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ON THE EXISTENCE OF RESTRICTED K-LIMITS 

BY 

URBAN CEGRELL 

ABSTRACT. The purpose of this paper is to generalize the Lindelôf-
Cirka theorem. 

1. Introduction and notation. Denote by B" the unit ball in C" and by H{B") 
(Hx(Bn)) the (bounded) analytic functions on B". 

A continuous curve T: [0, 1] -» B" is called special at £ G dB" if T(r) G B", t G 
[0,1[;T(1) = £ and if 

|T(r) — <r(r) ,€>€l 2 

; 7 > 0» * - » 1. 

i - |<rco,€>l2 

For A > 0 we define an approach region 

DA(Z) = {zeB";\l - ( z , O l < f d " M2)}. 

DEFINITION. A function / defined on Bn is said to have a K-limit at £ G d#" if 
lim {/(z): z G D ^ ) } exists for all A. 

Koranyi [4] showed that if/G HX(B") then/has K-limit for almost all £ G d£'7 (with 
respect to da, the Lebesgue measure on dB"). 

On the other hand, we have the following example: 

EXAMPLE 1. (Cirka [2, p. 631]). Put/(z,o>) = o)2/(l - z2), then/G H™(B") and 
/ (z , 0) = 0 so the radial limit of/at £ = (1,0) equals zero. But/has no K-limit at 1. 
Choose c G ]0,1[ and take T(t) = ( r ,cVl - t2). Then/(r(r)) = c2 and since 
|1 - <r(0,€) | = |1 - t\, 1 - |r(r) |2 = 1 - t2 - c2{\ - t2) we have 

| l - < r ( Q , g ) | = ( 1 - r ) = i 

i - inoi 2 (i - ^ 2 ) d - c 2 ) ~ ( i + o(i -c2) 
so 

r(OGD 2 / ( 1_ t .2 )( i ) , v r e [ o , i [ . 

To avoid this we follow Cirka [2], and introduce restricted approach regions and limits. 
Let A > 0 and g(t) a positive decreasing function with 
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lim g(t) = 0 (*) 

Put 

r 11 - (z,0\ A \z ~ U,0\2 1 
RA ,(£) = \zE B"- ^ - ^ < J, - ^ ^ - < g(\z\) . 

I J _ | z p 2 i - | ( z , O P ^ 
Each set RA (̂C) *s then called a restricted approach region and iff is a function defined 
on B" so that 

l i m { / ( z ) : z 6 f i ^ ) } 

exists for every restricted approach region /^(É;) , then/is said to have a restricted 
K-limit at £. 

The Lindelôf-Cirka theorem [5], [2] now reads as follows. 

THEOREM 1. / / / E H"(Bn) and if\\mf{T(t)) exists for a special curve T(t) with 
t—>\ 

T(l) = £ then f has a restricted K-limit at £. 

(In particular, lim {f(z):z E K} exists where K is any cone in B" with vertex at £). 

We shall generalize this theorem for/E H(DA(%)) in the case where T(0 — /£, i.e., 
we shall assume that/has a radial limit at £. 

Observe that, if n > 2 and if/has a restricted K-limit, then/has a tangential limit 
in certain directions. The curve 

H O - ( f , ( l - f2)2/3), f E [ 0 , 1] 

shows this. 

2. The extremal function. Let ft be a bounded and open subset of C" and put 

F = {cp E PSH(tt); (p < 0, lim <p(z') exists Vz E dft}. 

If F is any subset of ft we define the extremal function /z£ by 

hE(z) = sup {cp(z); cp E F, cp < — 1 on F}, z E ft. 

Denote by AF, z E ft, the class of positive measures |JL on ft such that 

<p(z) < / <p(£) dp,(É),V<p E F. 

LEMMA 1. For every compact set K m ft tfftd every z E ft r/zere w « |x2 E Mz so r/i^/ 

-hK(z) = ^-(K). 

Proof. Proposition 2:1 in Cegrell [1]. 

LEMMA 2. Assume that ft w convex and that [xv E MZv where zv —» £, v —> + oo ^ d 
r/zar £ w fl strictly convex boundary point. Then lim (x„(K) = 0/or every compact 
subset of ft not containing £. 

Proof. The assumption implies that there is a convex function i|/ on ft, continuous 
up to the boundary such that i|i(£) = 0 but \\t(z) < Oforz E ft \ {£}. Since convex 
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functions are plurisubharmonic, the inequalities i|)(z„) ^ / I(J(£) djx^^), vGiV proves 
Lemma 2. 

3. The case /! = 1. If ft is an open and bounded subset of the plane, then the 
extremal function hE (E C ft) is harmonic on ft \ E. 

PROPOSITION 1. Let ft be an open, bounded, convex and symmetric subset of the 
plane and let I denote the segment of symmetry. IfE is the part ofdtl that lies on one 
given side of I then hE\{ = —\. 

