ON THE EXISTENCE OF RESTRICTED K-LIMITS

BY
URBAN CEGRELL

> AbSTRACT. The purpose of this paper is to generalize the LindelofČirka theorem.

1. Introduction and notation. Denote by B^{n} the unit ball in \mathbb{C}^{n} and by $H\left(B^{n}\right)$ ($H^{\infty}\left(B^{n}\right)$) the (bounded) analytic functions on B^{n}.

A continuous curve $\Gamma:[0,1] \rightarrow \overline{B^{n}}$ is called special at $\xi \in \partial B^{n}$ if $\Gamma(t) \in B^{n}, t \in$ $[0,1[; \Gamma(1)=\xi$ and if

$$
\frac{|\Gamma(t)-\langle\Gamma(t), \xi\rangle \xi|^{2}}{1-|\langle\Gamma(t), \xi\rangle|^{2}} \rightarrow 0, \quad t \rightarrow 1
$$

For $A>0$ we define an approach region

$$
D_{A}(\xi)=\left\{z \in B^{n} ;|1-\langle z, \xi\rangle|<\frac{A}{2}\left(1-|z|^{2}\right)\right\} .
$$

Definition. A function f defined on B^{n} is said to have a K-limit at $\xi \in \partial B^{n}$ if $\lim _{z \rightarrow \xi}\left\{f(z): z \in D_{A}(\xi)\right\}$ exists for all A.

Koranyi [4] showed that if $f \in H^{\infty}\left(B^{\prime \prime}\right)$ then f has K-limit for almost all $\xi \in \partial B^{n}$ (with respect to $\mathrm{d} \sigma$, the Lebesgue measure on ∂B^{n}).
On the other hand, we have the following example:
Example 1. (Čirka [2, p. 631]). Put $f(z, \omega)=\omega^{2} /\left(1-z^{2}\right)$, then $f \in H^{\infty}\left(B^{\prime \prime}\right)$ and $f(z, 0)=0$ so the radial limit of f at $\xi=(1,0)$ equals zero. But f has no K-limit at 1 . Choose $c \in] 0,1\left[\right.$ and take $\Gamma(t)=\left(t, c \sqrt{1-t^{2}}\right)$. Then $f(\Gamma(t))=c^{2}$ and since $|1-\langle\Gamma(t), \xi\rangle|=|1-t|, 1-|\Gamma(t)|^{2}=1-t^{2}-c^{2}\left(1-t^{2}\right)$ we have

$$
\frac{|1-\langle\Gamma(t), \xi\rangle|}{1-|\Gamma(t)|^{2}}=\frac{(1-t)}{\left(1-t^{2}\right)\left(1-c^{2}\right)}=\frac{1}{(1+t)\left(1-c^{2}\right)}
$$

so

$$
\Gamma(t) \in D_{2 /\left(1-c^{2}\right)}(1), \quad \forall t \in[0,1[.
$$

To avoid this we follow Čirka [2], and introduce restricted approach regions and limits.
Let $A>0$ and $g(t)$ a positive decreasing function with

$$
\begin{equation*}
\lim _{t \rightarrow 1} g(t)=0 \tag{*}
\end{equation*}
$$

Put

$$
R_{A, g}(\xi)=\left\{z \in B^{n} ; \frac{|1-\langle z, \xi\rangle|}{1-|z|^{2}}<\frac{A}{2}, \frac{|z-\langle z, \xi\rangle|^{2}}{1-|\langle z, \xi\rangle|^{2}}<g(|z|)\right\} .
$$

Each set $R_{A, g}(\xi)$ is then called a restricted approach region and if f is a function defined on B^{n} so that

$$
\lim _{z \rightarrow \xi}\left\{f(z): z \in R_{A, g}(\xi)\right\}
$$

exists for every restricted approach region $R_{A, g}(\xi)$, then f is said to have a restricted K -limit at ξ.

The Lindelöf-Čirka theorem [5], [2] now reads as follows.
Theorem 1. If $f \in H^{\infty}\left(B^{n}\right)$ and if $\lim _{t \rightarrow 1} f(\Gamma(t))$ exists for a special curve $\Gamma(t)$ with $\Gamma(1)=\xi$ then f has a restricted K-limit at ξ.
(In particular, $\lim _{z \rightarrow \xi}\{f(z): z \in \mathrm{~K}\}$ exists where K is any cone in B^{n} with vertex at ξ).
We shall generalize this theorem for $f \in H\left(D_{A}(\xi)\right)$ in the case where $\Gamma(t)=t \xi$, i.e., we shall assume that f has a radial limit at ξ.

