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Abstract. We investigate the spectral properties of matrices associated with comb
graphs. We show that the adjacency matrices and adjacency matrix Laplacians of the
sequences of graphs show a spectral similarity relationship in the sense of work by
L. Malozemov and A. Teplyaev (Self-similarity, operators and dynamics, Math. Phys.
Anal. Geometry 6 (2003), 201–218), and hence these sequences of graphs show a spectral
decimation property similar to that of the Laplacians of the Sierpiński gasket graph
and other fractal graphs.
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1. Introduction and definitions. Many examples are known of sequences of graphs
for which associated matrices of members of the sequence, such as the graph Laplacians,
have eigenvalues which are related to each other by iteration of a polynomial or rational
function, and have a limiting graph whose spectrum is related to the Julia set of the
function.

In the context of fractal graphs this is known as spectral decimation, and was
first observed for the Sierpiński gasket graph in [9] and given a rigorous mathematical
treatment in [6, 11]. A generalisation of spectral decimation to a much larger class of
self-similar graphs appears in [8], in which an abstract concept of spectral similarity
for operators is developed, leading to a symmetry condition which, if satisfied, ensures
that spectral decimation applies to the Laplacian of the graph. In these cases the graph
is obtained as a union of a sequence of graphs (Gn)n∈�, and there is a rational function
f such that z is an eigenvalue of the Laplacian of Gn+1 if and only if f (z) is an eigenvalue
of the Laplacian of Gn, unless z is a member of a so-called exceptional set E , which does
not depend on n. This allows us to find eigenvalues by iteratively solving the equation
f (z) = λ.

The theory of spectral decimation, including spectral self-similarity, is further
developed, with some more examples, in [2]; for more on spectral decimation on
fractals see the book [12].

In [3], some examples of graphs, constructed as the Schreier graphs of certain
groups, are shown to have a similar property, with infinite graphs having spectra
related to the Julia set of a simple function.

In this paper we show that the concept of spectral similarity developed in [8] for the
graph Laplacians of fractal graphs also applies to the adjacency matrices and adjacency
matrix Laplacians of the comb graphs described in [1], and hence show that a property
similar to spectral decimation occurs for these graphs. Some relationships involving
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spectra of operators on comb products were shown in [10]; our results provide the link
to spectral similarity and the spectral decimation phenomenon for fractals.

1.1. Comb graphs. We make some definitions, following [1].

DEFINITION 1. Given two graphs G1 and G2 with a distinguished vertex o ∈ V (G2),
we define the comb product (or comb graph) G1 �o G2 as a graph formed by taking a
copy G2,i of G2 for every vertex in V (G1) and attaching G2,i to G1 by identifying the
distinguished vertex o with vertex i of G1.

If we have a single graph G with a distinguished vertex o, we define the homogeneous
comb product G�n as the comb product of n copies of G. It is shown in [1] that the
comb product is associative, so this is well-defined.

1.2. Graphs and matrices.

DEFINITION 2. Given a graph G with vertex set V (G), we can define the following
matrices, all |V (G)| × |V (G)|:

The adjacency matrix A(G) has Ai,j = 1 if there is an edge between i and j, and 0
otherwise. In a graph with multiple edges Ai,j is the number of edges between i and j.
This is used in [1].

The usual graph Laplacian L(G) has several alternative definitions, for example
in [5, 8], but they are all related by a simple transformation. One definition is that
it is the generator matrix of a continuous time random walk on the graph with all
vertices having a mean holding time 1, so that, assuming di > 0 for all i, Li,i = −1 and
Li,j = Ai,j/di for all pairs of vertices i �= j. (Here di is the degree of vertex i in G.) The
graph Laplacian is used in the construction of a Laplacian on fractals, see [7].

Another definition is the combinatorial or adjacency matrix Laplacian L(G), as
defined in [8], which is related to the generator matrix of a continuous time random
walk where the mean holding time of vertex i depends on the vertex degree, so that,
assuming di > 0 for all i, Li,i = di and Li,j = −Ai,j for all pairs of vertices i �= j.

In the case of a regular graph, such as the Schreier graphs in [3], all the above
matrices are simple transformations of each other and their eigenvalues will differ
by only a linear transformation. However, as discussed in [4], for non-regular graphs
(including comb graphs) the matrices and hence the behaviour of the eigenvalues may
be significantly different.