If K is any closed cone in ft with vertex £ E / Pi 6ft such that K \ {£} n #(£, r) 
C ft for some r > 0 then there is an e > 0 so that 

K H 5(£,e) C { z G ft; h,(z) < - e } . 

(#(£, e) is the ball with center £ and radius e.) 

Proof. The first part follows easily from the symmetry and the second part is proved 
by repeated use of symmetry. 

PROPOSITION 2. Let K be a closed convex cone with vertex £ and I a line segment in 

K° with endpoint £. IffEH°°(K0 H B(^r))for some r > 0 and if Mm {f(z):z E /} 
exists then lim {f(z) : z G K ' } exists for every closed cone K' m K° U {£} vv/r/z vertex 

Proof. (By a wellknown method). We can assume that | / | < 1 and that lim {f(z) : 
z E /} = 0. Let K' be given and choose e > 0 as in Proposition 1. For z E K''fl 5(Ç, e) 
there is a |JU E MZ with |xz(/) > e. If we let z tend to £ in K' we get by Lemma 2 
/ log | / (T I ) | d|xz(Ti) -* -oo, z -> £. But since log | / (z ) | < / log | / ( T ] ) | d|xz (TJ) SO 

lim {/(z):z E K'} = 0 which completes the proof. 

EXAMPLE 2. Proposition 2 cannot be generalized to bounded harmonic functions. Let 
E be the part of the unit circle in the lower halfplane. Then hE = — \ on the real axes 
(by the observation in the beginning of this section). The restriction of hE to segment 
of y = x — 1 in B ' does not exceed — f. Thus hE has a radial but not non-tangential limit. 

As pointed out by J. C. Taylor, the next lemma is a consequence of Harnack's 
inequality. 

LEMMA 3. Let h be a positive harmonic function on DA{%) = {z G 5 1 ; |£ — z\ < 
(A/2)( l - |z|2)}(£ E dB]). If sup h(rQ < +°°then sup h(z) < + oo far every 
A> <A. °<r<l 2 £ D ^ 

4. Statement of the theorems. 

THEOREM 2. Lef A > 0 and g w///z property (*) be given. Assume that 
(l)fEH(DA(Z)) 

( I l - 0)1 4 ] 
(2) sup |/(<o£)| :co E £ \ — < - < + « > 

L 1 — | co | L) 

(3) l/l /zas a plurisuperharmonic majorant I|J swc/i f to 
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r 11 - col A ] 
lim i|i((o^)g(|o)|)1/2:a) G Z?1, — < - = 0. 
0,-1 I 1 - |co|2 2 J 

7/lim/(r£) emfa, f/z£AZ lim {/(z) :z G /^ \ ( J exists for every A' < A. 

REMARK. Related results have been obtained by Cima and Krantz in [3]. However, 
our results also apply to non-normal functions, e.g. 

i\{\ - z , ) - ' log (1/1 - z , ) . 

COROLLARY 1. Assume thatfE H\B") (i.e., \f\ has a harmonic majorant). Then 
lim/(/•£) = / * ( £ ) eJtitfs a.e. (da) on dB" andf* G L1 (da). / / 

sup / ' ( r in ) | /* (Ti ) |da (Ti )< + °° 
0<r<! J 

where 

(1 - |z|2)" 
P(Z,T\) 

;i - < z , - n » l 2 " 

awe/ if lim f(rè,) exists, then f has a restricted K-limit at £. 
r—*\ 

Proof. It follows from Koranyi [4] and Rudin [6, Theorem 5.4.12] that | / | is 
bounded in every DA(^). Thus, Theorem 2 applies. 

THEOREM 3. Assume that 
(\)fEH(DA(0) 

|1 ~ w| A 
(2) sup |/(coÇ)| : co G S \ — < - < + « > 

L 1 — I co I Z J 

(3) l/l /ztfs a plurisuperharmonic majorant \\f such that 

lim {g(f + W ~ l))1/2v|i(^) : t G U} = 0 

for some 0 < Ô < 1. 
/ / l im/ ( r^ ) £.mto f/zen lim {/(z) :z G / ^ \ J exists for every A' < A. 

COROLLORY 2. Assume that f G H(DA(^)) and that \f\ has a plurisuperharmonic 
majorant i|/ on DA(£,) such that 

sup i)i(Çr) < +oo. 
0<r<l 

/ / l im / ( r^ ) exists, then lim {/(z) :z G / ^ J exists for every A' < A. 
r—>\ z—»£ 

Proof. Assumptions (1) and (3) in Theorem 3 are clearly fulfilled. It remains to prove 
that (2) holds. Denote by U the part of the complex line through zero and £ that is 
contained in D^(^). The restriction of \\f to U is superharmonic (and not identically 
+ oo). Hence, there is a harmonic function h on U so that 

| / ( z ) | < h(z) < I|I(Z), Vz G (7. 