Observe that, if $n \geq 2$ and if f has a restricted K-limit, then f has a tangential limit in certain directions. The curve

$$
\Gamma(t)=\left(t,\left(1-t^{2}\right)^{2 / 3}\right), \quad t \in[0,1]
$$

shows this.
2. The extremal function. Let Ω be a bounded and open subset of \mathbb{C}^{n} and put

$$
F=\left\{\varphi \in \operatorname{PSH}(\Omega) ; \varphi \leq 0, \lim _{z^{\prime} \rightarrow z} \varphi\left(z^{\prime}\right) \text { exists } \forall z \in \partial \Omega\right\} .
$$

If E is any subset of $\bar{\Omega}$ we define the extremal function h_{E} by

$$
h_{E}(z)=\sup \{\varphi(z) ; \varphi \in F, \varphi \leq-1 \text { on } E\}, \quad z \in \bar{\Omega} .
$$

Denote by $M_{z}, z \in \bar{\Omega}$, the class of positive measures μ on $\bar{\Omega}$ such that

$$
\varphi(z) \leq \int \varphi(\xi) \mathrm{d} \mu(\xi), \forall \varphi \in F
$$

Lemma 1. For every compact set K in $\bar{\Omega}$ and every $z \in \bar{\Omega}$ there is a $\mu_{z} \in M_{z}$ so that

$$
-h_{\mathrm{K}}(z)=\mu_{z}(\mathrm{~K}) .
$$

Proof. Proposition 2:1 in Cegrell [1].
Lemma 2. Assume that Ω is convex and that $\mu_{v} \in M_{z_{v}}$ where $z_{v} \rightarrow \xi, v \rightarrow+\infty$ and that ξ is a strictly convex boundary point. Then $\lim _{v \rightarrow+\infty} \mu_{\nu}(\mathrm{K})=0$ for every compact subset of $\bar{\Omega}$ not containing ξ.

Proof. The assumption implies that there is a convex function ψ on Ω, continuous up to the boundary such that $\psi(\xi)=0$ but $\psi(z)<0$ for $z \in \bar{\Omega} \backslash\{\xi\}$. Since convex
functions are plurisubharmonic, the inequalities $\psi\left(z_{\nu}\right) \leq \int \psi(\xi) \mathrm{d} \mu_{\nu}(\xi), \nu \in N$ proves Lemma 2.
3. The case $\boldsymbol{n}=1$. If Ω is an open and bounded subset of the plane, then the extremal function $h_{E}(E \subset \bar{\Omega})$ is harmonic on $\Omega \backslash \bar{E}$.

Proposition 1. Let Ω be an open, bounded, convex and symmetric subset of the plane and let l denote the segment of symmetry. If E is the part of $\partial \Omega$ that lies on one given side of l then $\left.h_{E}\right|_{l}=-\frac{1}{2}$.

If K is any closed cone in Ω with vertex $\xi \in l \cap \partial \Omega$ such that $\mathrm{K} \backslash\{\xi\} \cap B(\xi, r)$ $\subset \Omega$ for some $r>0$ then there is an $\epsilon>0$ so that

$$
\mathrm{K} \cap B(\xi, \epsilon) \subset\left\{z \in \bar{\Omega} ; h_{l}(z) \leq-\epsilon\right\}
$$

($B(\xi, \epsilon)$ is the ball with center ξ and radius ϵ.)
Proof. The first part follows easily from the symmetry and the second part is proved by repeated use of symmetry.

Proposition 2. Let K be a closed convex cone with vertex ξ and l a line segment in K^{0} with endpoint ξ. If $f \in H^{\infty}\left(\mathrm{K}^{0} \cap B(\xi, r)\right)$ for some $r>0$ and if $\lim _{z \rightarrow \xi}\{f(z): z \in l\}$ exists then $\lim _{z \rightarrow \xi}\left\{f(z): z \in \mathrm{~K}^{\prime}\right\}$ exists for every closed cone K^{\prime} in $\mathrm{K}^{0} \cup\{\xi\}$ with vertex at ξ.

