have a model vector process X, expressed by a linear first order stochastic differential equation 
driven by a zero mean white noise vector, ω, with constant coefficient matrices F and G; 

dX _ __ _ 
— = FX + Got 
at 

where 

X = 

X is the state vector where the entries have been previously defined. 
The dynamics of the system described by equations 1-3 are incorporated into the constant 

coefficient matrices F and G given by; 

F = 

f PMX \ ( ° "\ 
PMY 0 

μι ωμι 

μι 
s ω = ωμ7 

0 
s 

UTIR 0 

V LODRr J \U>L J 

/-a/2Q σ 0 r/2Q σ σ 0 0 
° λ 

—σ -a/2Q σ -c/2Q -a/2Q 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 - α 2 

- α χ 0 0 
0 0 0 0 0 0 0 - 1 

V 0 0 0 0 0 0 0 0 / 

i0 
0 0 0 0 0 0 0 \ 

0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

r* 0 0 0 1 0 0 0 0 
Lr — 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 

\0 0 0 0 0 0 0 l) 

A solution for X(t) is: 

X(t) = 4>(t - t0)X(t0) + / </>(t - T)Gu(r)dT 

Jto 
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where X(to) is an initial state, and φ(ί), which is called the transition matrix, can be expressed 
as an exponential series in terms of F and t; 

k=0 

The actual calculation of <j>(t) involves partitioning the F matrix into submatrices and 
then deriving a combination of analytic and computational solutions. The known part or solution 
in the absence of noise is given by the first term on the right hand side of equation 4 , and the 
unknown part is given by the second term. The unknown part, an integral of the white noise, 
describes the unpredictable rapid fluctuations in the earth rotation. 

Now suppose an initial estimate £(t) plus a measurement Z(t) are available. The initial 
estimate %(t) is equal to the quantity we are trying to measure, X{t), corrupted by filter noise 
whose covariance matrix is given by Pt. The measurement Z(t) is equal to the quantity we are 
trying to measure, X(t)} corrupted by measurement noise whose inverse covariance matrix is given 
by Rt. When a new measurement is available, the optimum state estimate consists of the vector 
weighted average of the propagated state and the new measurement: 

* ( 0 + = (Pt'1 + Rt)-1^-1*® + RtZ(t)\ 

The filter is recursive, that is each new estimate is computed from the previous estimates 
plus any new incoming data. Given an initial estimate, X(U)} and a covariance matrix, Ptit the 
filter is used to propagate to the time of the next measurement i t +i. The new estimate and its 
covariance matrix are given by: 

* ( t m ) = 4(*.+i-t.)*(t.)+ 

P«,+ I = ΦΡΙ,Φ* + Γ*" 4(ti+i - r)GQGTiT{ti+l - r)dr (5) 

The process noise matrix Q is given by; 

0 0 0 0 0 0 0 A 
0 0 0 0 0 0 0 0 
0 0 <?μ 0 0 0 0 0 
0 0 0 «μ 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 Qs 0 0 
0 0 0 0 0 0 0 0 

Vo 0 0 0 0 0 0 
QLJ 

The new covariance matrix (equation 5) is given by two terms, the first being due to the 
initial error at time U and the second being due to the effect of unmodeled excitation (process 
noise). The error in orientation grows without new measurements due to both initial errors 
associated with the apriori estimate and unknown perturbations which can't be accounted for 
without new measurements. If the state is known at some initial time, then the additional error 
introduced after d days (for d <C 365 days) without additional measurements is σ = Kdzf2 where 
Κ is 0.52 and 0.13 mas/day 3 / 2 for UTl and polar motion respectively. The UTl error grows four 
times as fast as the polar motion error. In practice, of course, the initial conditions are never 
known exactly, and the total prediction error is approximately the rss of the above error and the 
propagated effect of any initial errors, which grow linearly with time. Although the Kaiman filter 
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Figure 4 . Raw -Smoothed Transfer Function Phase of 
Kaiman Smoother. 
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calculates the measurement errors rigorously, this approximation has proved to be very useful for 
mission planning and error budget calculations. 

The filter uses only data up to and including the time of the estimate. The smoother uses all 
of the data to produce the estimate. The backward filter (which is equivalent to the forward filter 
substituting —Τ for Τ into the equations) and the forward filter produce independent estimates. 
The optimal smoother is a weighted vector average of the estimates of the forward and backward 
filters. 