2. Relationships between eigenvalues. We start by calculating the relationship
between eigenvalues of matrices B and D satisfying a particular relationship, which
will apply to the adjacency matrices of comb graphs.

For a square matrix C with rows and columns indexed by VC , let Ĉ be the matrix
with rows and columns indexed by VC \ {o} obtained by removing the row and column
corresponding to o from C. We label the characteristic polynomial of a square matrix
C as χC(z).

THEOREM 1. Let us have an r1 × r1 matrix B, an r2 × r2 matrix C and an r1r2 × r1r2

matrix D. We index the rows and columns of B and C by VB and VC respectively, and
those of D by VB × VC, and assume that we have a distinguished element o ∈ VC.
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Let B, C and D be such that

D(i,j),(l,k) = δilCjk + BilPjk,

where P is an r2 × r2 matrix with rows and columns indexed by VC such that Pjk = δjoδko,
where δ is the usual Kronecker delta.

Let H be �r1r2 as acted on by D, H0 be �r1 as acted on by B, U be the inclusion
operator H0 → H with U(ei) = e(i,o) and U∗ the orthogonal projector H → H0. Then
the matrix D is spectrally similar to B, as defined in Definition 2.1 of [8], with functions
φ0(z) = 1 and

φ1(z) = −χC(z)
χĈ(z)

.

That is,

U∗(D − zIr1r2 )−1U = (B − φ1(z)Ir1 )−1

for all z ∈ � for which both sides are well defined, and where we write Ir for the identity
matrix on �r.

Proof. We use Lemma 3.3 of [8]. To use this, we set up some notation. Let H1

be the orthogonal complement to H0 in H, i.e. the space spanned by the unit vectors
e(i,j), j �= o. Then we order VB × VC with elements of the form (i, o) first, ordered by i,
followed by elements of the form (i, j) with j �= o, ordered first by i and then by j.

To use Lemma 3.3 of [8] we need to represent D in block form with respect to H0

and H1, as
(

S X̄
X Q

)
,

and show that

S − zIr1 − X̄(Q − zIr1(r2−1))−1X = B − φ1(z)Ir1 , (1)

where Ir1(r2−1) is the identity on H1.
We first consider S, H0 → H0. We have

Sil = D(i,o),(l,o) = δilCoo + BilPoo,

but Poo = 1, so Sil = δilCoo + Bil and hence

S = B + (Coo)Ir1 .

We now consider X , H0 → H1 and X̄ , H1 → H0. Again using the formula for
entries of D,

X(i,j),l = D(i,j),(l,o) =
{

Cjo i = l
0 otherwise,

and

X̄i,(l,k) = D(i,0),(l,k) =
{

Cok i = l
0 otherwise.
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Finally

Q(i,j),(l,k) =
{

Cjk i = l
0 otherwise,

and so, given our ordering of VB × VC , Q is a block matrix with blocks on the diagonal
each identical to Ĉ and zeros elsewhere. Hence

((Q − zIr1(r2−1))−1)(i,j),(l,k) =
{

((Ĉ − zIr2−1)−1)jk i = l
0 otherwise,

and so

(X̄(Q − zIr1(r2−1))−1X)il =
{∑

j,k∈VC\{o} Coj((Ĉ − zIr2−1)−1)jkCko i = l
0 otherwise,

So the left hand side of (1) becomes

B + (Coo)Ir1 − zIr1 −
⎛
⎝ ∑

j,k∈VC\{o}
Coj((Ĉ − zIr2−1)−1)jkCko

⎞
⎠ Ir1

and so Lemma 3.3 of [8] shows that D is spectrally similar to B with φ0(z) = 1 and

φ1(z) = z − Coo +
⎛
⎝ ∑

j,k∈VC\{o}
Coj((Ĉ − zIr2−1)−1)jkCko

⎞
⎠ .

To show that φ1(z) = −χC (z)
χĈ (z) we define a matrix K(z) with rows and columns

indexed by VC and

(K(z))jk =
⎧⎨
⎩

1 j = k = o
0 j = o or k = o but not both
((Ĉ − zIr2−1)−1)jk otherwise

Then

det(K(z)) = (χĈ(z))−1

and so

det((C − zIr2 )K(z)) = χC(z)
χĈ(z)

.

