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Abstract

In a recent paper Chudnovsky considered the arithmetic properties of certain values of classical
Siegel (7-function solutions of a system of linear homogeneous differential equations without
any restrictive conditions. The present paper generalizes some results of Chudnovsky in both
the archimedian and the p-adic case.
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In 1929 Siegel [9] developed a method for studying the arithmetic prop-
erties of the values of certain classes of analytic functions, called E- and
G-functions. Later this method has been applied to G-functions by Nur-
magomedov [8], Galochkin [5], Flicker [4], Vaananen ([10], [11], [12], [13]),
Matveev [6] and Xu ([15], [16]), for example, but their results use the ad-
ditional Galochkin's [5] condition. This is replaced by another condition in
an important work of Bombieri [2]. Then, in a recent paper, Chudnovsky
[3], using ingenious new ideas, succeeded in considering the arithmetic prop-
erties of the values of classical (/-function solutions of a system of linear
homogeneous differential equations without any restrictive conditions.

In Vaananen and Xu [14] some generalizations of certain results of Chud-
novsky [3] are obtained. The purpose of this paper is to generalize Theorem
II of Chudnovsky [3], in both the archimedian and the p-adic case. Our proof
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72 K. Vaananen and Xu Guangshan [2]

follows closely the main lines of Vaananen ([12], [13]), but here we essen-
tially use the ideas of Chudnovsky [3] in the construction of approximation
forms and apply the local to global technique, as in Bombieri [2].

2. Notations and results

Let K be an algebraic number field of degree d over Q, and let OK denote
the domain of integers in K. For every place v of K we write dv = [Kv : Qv].
If the finite place v of K lies over the prime number p, we write v\p, for
infinite place v of K we write i>|oo. We normalize the absolute value | \v so
that

{i)ifv\p, then \p\v = p~d"/d,
(ii) if u|oo, then \x\v = \x\d°ld,

here | | denotes the ordinary absolute value in R or C.
The absolute height h{x) of x e K is defined by the formula

h(x) =

For any polynomial P(z) = YH=oPiz' £ ^ t z l w e denote

\P\V = maxfl,max|p/|t,J,

(0, ifv\p,
I dv/d, if v|oo.

and define the absolute height of P by h{P) - \[v \p\v.
We write logo = logmax(l,a) for all a > 0, and denote

1, iiv\p,

0, if u|oo,

The power series
oo

(1) yi(z) = J2<tm,iZm, i=\,...,n,

are said to belong to the class KG(y,C,C0), y,C,C0 > 1, if the following
conditions are satisfied:

(i) amJ eK, i=l,...,n,m = 0,l,...;
(ii) max |am>,|w < yP*CP"m, m = 0,1 for every v|oo;

(iii) there exists a sequence of natural numbers (r/) such that

namjGOK, i=l,...,n, m = 0,l,...,l, 1 = 0,1,...,

a n d
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By (iii),
max \amJ\v < \/\r,\v <r,< yC'o

0<m<l

for every finite place v of K and / = 0,1, Thus the functions (1) are
v-adically convergent in

\z\v < C-"»C-a\
In the following we suppose that the functions (1) satisfy a system of linear

differential equations

Y(2) al

where Y = (y,(z),.. .,yn(z))', A = (Au(z))nxn, Au e K(z). Let T(z) e K[z]
denote the common denominator of AtJ, and put

s = max(deg T, deg TAU, i, j = 1 , . . . , n).

In the following theorem we shall estimate the w-value of

deK, PeK[xu...,xn]. In writing \P(yi(6),...,yn(8)\v we consider all the
coefficients of P and the power series y, as elements of the corresponding
completion Kv, and thus this v-value is defined for all \6\v < C~^vCQav.

THEOREM. Assume that the functions (1) satisfying (2) are algebraically
independent over K(z) and belong to the class KG(y, C, Q>). Let

P€K[xi,...,xn], P^O,

be a polynomial of degree at most X and height h(P). There then exist positive
constants c,A, depending only on the functions (1) and n, such that, for any
deK of height h(6)<h>ee satisfying

we have
\P{yi(e),...,yn(0))\v

for all h{P) > H, where

log// = max |^(log/i)2-1/4'I(loglog/i)(1-4n)/4",logm(ax(l, |y,(0)|«

with a constant c > 0 depending only on (2).

We note that our condition (3) slightly sharpens the corresponding condi-
tion of Chudnovsky [3]. In fact, we shall prove the above estimate for \P{d)\v
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under a condition (3)' (see Section 4), which is better that (3) in some cases.
Further, it should be noted that 4n in (3) can be replaced by 2« under the
restrictive conditions used in Bombieri [2] or Vaananen [12], and then also
1/4 in the conclusion can be replaced by 1/2.