Proof. (By a wellknown method). We can assume that $|f| \leq 1$ and that $\lim \{f(z)$: $z \in l\}=0$. Let K^{\prime} be given and choose $\epsilon>0$ as in Proposition 1. For $z \in \mathrm{~K}^{, z \vec{n}^{\xi}} B(\xi, \epsilon)$ there is a $\mu_{z} \in M_{z}$ with $\mu_{z}(l) \geq \epsilon$. If we let z tend to ξ in K^{\prime} we get by Lemma 2 $\int \log |f(\eta)| \mathrm{d} \mu_{z}(\eta) \rightarrow-\infty, z \rightarrow \xi$. But since $\log |f(z)| \leq \int \log |f(\eta)| \mathrm{d} \mu_{z}(\eta)$ so $\lim _{z \rightarrow \xi}\left\{f(z): z \in \mathrm{~K}^{\prime}\right\}=0$ which completes the proof.

Example 2. Proposition 2 cannot be generalized to bounded harmonic functions. Let E be the part of the unit circle in the lower halfplane. Then $h_{E}=-\frac{1}{2}$ on the real axes (by the observation in the beginning of this section). The restriction of h_{E} to segment of $y=x-1$ in B^{\prime} does not exceed $-\frac{3}{4}$. Thus h_{E} has a radial but not non-tangential limit.

As pointed out by J. C. Taylor, the next lemma is a consequence of Harnack's inequality.

Lemma 3. Let h be a positive harmonic function on $D_{A}(\xi)=\left\{z \in B^{1} ;|\xi-z|<\right.$ $\left.(A / 2)\left(1-|z|^{2}\right)\right\}\left(\xi \in \partial B^{\prime}\right)$. If $\sup _{0<r<1} h(r \xi)<+\infty$ then $\sup _{z \in D_{A^{\prime}}(\xi)} h(z)<+\infty$ for every $A^{\prime}<A$.
4. Statement of the theorems.

Theorem 2. Let $A>0$ and g with property $\left({ }^{*}\right)$ be given. Assume that
(1) $f \in H\left(D_{A}(\xi)\right)$
(2) $\sup \left\{|f(\omega \xi)|: \omega \in B^{1}, \frac{|1-\omega|}{1-|\omega|^{2}}<\frac{A}{2}\right\}<+\infty$
(3) $|f|$ has a plurisuperharmonic majorant ψ such that

$$
\lim _{\omega \rightarrow 1}\left\{\psi(\omega \xi) g(|\omega|)^{1 / 2}: \omega \in B^{\prime}, \frac{|1-\omega|}{1-|\omega|^{2}}<\frac{A}{2}\right\}=0
$$

If $\lim _{r \rightarrow 1} f(r \xi)$ exists, then $\lim _{z \rightarrow \xi}\left\{f(z): z \in R_{A^{\prime}, g}\right\}$ exists for every $A^{\prime}<A$.
Remark. Related results have been obtained by Cima and Krantz in [3]. However, our results also apply to non-normal functions, e.g.

$$
z_{2}^{2}\left(1-z_{1}\right)^{-1} \log \left(1 / 1-z_{1}\right) .
$$

Corollary 1. Assume that $f \in H^{1}\left(B^{\prime \prime}\right)$ (i.e., $|f|$ has a harmonic majorant). Then $\lim _{r \rightarrow 1} f(r \xi)=f^{*}(\xi)$ exists a.e. $(\mathrm{d} \sigma)$ on ∂B^{n} and $f^{*} \in L^{1}(\mathrm{~d} \sigma)$. If

$$
\sup _{0<r<1} \int P(r \xi, \eta)\left|f^{*}(\eta)\right| \mathrm{d} \sigma(\eta)<+\infty
$$

where

$$
P(z, \eta)=\frac{\left(1-|z|^{2}\right)^{n}}{|(1-\langle z, \eta\rangle)|^{2 n}}
$$

and if $\lim _{r \rightarrow 1} f(r \xi)$ exists, then f has a restricted K-limit at ξ.
Proof. It follows from Koranyi [4] and Rudin [6, Theorem 5.4.12] that $|f|$ is bounded in every $D_{A}(\xi)$. Thus, Theorem 2 applies.