Using the definition of K(z), if j �= o and k �= o then

((C − zIr2 )K(z))jk =
∑

q∈VC\{o}
(Ĉ − zIr2−1)jq((Ĉ − zIr2−1)−1)qk

= δjk.

If j �= o then

((C − zIr2 )K(z))jo =
∑
q∈VC

Cjq(K(z))qo

= Cjo.
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If k �= o then

((C − zIr2 )K(z))ok =
∑
q∈VC

Coq(K(z))qk

=
∑

q∈VC\{o}
Coq((Ĉ − zIr2−1)−1)qk.

Finally

((C − zIr2 )K(z))oo =
∑
q∈VC

(C − zIr2 )oq(K(z))qo

= (C − zIr2 )oo

= Coo − z.

Putting the above together and considering which terms in the determinant are
non-zero,

det((C − zIr2 )K(z)) = Coo − z −
⎛
⎝ ∑

k∈VC\{o}
Cko

∑
j∈VC\{o}

Coj((Ĉ − zIr2−1)−1)jk

⎞
⎠

= Coo − z −
⎛
⎝ ∑

j,k∈VC\{o}
Coj((Ĉ − zIr2−1)−1)jkCko

⎞
⎠

= −φ1(z).

Hence

φ1(z) = −χC(z)
χĈ(z)

,

as claimed. �
COROLLARY 2. Under the conditions of Theorem 1, μ is an eigenvalue of D if and

only if f (μ) is an eigenvalue of B, with the same multiplicity, unless μ is an eigenvalue
of Ĉ.

Here Ĉ is, again, the matrix, with rows and columns indexed by VC \ {o}, obtained
by removing the row and column corresponding to o from C, and f (z) = −χC (z)

χĈ (z) .

Proof. This follows from Theorem 1 by applying Theorem 3.6 of [8]. �
Following [8], the set E , consisting of the eigenvalues of Ĉ, where spectral similarity

gives no information, is called the exceptional set.
The following theorem is essentially an alternative method of proving Corollary 2

without giving the precise result on spectral similarity, but gives additional information
about the exceptional set.

THEOREM 3. We assume the same conditions as for Theorem 1. Then if x is an
eigenvector of B with eigenvalue λ and y is an eigenvector of C + λP with eigenvalue μ,
then we can construct an eigenvector of D with eigenvalue μ.

Proof. We let x′
(i,j) = xiyj.
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Let j �= o. Then

(Dx′)(i,j) =
∑
k∈VC

Cj,kxiyk

= xi

∑
k∈VC

(C + λP)j,kyk (because Pj,k =0)

= μxiyj

Now

(Dx′)(i,o) =
∑
k∈VC

Co,kxiyk +
∑
l∈VB

Bi,lxlyo

=
∑
k∈VC

Co,kxiyk + yo

∑
l∈VB

Bi,lxl

=
∑
k∈VC

Co,kxiyk + yoλxi (because Bx = λx)

=
∑
k∈VC

(C + λP)o,kxiyk (by the definition of P)

= μxiyo

Putting these together,

Dx′ = μx′. �
We now consider sequences of matrices in which consecutive pairs satisfy the

conditions of Theorem 1.

THEOREM 4. Assume we have an r × r matrix M with rows and columns indexed by
VM, and let P be the r × r matrix with rows and columns indexed by VM and such that
Pjk = δjoδko. Then we define a sequence of matrices (M(n))n∈�, with rows and columns
indexed by Vn

M, by
� M(1) = M
� M(n)

(i,j),(l,k) = δilMjk + M(n−1)
il Pjk.

Then, obtaining M̂ from M in the same way as we obtained Ĉ from C above, M(n+1) is
spectrally similar to M(n), with function f (z) = −χM (z)

χM̂ (z) . Also μ is an eigenvalue of M(n+1)

if it is an eigenvalue of M + λP, for λ an eigenvalue of M(n).

Proof. This comes immediately from Theorems 1 and 3, with B = M(n), C = M
and D = M(n+1). �

We note that the property of the sequence (M(n))n∈� required for Theorem 4 is
the property used in [1] to show that the adjacency matrices of comb graphs can be
decomposed into a sum of monotone independent random variables.

We now use our theorems to obtain two results concerning (G�n)n∈�, the sequence
of homogeneous comb products based on an initial graph G.