The authors thank the referee for his useful suggestions and advise. In
particular, a bound for H was not given in the original manuscript.

3. Lemmas

Let

(4) go(z) = l, gi(z),...,gm(z)

denote the power-products

rt(z)--y*r(z), 0 < k l + - + k n < S , m

where S is a natural number > 3. As in [12], we see that the functions (4)
belong to the class KG((2y)s, 2C, C0

1+(log5)") for some u satisfying 0 < u < 1.
Thus these functions are v-adically denned in \z\v < (2C)-^C0"a"(1+(logS)").
Further, the functions (4) satisfy a system of linear differential equations
of type (2), where the rational function coefficients again have a common
denominator T{z).

First we give a lemma on Pade approximations of the second kind (for the
definition, see Chudnovsky [3]).

LEMMA 1. For any S, 0 < S < l/m, and an arbitrary positive integer D
and M = [(m~i - S)D], there exists a system (Q(x); Px (z), ...,Pm(z)) ofPadi
approximations of the second kind with parameters (D, D, M) for the functions
(4) such that Q(z), Pt{z) e K[z) and

logh(Q) < {{Sm)-X - 1)(1 +m~l -S)D(log2C + (1 + (logS)u)logCo)

+ (<5w)-1(log2(D+1) + 251og2y+ logr),

where F is a positive constant depending only on K.

PROOF. The proof is completely analogous to that of Lemma 4 in Vaananen
and Xu [14], using Siegel's lemma in the form given by Bombieri [2].

The following result is Theorem 1.1 of Chudnovsky [3].
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LEMMA 2. Let (Q{z); P\(z),..., Pn{z)) be a system constructed in Lemma
1. Let k € N and suppose that M > k(s + 1). We define

i = l,...,m

(this means that P}k\z) is a polynomial of degree < D+ks such that the order
of zero ofQ^(z)gi(z)-Plk)(z) atz = Oisat least D+ks+l). Then (Q<k)(z);
P[k\z),...,p£\z)) is a system of Padi approximations of the second kind
with parameters (D + ks, D + ks, M - k(s + 1)) for the/unctions (4).

Analogously to Lemma 5 of Vaananen and Xu [14], we now have the
following

LEMMA 3. Let (Q(z); P\(z),..., Pm(z)) be a system constructed in Lemma
1. Let k e N and assume that M > k(s + 1). Then the system (Q<k>(z);
P\k\z),..., P^ (z)) defined in Lemma 2 has the following properties:

\rD+ksQ
(k)U < ^

\rD+ksP!\ < (C(A:) JD)2(2y)2 s(2CC(;
+ ( 1 O 8 5 )")o +^)^|(2| t ) | r |^ / = 1,. . . , /»,

where C(k,D) = (k + l)(s + l)k(D + 1)2°.

Let us denote, for all k = 0, \,...,Q^k) = rD+ksQ<k), QJk) = rD+ksP^k),
i = \,...,m. We then have the following lemma, analogous to Lemma 2 of
Vaananen and Xu [14].

LEMMA 4. Letd,Q<S < l/(m + m2(s+l)), be given, and let 6 eK satisfy
6T(6) ^ 0. There exists a positive constant CQ, depending only on the system
(2), such that, for all

there exist integers ko,ki,...,km,

O<ko<ki<-- <km<J = D-

satisfying

Q{okm)(8) Q{km\e) . . . Q(km)(6)
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PROOF. We prove here that the determinant

is not identically zero for D > N. Then the proof follows immediately from
the important Theorem 1.2 of Chudnovsky [3]. In our proof we follow Chud-
novsky [3], Section 3.

Suppose the V(x) = 0. Let 1 < m be the integer such that the first /
columns of V are linearly independent over C(x), but the (/ + l)st column
is linearly dependent on them. Let F denote the matrix formed by these /
columns, and let R and U denote the matrices formed by the first / rows
and last m - I + 1 rows of F, respectively. We may assume, without loss of
generality, that det/? ^ 0.

Following Nesterenko [7], Section 3, we see that rational functions ele-
ments of the matrix

UR-1 = (eu(x)/e(x)), eu, e e C(x),
satisfy max(dege,;,dege) < c(l)Sm, where the constant c(l) > 0 depends
only on the system (2). Denote by G the / x (m + 1) matrix with / rows
(gi(x), 0 , . . . , -Si+ij,..., 0), / = 1, . . . , /, and let Go and Gx denote the matri-
ces formed by the first / column and the last m - I + 1 last columns of G,
respectively. Denoting T = GF we see, as in [3], Section 3, that

ordx=Qdet(e(x)TR-1) > l(M - (I - l ) ( j + 1)).

