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THE HYPERCORE OF A SEMIGROUP

by T. E. HALL and W. D. MUNN

(Received 11th May 1984)

In this paper the "hypercore" of a semigroup S is defined to be the subsemigroup
generated by the union of all the subsemigroups of S without non-universal cancellative
congruences, provided that at least one such subsemigroup exists: otherwise it is taken
to be the empty set. It is shown first that if the hypercore of S is nonempty (which
holds, for example, when S contains an idempotent) then it is the largest subsemigroup
of S with no non-universal cancellative congruence, is full and unitary in S, and is
contained in the identity class of every group congruence on S (Theorem 1).

A semigroup S is £-inversive if and only if, for all xeS, there exists yeS such that
[xy)2 = xy. If S is £-inversive [in particular, regular] then the hypercore of S is the
largest E-inversive [regular] subsemigroup of S with no non-universal group congruence
(Theorem 2). Another description of the hypercore in the £-inversive case, this time in
terms of a descending sequence of full unitary subsemigroups, is provided by Theorem 3.
To conclude, there is a discussion of some particular cases.

The concept of the hypercore plays a crucial part in a companion paper, by one of us,
on congruence-free regular semigroups [8].

1. Definitions and properties

The notation and terminology, with few exceptions, will be that of [1]. The set of
idempotents (possibly empty) of a semigroup 5 will be denoted by E(S) and the
subsemigroup of S generated by a nonempty subset A of S will be denoted by <A>. We
say that a subsemigroup T of S is

(i) /u//if and only if £ (S)s 7;
(ii) unitary if and only if

(W e T)(Vx eS) [tx e T=>x e T] and [xt e T=>x e T].

A congruence p on S is termed a group congruence [cancellative congruence'] if and only
if S/p is a group [cancellative semigroup]; further, the p-class containing xeS is written
as xp. It is clear that every group congruence is a cancellative congruence and that the
universal congruence, S x S, is a group congruence on S.

The following result is elementary and well-known.

Lemma 1. Let p be a group congruence on a semigroup S. Then the identity p-class is
a full unitary subsemigroup of S. •
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For a semigroup S, let Sfs denote the set of all subsemigroups A of S such that A has
no cancellative congruence except the universal congruence Ax A. We define the
hypercore of S, denoted by hyp (S), as follows:

0 otherwise.

Note that if £(S)=/=0 then hyp(S)=/=0, since {e}e^s for all eeE(S). On the other hand,
if S is a cancellative semigroup with no identity element then clearly hyp(5) = 0 . An
example of a semigroup S with £(S) = 0 and hyp (S) = S was given by McAlister and
O'Carroll [6, Ex. 1.5].

Theorem 1. Let S be a semigroup with hyp ( 5 ) ^ 0 . Then

(i)
(ii) hyp(S) is full and unitary in S;

(iii) if p is a group congruence on S then each Ae£fs is contained in the identity p-class
and so hyp (S) is contained in the identity p-class.

Proof. For brevity, write ^ = ys and T = hyp(S).
(i) Let p be any cancellative congruence on T. Then, for each e y, p n (A x A) is a

cancellative congruence on A and so p n(A x A) = A x A; that is, Ax Asp. Thus, for
each x e u ^ j . , 4 , xpeE(T/p). But a cancellative semigroup contains at most one
idempotent and so xp = yp for all x,yevAeyA. It follows that tp = up for all t,ueT;
that is, p = Tx T. Hence T e ^

(ii) If ee£(S) then {e}e£f and s o e e i : Thus T is full.
Next, we show that T is unitary. Take any t e T and xeS. Suppose that tx e T. Let

p be a cancellative congruence on <Tu{x}>. Since pn(TxT) is a cancellative
congruence on T, we see from (i) that Tx Tc.p. Thus, in <Tu {x}}/p,

Hence xp = tp, by cancellation. This shows that p is the universal congruence on
< T u {x}>. Consequently, <Tu {x}>£T and so x e T A similar argument shows that if
xteT then xeT. Thus T is unitary.