Theorem 3. Assume that
(1) $f \in H\left(D_{A}(\xi)\right)$
(2) $\sup \left\{|f(\omega \xi)|: \omega \in B^{\prime}, \frac{|1-\omega|}{1-|\omega|^{2}}<\frac{A}{2}\right\}<+\infty$
(3) $|f|$ has a plurisuperharmonic majorant ψ such that

$$
\lim _{t \rightarrow 1}\left\{g(t+\delta(t-1))^{1 / 2} \psi(t \xi): t \in \mathbb{R}\right\}=0
$$

for some $0<\delta \leq 1$.
If $\lim _{r \rightarrow 1} f(r \xi)$ exists then $\lim _{z \rightarrow \xi}\left\{f(z): z \in R_{A^{\prime}, g}\right\}$ exists for every $A^{\prime}<A$.
Corollory 2. Assume that $f \in H\left(D_{A}(\xi)\right)$ and that $|f|$ has a plurisuperharmonic majorant ψ on $D_{A}(\xi)$ such that

$$
\sup _{0<r<1} \psi(\xi r)<+\infty .
$$

If $\lim _{r \rightarrow 1} f(r \xi)$ exists, then $\lim _{z \rightarrow \xi}\left\{f(z): z \in R_{A^{\prime}, g}\right\}$ exists for every $A^{\prime}<A$.
Proof. Assumptions (1) and (3) in Theorem 3 are clearly fulfilled. It remains to prove that (2) holds. Denote by U the part of the complex line through zero and ξ that is contained in $D_{A}(\xi)$. The restriction of ψ to U is superharmonic (and not identically $+\infty)$. Hence, there is a harmonic function h on U so that

$$
|f(z)| \leq h(z) \leq \psi(z), \quad \forall z \in U
$$

An application of Lemma 3 gives (2).
5. Proof of Theorem 2. Let $0<A^{\prime}<A$ and a sequence $z_{\nu} \in R_{A^{\prime}, g}, \lim _{v \rightarrow+\infty} z_{v}=\xi$ be given. To prove the theorem it is enough to prove that $\lim _{v \rightarrow+\infty} f\left(z_{v}\right)=\lim _{r \rightarrow 1} f(r \xi)$. Consider for $\lambda \in \mathbb{C},(1-\lambda)\left\langle z_{v}, \xi\right) \xi+\lambda z_{\nu}$. This point is in $D_{A}(\xi)$ if and only if

$$
\begin{gathered}
\left|1-\left\langle z_{\nu}, \xi\right\rangle\right|<\frac{A}{2}\left(1-\left|(1-\lambda)\left\langle z_{\nu}, \xi\right\rangle \xi+\lambda z_{\nu}\right|^{2}\right) \\
\Leftrightarrow\left|\left\langle z_{\nu}, \xi\right\rangle \xi+\lambda\left(z_{\nu}-\left\langle z_{\nu}, \xi\right\rangle \xi\right)\right|^{2}<1-\frac{2}{A}\left|1-\left\langle z_{\nu}, \xi\right\rangle\right| \\
\Leftrightarrow\left|\left\langle z_{\nu}, \xi\right\rangle\right|^{2}+|\lambda|^{2}\left|z_{\nu}-\left\langle z_{\nu}, \xi\right\rangle \xi\right|^{2}<1-\frac{2}{A}\left|1-\left\langle z_{v}, \xi\right\rangle\right| \\
\Leftrightarrow|\lambda|^{2}<\frac{-\frac{2}{A}\left|1-\left\langle z_{\nu}, \xi\right\rangle\right|-\left|\left\langle z_{\nu}, \xi\right\rangle\right|^{2}+1}{\left|z_{v}-\left\langle z_{\nu}, \xi\right\rangle \xi\right|^{2}} .
\end{gathered}
$$

But since $z_{v} \in R_{A^{\prime}, g}$ we have

$$
\left|1-\left\langle z_{v}, \xi\right\rangle\right|<\frac{A^{\prime}}{2}\left(1-\left|\left\langle z_{v}, \xi\right\rangle\right|^{2}\right)
$$

so the right hand side above is not smaller than

$$
\frac{-\frac{A^{\prime}}{A}\left(1-\left|\left\langle z_{v}, \xi\right\rangle\right|^{2}\right)-\left|\left\langle z_{v}, \xi\right\rangle\right|^{2}+1}{\left|z_{v}-\left\langle z_{v}, \xi\right\rangle \xi\right|^{2}}=\frac{\left(i-\frac{A^{\prime}}{A}\right)\left(1-\left|\left\langle z_{v}, \xi\right\rangle\right|^{2}\right)}{\left|z_{v}-\left\langle z_{v}, \xi\right\rangle \xi\right|^{2}}
$$