On the other hand,
e{x)TR~{ =e{x)G0 + GiE,

where E — (etj(x)). Thus det(e(x)r /?~1) is a polynomial in x, y\(x),...,
yn(x), say P(x,yi(x),...,yn(x)), satisfying degxP < c(l)Sml, degyP < S.
By the algebraic independence of y\,... ,yn we know that P is not identically
zero in x. Using the result of Bertrand and Beukers [1] we obtain the estimate

ordx=0det(e(.x:)r/T1) < c(l)Slm2 + c(2)m2

with positive constant c(2) depending only on (2). Thus

1{M -(I- l)(s + 1)) < c(l)Slm2 + c(2)m2.

The above inequality is impossible for all {m~x - S)D > CoSm2 with some
positive constant CQ depending only on (2). This proves our Lemma 4.

We next define rational functions L,j = Ltj{6), t, j = 0 , 1 , . . . , m, as the
solutions of the system

JT LtJQ\ki) {9) = Sij, i,j = 0,l,...,m,
t=o
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of linear equations. By Cramer's rule,

LtJ{6) = RtJ(d)/A(e), t, j = 0,l,...,m,

where Rtj{6) is the t, y-cofactor of the matrix corresponding to A(0). We
now define linear forms Fj in go(Q), Si(d), • • • > gm{Q) by the formulae

Fj(0) = jrMtJ(d)gl(d), 7 = 0,1 m,
1=0

where M,j(6) = RtJ{d)d-w, co = (m-l)(M+D) = (m-l)J. Using Theorem
4.1 of Chudnovsky [3] we immediately obtain the following important result.

LEMMA 5. Let the hypothesis of Lemma 4 be satisfied. For all D > N, the
linear forms Fo(6), ...,Fm{6) in go(0), •••,gm(S) are linearly independent and
have polynomial coefficients Mtj = Mtj(6) satisfying

deggMtj <D-(m- l)M + J(ms + m- 1), t,j = 0,l,...,m.

Further, we have

orde=0 Fj(d)>D + M-J, j = 0,l,...,m.

LEMMA 6. The polynomials Mtj appearing in Lemma 5 satisfy the estimate

\MtJ\v < {m\)t>«{{D + Js + l)C(J,D)2(2y)2S

• {2CC^+(Xo%S)U))(D+Js))mPv\Q\v\T\^J,
t,j = 0, \,...,m.

PROOF. The result follows immediately from Lemma 3 and the definition
of the polynomials Mtj.

LEMMA 7. Let 6, 0 < d < \/(3m2(s + 1)), be given. Assume that

D > max{(T'(1 + (m+ l)(s + l)/2), w/( l - 3dm2(s + 1)), JV}.

IfdeK, then

\MtJ(d)\v < {D{m-l+ 2 ^

• max(l , \

Further, if\6\v < (4C)-^C0"Q"(1+(log5)"), then we have the estimates

\Fj(6)\v < (2y)s^"+a^(2(m + \){D{m~x + S(m + 2m2{s + 1))) +
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PROOF. It follows from the hypothesis that the hypotheses of Lemmas 4,
5 and 6 are valid, and J < 28 mD. In addition, we obviously have

D-(m- \)M + J(ms + m - 1) < D{m~l + 8{m + 2m2(s + 1)))

and
D + M - J > (1 + m~l - 38m)D.

The estimate for \Mtj(6)\v now follows from Lemma 5. To prove the
second estimate, we write

MtJ{d) = £ mtJJd
l, gt(d) = f ) gtJd',

1=0 (=0

where R < D(m~l +8(m + 2m2(s+1))), by Lemma 5. Lemma 5 also implies

m min(/,J?){
t=0 i>D+M-J \ t=0 1=0

iJSt,i-l

< ((m
tJ i>D+M-J

< (2s+lys(m

i>D+M-J 1=0 1=0

In the case v\p we have |r,ft,_/|« < 1, which implies

\g,j-i\v< l/\r,\v <ri<

Thus

This proves Lemma 7.

4. Proof of the Theorem

The main lines of the proof follow the work Vaananen [12]. Let 6 e K
satisfy h{6) <h>ee and

. -- v-, ,l- 0, logA > (1 +max(3,A))4n(loglogA)",
^ I Ifll ^ z,-cA(logA)(4"~l)/4"(loglogA)"/4n
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where c will be given in (6). We define the natural number S by S = [/(/*)I/4"],
where l{h) = (log/t)/(loglog/j)", and denote

t=(n + S-X\ ,,, = M , . ,

As in Vaananen [12], we obtain the estimates

(5) S"/n\<m<ciSn, t < m, w < c2JiSn~\

with positive constants c\ and c2 depending only on n. For the constant c
appearing in (3) or (3)' we take the value

(6) c

where
A = 4(s + 3)(log4yrCC0

2 + 1) + logh(T).