An application of Lemma 3 gives (2). 
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5. Proof of Theorem 2. Let 0 < A' < A and a sequence zv G RA',g, lim zv = % 

be given. To prove the theorem it is enough to prove that lim /(z„) = Hm/(rO-

Consider for X G C, (1 — X.) (z„,0£ + Xzp. This point is in DA(%) if and only if 

|1 -<2V,Ç)| < ^ d - I d - X X z ^ + Xz,!2) 

» |<z„ £>£ + X(z„ - (zw, OOP < 1 - 111 - (zv, 01 

» |(zv,OP + |X|2k - <z„,Ê>Ê|2 < 1 - | | 1 - (z„Ol 

- | | 1 - ( z „ 0 | - | ( z „ 0 | 2 + 1 
» |x|2 < • . 

|z„ - (z„,0£r 
But since z„ G RA g we have 

|1 - < Z „ , Ç ) | < y ( l - | ( z „ 0 P ) 

so the right hand side above is not smaller than 

A[_ 
' A (i - \(z,M) - K ê>P +i (i - j ) d - K^oi2 

|zw-<zv,€>g|2 

which in turn are not smaller than 

again because z„ G /?^\#(0-
Hence, if 

it follows that 

T(X) = 

SO/(T(X)) is analytic in 

(> 

|x|2< 

: ( i -

W 2 < 

and Cauchy's integral formula gives 

/ Y T H V * - f(v(C\\ Ï = -L 

_ A 
A 

( ' -

Wz, 

( ' " 

- f 

- V -; * d 

A) 

, k ) k -

] 
z,|) 

|_ 

«(|z, 

f Xz, 

1_ 

'*(!*, 

k 

s 
, £ £ ) 

J) 

- < * , 

'*(€) 

, € ) € l 2 

/ ( T ( X ) ) 
HX 

w-K'-^'rtlb)] x<x - D 
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Hence 

1 f |/(T(M)| 
l / W - / « - ^ ) N ^ f „ , . Jw=[o-*)-«ft] NI* - «I 

(0 

41 
A / g( |z, |) J 

The right hand side of (/) equals 

g(\zv\y
,2mzv,oo 

4 - x 1/2 

1 - ^ ) - S ( k l ) " 2 

-» 0 , v —» +Qo. 

by assumption 3. Thus, 

f(zv) - / «z„ ,Ç>Ç) ->0 , v ^ +oo. 

Now, by assumption 2, we can apply Proposition 2 and we have that lim f((zv, £)£) 

exists and equals lim/(r£). Thus, lim /(z„) = lim/(r£) and the proof is complete. 

6. Proof of theorem 3. Let 1 < A' < A be given and choose A", A' < A" < A and 
let K, and K2 be two cones with vertex at 1, symmetrical with respect to the real axis 
and so that 

[co E C; |1 - co| < y (1 - |co|2)] C K, 

^ K2 C [co E C; |1 - co| < y ( l - |co|2)]. 

From now on, we think of z E B" to be close to £. For z E RA g denote by t2 the 
non-negative number such that (z, Ç) — Jz _L dK2. Consider, for TJ E C, 

L(in) = z + (T, + f2- <z,Ç»t 

There is a real number K > 1 (K independent of z) so that if |T]| < K|(z, £) — fz| 
then T| + rz E K2 and a calculation shows that then L(r\) E T̂ -<<J? for every fixed A"\ 
A" < A'" < A. 

Let now P be the Poisson kernel for some smooth simply connected domain D C 
{T] E C; |T]| < K|(z,£) - fz|} containing (z, Ç) - rz and zero. Then 

| / ( L « z , Ç ) - t ) - / ( a « z , Ç ) - a € > 0 | 

< f | / (L(Ti))- /«L(Ti) ,Ç)Ç)|P«z,0-t , î l )dcj(7i) 
JdD 

< (Harnack's inequality) 

< C f | / ( L ( T O ) - / ( ( L ( T I ) , C)?) P(0, TI) da (il) < (i) 
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<Ma(T)),£>£)P(0,Tl) 

1 - • l 

-dcj(Ti) 

1 
A ' g(\L(T\)\V 

^C-CsupgdLCT])!)"2 f i|i«L(in),OOP(0,T1)da(T,) 
dD JdD 

<C-C^uVg(\L{^)\)V2ty{{L{Q),ï,)i) 

= C-C, supgdL^)!)" 2^^) . 
dD 

The constant C (that comes from the Harnack inequality) depends on the shape of D, 
and not on the scale. We can thus take 3D to be an ellipse with focus 0 and (z, £) -
tz so that 

\i\ 4- tz\ ^ tz + h{tz - 1), VT] E dD. 

We find that 

\f(z) -f((z^)0\ = \f(L((z,0 - tz) -/(L(«z,£> - 0 ,0 )1 

< c-ga + 8a - D)m^(tzo -> 0, z-> ç, 
and the proof is now finished in the same way as the end of the proof of Theorem 2. 
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