COROLLARY 5. Letting A(n) be the adjacency matrix of G�n, μ is an eigenvalue of
A(n+1) if and only if μ is an eigenvalue of A(G) + λP with λ an eigenvalue of A(n), and
A(n+1) is spectrally similar to A(n).
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Proof. It is shown in [1] that this sequence satisfies the conditions of Theorem 4,
with M = A(G), the adjacency matrix of the initial graph. �

COROLLARY 6. Letting L(n) be the adjacency matrix Laplacian of G�n, μ is an
eigenvalue of L(n+1) if and only if μ is an eigenvalue of L(G) + λP with λ an eigenvalue
of L(n), and L(n+1) is spectrally similar to L(n).

Proof. To establish this, we need to show that the sequence of adjacency matrix
Laplacians satisfies the conditions of Theorem 4. To do this we proceed inductively,
and calculate

δilMjk + M(n−1)
il Pjk. (2)

There are three cases:
� If (i, j) = (l, k) this is

δiiMjj + M(n−1)
ii Pjj = Mjj + M(n−1)

ii Pjj

which is Mjj if j �= o and Mjj + M(n−1)
ii if j = o, which by the definition of the comb

product is the degree of (i, j) in G�n and hence equal to M(n)
(i,j),(l,k).

� If i �= l then 2 becomes M(n−1)
il Pjk, which is −1 if and only if j = k = o and i ∼ l in

G�(n−1), i.e. if and only if (i, j) ∼ (l, k) in G�n.
� If i = l and j �= k then (2) equals Mjk, which is −1 if and only if j ∼ k in the initial

graph G.

Hence in all cases (2) is equal to M(n)
(i,j),(l,k), as required. �

Because the condition that μ is an eigenvalue of A(G) + λP (or L(G) + λP) can
be related to the rational function f from Corollary 2, Corollaries 5 and 6 show that a
variant of spectral decimation exists for the adjacency matrices and adjacency matrix
Laplacians of homogeneous comb products, regardless of the initial graph G.

Putting our results together, we obtain the following description of the spectra
of the adjacency matrices and adjacency matrix Laplacians of homogeneous comb
products:

THEOREM 7. Let λ
(1)
1 , . . . , λ

(1)
N (where N is the number of vertices of G) be the

eigenvalues of the adjacency matrix of G, and, for n ≥ 1, let λ
(n+1)
1 , . . . , λ

(n+1)
Nn+1 be the Nn+1

values (up to multiplicity) which are eigenvalues of A(G) + λ
(n)
j for some j ∈ {1, . . . , Nn}.

Then the spectrum of the adjacency matrix A(G�n) consists of the values
λ

(n)
1 , . . . , λ

(n)
Nn .

Similarly, let ν
(1)
1 , . . . , ν

(1)
N be the eigenvalues of the adjacency matrix Laplacian of

G, and let ν
(n+1)
1 , . . . , ν

(n+1)
Nn+1 be the Nn+1 values (up to multiplicity) which are eigenvalues

of L(G) + ν
(n)
j for some j ∈ {1, . . . , Nn}.

Then the spectrum of the adjacency matrix Laplacian L(G�n) consists of the values
ν

(n)
1 , . . . , ν

(n)
Nn .

Proof. This follows from Corollaries 5 and 6. �
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3. Localisation and high multiplicity. The Laplacians associated with self-similar
fractal graphs [7] in many cases show high multiplicity of eigenvalues associated with
localised eigenfunctions, i.e. eigenfunctions which are non-zero only on some subset
of the graph.

We show that this can also happen for comb graphs.

LEMMA 8. If there is a non-trivial symmetry of the graph G which fixes a distinguished
vertex o, then we can find an eigenfunction x of the adjacency matrix such that xo = 0.
This result also applies to the graph and adjacency matrix Laplacians.

Proof. Let σ be such a symmetry. As σ is non-trivial we can find an eigenfunction
of A(G), x′, which is not fixed by σ . Then σx′ is another eigenfunction, with the same
eigenvalue, and so x = x′ − σx′ is an eigenfunction which is 0 on vertices fixed by σ ,
including o.

This also applies to the graph and adjacency matrix Laplacians. �
This allows us to construct localised eigenfunctions:

COROLLARY 9. If G satisfies the conditions of Lemma 8, then the adjacency matrix
of a homogeneous comb product G�n has an eigenvalue λ with at least |V (G)|(n−1) linearly
independent eigenfunctions each localised on at most |V (G)| − 1 vertices.