We now choose a natural number D in such a way that

(Z)- l)A(log/j)(4n-1)/4n(loglogA)"/4" < t\o%h(P)

Here we assume h{P) to be large enough, say h{P) > Ho, that D satisfies the
conditions of Lemma 7:

D > max{<T'(1 +(m+l)(s+ l)/2), m/(l - 3Sm2(s + I)), N),

where we choose
<5= l/(2m(m + 2m2(s+l))).

By the definitions of D and Â  it follows that we may choose

= e/l(log/i)2-1/4'1(loglog/j)"(I-4n)/4",

where C > 0 is a constant depending only on (2).
By multiplying the polynomial P{yx{z),... ,yn{z)) by the power-products

yf ' (2)--- j£(z) ,0 < * , + • • • + *„ < S - A ,

we obtain linear forms in go(z),...,gm{z), say

7=0

where the a,,, are the coefficients of P or zero.
We now use Lemma 5 to find w linear forms, say Fjk{6), k = l,...,w,

such that these forms together with the forms y*i(d), i — l,...,t, are lin-
early independent (by (3)', we have \d\v < (4C)-^C0"a"(1+(log5)U)). Then the
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determinant of these forms, say

#01 ••• flml

aot ••• amt

••• MmJl(6)

••• MmJw{6)

must differ from zero. This determinant Ai (0) e K, and thus the product
formula gives \[v \&\{d)\v = 1.

By the above formula, we first obtain a lower bound

(7) log|Ai(fl)|i, = - y~] log|Ai(g)|t)l

> - £ 0 M m + l)log(m+l) + tlog\P\Vl

+wlogmax.\MiJk(0)\Vl).

On the other hand,

(8) |Ai(0)|,, < (m + l)fiv max j max |cofactor (l,j)\v\¥j(O)\v ,

• max |cofactor (1, t + /)!„\Fh (0)\v } ,
\<i<w J

and here cofactor (l,j) means the l,j-cotactor of the matrix corresponding
toA,(0).

Since

l o g ( ( w + l / " max |cofartor(l,f + i)|«|-f>,(0)|u)

< fiv(m + l)log(w + 1) + Jlog|.P|v
+ (w- l)logmax|M,iA(0)|u + log max 1^,(0)1,,,

we have, by Lemma 7, the upper estimate

(9) log Um+l)fi- max |cofactor (1, t + i)^^.(0)|t>) -log|Ai(0)|v

< (m + 1)log(m + 1) + tlogh(P)

+ w^2 log+ max\MUk(d)\Vl + (w - 1)log+ max\MUk(8)\v

+ log{(2y)sU}'<+a"\2(m1)D(m-1+d(m + 2rn2(s+l))) + l)l>»
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Using Lemma 1, 6 and 7 we see that (9) is smaller than

{m+ l)log(m+ I)+ t log h(P)
+ w £{&,, log(2D/m) + D(m-1 + d(m + 2m2(s + 1))) log+ |0|W|

+ fiVl mlogm + mpVl (log(Z> + Js + 1) + 2 log C(J, D)

+ 251og2y + (D + Js)(log2C + (1 + (logS)")logC0)
+ mlog\Q\Vl

+ S(fiv + av)log2y + fiv Iog2(w + 1)
+ D(l+m-i -3dm)(fivlog2C + av(l + (log5)")logC0)
+ Dlog\d\v <wmD(logh{T) + 2log2y+lO + 3log2C)
+ 3wmD(l + (log5)")logC0 + if;mlogA((2)
+ 2wm~l D log h(6) + t log h(P) + Dlog\6\v

< Awm3D(logS)u + 2wm~xDlogh(6) + tlogh(P) + Dlog\6\v

< Ac]c2XS4n-x{logS)uD + 2c2(n\)XS-lDlogh(d) + tlogh(P) + Dlog\d\v

<{c- l)A(log/i)(4"~1)/4''(loglog/i)u/4"Z) + /logA(P) + Z)log|0|l,

< tlogh(P) - DX(logh)(4n-lV4n(loglogh)u<4n < 0.

It thus follows from (7) and (8) that

l)log(w + l) + flQg|n,+I _
i,k

< log ((m + 1)* max |cofactor (l,j')\vi}¥j(d)\J) .

Completely analogously to the above deduction we now obtain

log max PF/(0)|B > -(tlogh(P) + (c- l)A(log/r)(4"-1)/4/I(loglog/z)"/4"£>)

> - ( c + l ) / l o g A ( P ) > - (

Since

the truth of the Theorem follows.

max |¥,(0)U < max(l,\yi(e)\v)
s\P(yi(d),.--,yn(e))\v,
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