4. STATISTICAL DESCRIPTION OF THE FILTER 

A set of meteorologically derived excitations for 1984 to 1985 was convolved into the corresponding 
earth orientation changes by numerical integration of equation 1. The resulting data set was then 
treated as if it were a real geodetic data set and was assigned measurement inverse covariance 
matrices (or Rt) from a real geodetic data set. The data were then input into the Kaiman smoother 
and the output excitation estimates were compared with the raw meteorological excitations. The 
transfer function of the filter was computed from the raw and smoothed excitation series as 
described in Eubanks et al. (1985). The gain of this transfer function, shown in figure 3, represents 
the real number that when multiplied by the amplitude of a particular sinusoid in the raw data, 
produces the amplitude of the corresponding sinusoid in the smoothed data. It is evident from 
figure 3 that there is unity gain for components with periods of greater than about 40 days (low 
frequencies), and that the filter effectively blocks out components with periods of less than 5 days 
(high frequencies). The Kaiman filter thus behaves as a low pass filter. Figure 4 displays the 
transfer function (coherence) phase between the raw and smoothed data for both components of 
the excitation. This is the phase in degrees between two corresponding sinusoids in the raw and 
the smoothed data. For periods of less than 5 days, where there is essentially no signal passed by 
the filter, the phase is degraded by quantization error. Note that the phase between the raw and 
smoothed data is less than the one day spacing of the data essentially everywhere. The analysis 
of the filter transfer function of the excitation for the UTl produces similar results. 

5. INTERCOMPARISIONS OF DATA TYPES 

The adequacy of the filter models can be tested from comparison of raw and smoothed geodetic 
data in the time domain. Displayed in figure 5 are both components of polar motion from the raw 
IRIS multi-baseline VLBI, along with the Kaiman smoothed IRIS VLBI polar motion and the 
Kaiman smoothed SLR polar motion, all with respect to BIH Circular D. The smoothings between 
different data sets agree closely demonstrating the ability of the filter to track higher frequency 
variations than the BIH Circular D is sensitive to. Displayed in figure 6 are the raw IRIS multi-
baseline UT1R, the Kaiman smoothed IRIS UT1R (solid line) and the Kaiman smoothed DSN 
VLBI plus LLR UT1R (dotted line), all with respect to BIH Circular D. It is evident from this 
figure that the smoothing of the IRIS data agrees well with the raw IRIS data, and that the 
independent smoothing of the combined DSN VLBI and LLR data sets tracks the variations seen 
by the IRIS VLBI smoothing reasonably well. 

6. CONCLUSION 

A stochastic model for earth rotation has been derived using atmospheric angular momentum 
data, and a Kaiman filter has been developed based on this model. A statistical description of 
the filter has been provided, along with demonstrations of the performance of the filter using data 
from different measurement techniques. 
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Figure 6. UTl Intercomparison of Raw IRIS, Kaiman Smoothed IRIS 
(Solid Line), Kaiman Smoothed DSN VLBI Plus LLR (Dotted Line). 
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D I S C U S S I O N 

Feissel : I would like to make two comments. 
— Some combination algorithms include smoothing of time series as an intermediate step. The character-

istics of the smoothing usually reflect a trade-off between the a priori estimation of the measurement 
noise spectrum and the Earth's rotation noise spectrum. Therefore they influence the noise spectrum 
of the combined solution. To avoid this drawback, the organisation of the combined solution in a series 
of independent normal points at regular time intervals is preferable. Smoothing can then be performed 
if necessary, as post-processing. The normal values provide an appropriate material for scientific inves-
tigations. 

— The key for consistency of the combined series is the monitoring of the reference frames, terrestrial 
and celestial, to which the individual series are referred, and of relative displacements. Indeed, the 
combination algorithm must then also make provisions for the effects of any modelling errors in each of 
the observing techniques. 

M c C a r t h y : 1) We have heard that the importance of Atmospheric Angular Momentum (AAM) in the 
determination of polar motion is not proven. Why do you go to such lengths to incorporate this in your 
solution? 2) What is the weight of the AAM contribution to the combination? 

R e p l y b y M o r a b i t o : 1) The AAM data were used only in the derivation of the stochastic models 
used by the filter. The AAM data provide a means of extrapolating the observed low frequency geodetic 
spectrum to the higher frequencies dominated by geodetic measurement noise. The adequacy of the model 
has been established upon examination of the agreement between the raw and smoothed data. Recent work 
by Eubanks, Steppe and Dickey show that observed rapid polar motions are correlated with atmospheric 
pressure changes. 2) The AAM data are not used as an input data type to the Alter. They were used only 
in the derivation of the stochastic models used by the filter. 

Herr ing: Why is the 2nd order autoregressive process added to * 2 ? 

R e p l y b y M o r a b i t o : Our study of the atmospheric excitation data shows a peak in the spectrum for \2 
at the annual period. Studies of seasonal variations in \ \ and X2 using International Latitude Service data 
reveal that the annual variation is nearly linearly polarized and that the major component lies fortuitously 
along the \2 axis. It was decided to model this variation by the addition of a second order auto-regressive 
process to the model for Χ2· 
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