which in turn are not smaller than

$$
\left(1-\frac{A^{\prime}}{A}\right) \cdot \frac{1}{g\left(\left|z_{v}\right|\right)}
$$

again because $z_{\nu} \in R_{A^{\prime}, g}(\xi)$.
Hence, if

$$
|\lambda|^{2} \leq\left(1-\frac{A^{\prime}}{A}\right) \cdot \frac{1}{g\left(\left|z_{\nu}\right|\right)}
$$

it follows that

$$
\tau(\lambda)=(1-\lambda)\left(z_{v}, \xi\right) \xi+\lambda z_{v} \in D_{A}(\xi)
$$

so $f(\tau(\lambda))$ is analytic in

$$
|\lambda|^{2}<\left(1-\frac{A^{\prime}}{A}\right) \cdot \frac{1}{g\left(\left|z_{v}\right|\right)}
$$

and Cauchy's integral formula gives

$$
\left.f(\tau(1))-f(\tau(0))=\frac{1}{2 \pi i} \int_{|\lambda|=\left[\left(1-\frac{A^{\prime}}{A}\right) \cdot \frac{1}{g\left|\tau_{v}\right|}\right]}\right]^{1 / 2} \frac{f(\tau(\lambda))}{\lambda(\lambda-1)} \mathrm{d} \lambda .
$$

Hence

$$
\left|f\left(z_{\nu}\right)-f\left(\left\langle z_{v}, \xi\right\rangle \xi\right)\right| \leq \frac{1}{2 \pi} \int_{|\lambda|=\left[\left(1-\frac{A^{\prime}}{A}\right) \cdot \frac{1}{g\left(\mid z_{v}\right]}\right]} \frac{|f(\tau(\lambda))|}{|\lambda||\lambda-1|}
$$

(i)

$$
\leq \frac{\psi\left(\left\langle z_{v}, \xi\right\rangle \xi\right)}{\left|\left[\left(1-\frac{A^{\prime}}{A}\right) \frac{1}{g\left(\left|z_{v}\right|\right)}\right]^{1 / 2}-1\right|}
$$

The right hand side of (i) equals

$$
\frac{g\left(\left|z_{v}\right|\right)^{1 / 2} \psi\left(\left\langle z_{v}, \xi\right\rangle \xi\right)}{\left(1-\frac{A^{\prime}}{A}\right)^{1 / 2}-g\left(\left|z_{v}\right|\right)^{1 / 2}} \rightarrow 0, \quad v \rightarrow+\infty .
$$

by assumption 3 . Thus,

$$
f\left(z_{\nu}\right)-f\left(\left\langle z_{v}, \xi\right\rangle \xi\right) \rightarrow 0, \quad v \rightarrow+\infty .
$$

Now, by assumption 2, we can apply Proposition 2 and we have that $\lim _{v \rightarrow+\infty} f\left(\left\langle z_{v}, \xi\right\rangle \xi\right)$ exists and equals $\lim _{r \rightarrow 1} f(r \xi)$. Thus, $\lim _{v \rightarrow+\infty} f\left(z_{\nu}\right)=\lim _{r \rightarrow 1} f(r \xi)$ and the proof is complete.
6. Proof of theorem 3. Let $1<A^{\prime}<A$ be given and choose $A^{\prime \prime}, A^{\prime}<A^{\prime \prime}<A$ and let K_{1} and K_{2} be two cones with vertex at 1 , symmetrical with respect to the real axis and so that

$$
\begin{aligned}
&\left\{\omega \in \mathbb{C} ;|1-\omega|<\frac{A^{\prime}}{2}\left(1-|\omega|^{2}\right)\right\} \subset \mathrm{K}_{1} \\
& \subset \\
& \not \neq \mathrm{K}_{2} \subset\left\{\omega \in \mathbb{C} ;|1-\omega|<\frac{A^{\prime \prime}}{2}\left(1-|\omega|^{2}\right)\right\} .
\end{aligned}
$$

From now on, we think of $z \in B^{n}$ to be close to ξ. For $z \in R_{A^{\prime}, g}$ denote by t_{2} the non-negative number such that $\langle z, \xi\rangle-t_{z} \perp \partial \mathrm{~K}_{2}$. Consider, for $\eta \in \mathbb{C}$,

$$
L(\eta)=z+\left(\eta+t_{z}-\langle z, \xi\rangle\right) \xi .
$$

There is a real number $\mathrm{K}>1$ (K independent of z) so that if $|\eta| \leq \mathrm{K}\left|\langle z, \xi\rangle-t_{z}\right|$ then $\eta+t_{z} \in \mathrm{~K}_{2}$ and a calculation shows that then $L(\eta) \in R_{A^{\prime \prime \prime} . g}$ for every fixed $A^{\prime \prime \prime}$, $A^{\prime \prime}<A^{\prime \prime \prime}<A$.