(iii) Let p be a group congruence on S. Take /4 e ̂  Then, as in the proof of (i),
Ax Asp. Hence A is contained in an idempotent element of S/p; that is, A is contained
in the identity p-class. Thus the same is true for hyp(5) = <u/le^/4>. •

Following Clifford and Preston [1, Section 3.2, Ex. 8], we say that a semigroup S is
E-inversive if and only if for all xeS there exists yeS such that xyeE(S). This property
can be shown to have left-right symmetry: indeed S is £-inversive if and only if for all
xeS there exists zeS such that xzeE(S) and zxeE(S). The class of £-inversive
semigroups is extensive: besides containing all semigroups with a zero it contains the
class of all eventually regular semigroups [2], which, in turn, contains all regular
semigroups and all group-bound semigroups (see [4]).
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Characterisations of the hypercore of an £-inversive (in particular, regular) semigroup,
in terms of group congruences, are provided by Theorems 2 and 3 below.

Lemma 2. Every full unitary subsemigroup of an E-inversive [regular] semigroup is E-
inversive [regular].

Proof. Let 5 be an £-inversive semigroup and T a full unitary subsemigroup of S.
Take xeT. Then there exist yeS and ee£(S) such that xy = e. But eeT, since T is full.
Hence, since T is unitary, yeT. Thus T is .E-inversive. A similar argument gives the
result for the regular case. D

The next lemma was essentially noted by McAlister and O'Carroll [6, p. 13]: we omit
the proof.

Lemma 3. Every cancellative congruence on an E-inversive semigroup is a group
congruence. •

Since every semigroup has a least cancellative congruence it follows at once from
Lemma 3 that an E-inversive semigroup S always possesses a least group congruence.
We denote this congruence by a(S). The identity a(S)-class will be called the core of S
and designated by core(S). By Lemma 1, core(S) is a full unitary subsemigroup of S;
hence, by Lemma 2, core (5) is £-inversive and is regular if S is regular. Note that 5 has
no non-universal group congruence if and only if core (S) = S.

Theorem 2. Let S be an E-inversive [regular] semigroup. Then hyp(S) is the greatest
E-inversive [regular] subsemigroup of S with no non-universal group congruence; that is,
the greatest E-inversive [regular] subsemigroup A of S with core (A) = A.

Proof. By Theorem l(ii), hyp(S) is a full unitary subsemigroup of S. Hence, by
Lemma 2, hyp(S) is £-inversive [regular]. Also, by Theorem l(i), hyp(S) has no non-
universal group congruence. Let T be any £-inversive [regular] subsemigroup of S with
no non-universal group congruence. Then, by Lemma 3, Te£fs. Thus Tshyp(S). •

For an arbitrary semigroup S with E(S) =£ 0 the following two statements are readily
verified: (a) if T is a full unitary subsemigroup of S and if U is a full unitary
subsemigroup of T then U is a full unitary subsemigroup of S, (b) the intersection of
any nonvacuous family of full unitary subsemigroups of S is again a full unitary
subsemigroup of S.

Now suppose again that S is £-inversive [regular]. In view of (a) and (b) above,
together with Lemmas 1 and 2, we can define a family (SJ of full unitary (and therefore
£-inversive [regular]) subsemigroups of S, indexed by the ordinals, inductively by the
rule:

s =s s ={ c o r e( s />) if « = /?+!>
0 ' " \<^p<lxSp if a is a limit ordinal.
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Evidently if yS^a then S^Sa. We call (SJ the core series of S. From cardinality
considerations it can be seen that there exists a unique ordinal T such that

St = SI + 1 = S t + 2 = . . . , S.±Sa+1 if a<r.

The subsemigroup Sz is a full unitary £-inversive [regular] subsemigroup of S with the
additional property that core (St) = Sr. We call Sr the limit of the core series of S.

Our final result relates the hypercore to the core series of S—and provides motivation
for the terminology.

Theorem 3. Let S be an E-inversive semigroup. Then hyp (S) is the limit of the core
series of S.