Let now P be the Poisson kernel for some smooth simply connected domain $D \subset$ $\left\{\eta \in \mathbb{C} ;|\boldsymbol{\eta}|<\mathrm{K}\left|\langle z, \xi\rangle-t_{z}\right|\right\}$ containing $\langle z, \xi)-t_{z}$ and zero. Then

$$
\begin{aligned}
& \mid f\left(L\left(\langle z, \xi\rangle-t_{z}\right)-f\left(\left\langle L\left(\langle z, \xi\rangle-t_{z}\right), \xi\right\rangle \xi\right) \mid\right. \\
\leq & \int_{\partial D}|f(L(\eta))-f(\langle L(\eta), \xi\rangle \xi)| \mathrm{P}\left(\langle z, \xi\rangle-t_{z}, \eta\right) \mathrm{d} \sigma(\eta) \\
\leq & (\text { Harnack’s inequality }) \\
\leq & C \int_{\partial D} \mid f(L(\eta))-f(\langle L(\eta), \xi\rangle \xi) \mathrm{P}(0, \eta) \mathrm{d} \sigma(\eta) \leq(i)
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \int_{\partial D} \frac{\psi(\langle L(\eta), \xi\rangle \xi) \mathrm{P}(0, \eta)}{\left|\left(1-\frac{A^{\prime \prime \prime}}{A}\right) \frac{1}{g(|L(\eta)|)}\right|^{1 / 2}-1} \mathrm{~d} \sigma(\eta) \\
& \leq C \cdot C_{1} \sup _{\partial D} g(|L(\eta)|)^{1 / 2} \int_{\partial D} \psi(\langle L(\eta), \xi\rangle \xi) \mathrm{P}(0, \eta) \mathrm{d} \sigma(\eta) \\
& \leq C \cdot C_{1} \sup _{\partial D} g(|L(\eta)|)^{1 / 2} \psi(\langle L(0), \xi\rangle \xi) \\
& =C \cdot C_{1} \sup _{\partial D} g(|L(\eta)|)^{1 / 2} \psi\left(t_{z} \xi\right) .
\end{aligned}
$$

The constant C (that comes from the Harnack inequality) depends on the shape of D, and not on the scale. We can thus take ∂D to be an ellipse with focus 0 and $\langle z, \xi\rangle-$ t_{z} so that

$$
\left|\eta+t_{z}\right| \geqslant t_{z}+\delta\left(t_{z}-1\right), \quad \forall \eta \in \partial D .
$$

We find that

$$
\begin{aligned}
& |f(z)-f(\langle z, \xi\rangle \xi)|=\mid f\left(L\left(\langle z, \xi\rangle-t_{z}\right)-f\left(L\left(\left\langle\langle z, \xi\rangle-t_{z}\right), \xi\right\rangle\right) \mid\right. \\
& \quad \leq C \cdot g\left(t_{z}+\delta\left(t_{z}-1\right)\right)^{1 / 2} \psi\left(t_{z} \xi\right) \rightarrow 0, \quad z \rightarrow \xi
\end{aligned}
$$

and the proof is now finished in the same way as the end of the proof of Theorem 2.

References

1. U. Cegrell, Capacities and extremal plurisubharmonic functions on subsets of \mathbb{C}^{n}. Ark. Mat. 18 (1980), 199-206.
2. E. M. Čirka, The theorems of Lindelöf and Fatou in \mathbb{C}^{n}. Math. USSR Sb. 21 (1973), 619-641.
3. J. A. Cima and S. G. Krantz, The Lindelöf principle and normal functions of several complex variables. Duke J. 50 (1983), 303-328.
4. A. Koranyi, Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc. 135 (1969), 507-516.
5. E. Lindelöf, Sur une principe générale de l'analyse et ses applications à la théorie de la représentation conforme. Acta Soc. Sci. Fennicae 46 (1915), 1-35.
6. W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}. Springer Verlag 1980.

McGill University
Department of Mathematics
Montreal, Canada
UpPSALA University
Department of Mathematics
Uppsala, Sweden