Proof. Let (SJ be the core series of S, with limit St. As remarked above, St is an E-
inversive subsemigroup of S with core (Sr) = Sr. Hence, by Theorem 2, ST £ hyp (S).

It remains to prove that hyp(S)sSt. First, hyp(S)eS = S0. Assume, inductively, that
hyp (S) £ Sy for all y < a. We show that hyp (S) £ Sa. There are two cases.

Case (i): <x = /?+l for some ordinal /?. By Theorem l(i), hyp(S)e^s. Hence, since
hyp(S)£Sp, we have that hyp (S)£core (Sp), by Theorem l(iii) (with Sp replacing S); that
is, hyp(S)sSa.

Case (ii): a is a limit ordinal. For all /?<<x, hyp(S)sSp. Hence hyp(S)Sn^<aS^ = Sa.

Consequently, by transfinite induction, hyp (S) £ St. •

2. Remarks and examples

Every semigroup S with E(S)=fc0 contains a least full unitary subsemigroup, namely
the intersection of all full unitary subsemigroups of S. We shall denote this by U(S).
From Theorem l(ii), (iii) we see that, for an arbitrary £-inversive semigroup S,

U(S)c hyp (S)s core (S). (1)

If S is a semigroup with a zero or if S is an idempotent-generated regular semigroup
then clearly V(S) = hyp (S) = core (S) = S.

Now consider the case of an inverse semigroup S. By [7, Theorem 1], for all a,beS
we have that

(a,b)ea(S) o (3eeE(S))ea = eb.

Thus core(S) = {aeS:{3eeE(S))ea = e} ( = E(S)a>, in the notation of [5]), from which it
follows that C/(S) = hyp (S) = core (S).

For a regular semigroup, however, the inequalities in (1) may be strict, as will be
demonstrated below. Before proceeding to an example we mention a characterisation,
due to Feigenbaum [3], of the core of such a semigroup. A subsemigroup A of a regular
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semigroup S is termed self-conjugate if and only if, for all aeA, for all xeS and for all
inverses x' of x, x'axeA. The intersection of all the full unitary self-conjugate
subsemigroups of S is itself such a subsemigroup and is just core(S).

Example. Let S denote the Rees matrix semigroup Ji{G\ I, A; P), where G is a group,
/ and A are nonempty sets and P={pxi) is a A x / matrix over G [1, Section 3.1]. We
assume, without loss of generality, that leinA and that P is normalised so that pu

=pn = e, the identity of G, for all iel and all AeA. Let H denote the subgroup of G
generated by {pu:Ae A, iel}. Then, as can readily be verified,

U(S) = J/(H;I,A;P). (2)

For any subgroup K of G with H £ K £ G let HK denote the normal closure of H in K.
From the characterisation of core(S) as the least full unitary self-conjugate subsemi-
group of S it is straightforward to prove that

corQ(S) = Jt{HG\I,A\P). (3)

(Furthermore, S/a(S) s G/HG, as noted by Stoll [9]).
Now define a sequence (iVJ of subgroups of G, indexed by the ordinals, inductively as

follows:

N =G, NJ0 ' " ln.s<!-Nfl if a is a limit ordinal.

Thus if p-^a then Nfi^Na. By considering cardinality we see that there is a unique
ordinal r such that

Nt = Nt+l=Nt + 2=..., Nxj=Nx+l if « < T .

Let (SJ denote the core series of S. Then, using (3), we can easily show, by transfinite
induction, that

In particular, Sz is the limit of the core series and so, by Theorem 3,

l,A;P). (4)

Finally, we mention two (finite) special cases.
(a) Take G to be the alternating group of degree 4, / = A = {1,2} and

/ > = • - e
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where g is an element of G of period 2. Then, from (2), (3) and (4), U(S) = hyp (S) =
core (core (S)) ± core (S).

(b) Replace G in (a) by the alternating group of degree 5 and choose /, A, g, P as
before. Then U(S) =/= hyp (S) = core (S) = S.
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