Again, this result also applies to the graph and adjacency matrix Laplacians.

Proof. This is based on the structure of the graph G�n, which consists of |V (G)|(n−1)

copies of G attached to G�(n−1) at the distinguished vertex o, vertex (i, j) being naturally
identified with vertex j in copy i of G.

So we can take any one of these copies of G, l say, and construct an eigenfunction
y with y(l,j) = xj (where xj is the eigenfunction constructed for G in Lemma 8, with
eigenvalue λ), and y(i,j) = 0 if i �= l, and hence non-zero on at most |V (G)| − 1 vertices.
The structure of the graph and the definition of the matrices ensure that this is
indeed an eigenfunction with eigenvalue λ. As there are |V (G)|(n−1) possible values
of l, there are |V (G)|(n−1) linearly independent eigenfunctions constructed by this
method. �

Note that, for the adjacency matrix and adjacency matrix Laplacian, we can now
find other eigenvalues with high multiplicity and localised eigenfunctions by applying
Corollaries 5 and 6.

4. Examples.

4.1. Adjacency matrix examples.

EXAMPLE 1. We let the initial graph G be the complete graph on three vertices,
with adjacency matrix

A(G) =
⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠ .

Then the eigenvalues of A(G) are −1, −1 and 2 and if λ is an eigenvalue of
A(G�(n−1)) then by Corollary 5 it generates eigenvalues of A(G�n) which are eigenvalues

https://doi.org/10.1017/S0017089508004540 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004540


COMB GRAPHS AND SPECTRAL DECIMATION 79

of

A + λP =
⎛
⎝λ 1 1

1 0 1
1 1 0

⎞
⎠ ,

the eigenvalues of which are given by μ = −1 and the solutions of the equation

f (μ) = μ2 − μ − 2
μ − 1

= λ.

So we can generate eigenvalues of any A(G�n) by starting with the eigenvalues of
A(G) and iteratively solving the equation f (μ) = λ.

One property of this example is that an eigenvalue μ = −1 is generated by any
λ. Hence the multiplicity of −1 as an eigenvalue of A(G�n) is at least the number
of eigenvalues of A(G�(n−1)), which is 3n−1. Furthermore this ensures that the roots
of f (μ) = −1 have multiplicity 3n−2 as eigenvalues of A(G�n), etc. This generates
eigenvalues with high multiplicity.

This eigenvalue −1 is an eigenvalue of the matrix Â formed by removing the row
and column corresponding to o from A, and hence a member of the exceptional set for
the spectral similarity. This association between the eigenvalues with high multiplicity
and the exceptional set also occurs in the fractal graphs case in [8].

EXAMPLE 2. For a more complex example showing eigenvalues with high
multiplicity, we consider an initial graph G with adjacency matrix

A(G) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Then the eigenvalues of A(G) are 0 and ±
√

10±2
√

17
2 and if λ is an eigenvalue of

A(G�(n−1)) then by Corollary 5 it generates eigenvalues of A(G�n) which are eigenvalues
of

A + λP =

⎛
⎜⎜⎜⎜⎝

λ 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

the eigenvalues of which are given by μ = 0 and the solutions of the equation

f (μ) = μ5 − 5μ3 + 2μ

μ4 − 4μ2
= λ.

So we can generate eigenvalues of any A(G�n) by starting with the eigenvalues of
A(G) and iteratively solving the equation f (μ) = λ.

The behaviour is now similar to that of the previous example. The eigenvalue
μ = 0 is generated by any λ and is a member of the exceptional set for the spectral
similarity, generating eigenvalues with high multiplicity.
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4.2. The adjacency matrix Laplacian.

EXAMPLE 3. We consider the adjacency matrix Laplacian of the graph in the second
example above. The initial matrix L(G) is

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 0
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

⎞
⎟⎟⎟⎟⎠

and we are interested in the eigenvalues of

L(G) + λP =

⎛
⎜⎜⎜⎜⎝

1 + λ −1 0 0 0
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

⎞
⎟⎟⎟⎟⎠

which are given by the equation

μ5 − 10μ4 + 34μ3 − 46μ2 + 20μ = λ(μ4 − 9μ3 + 26μ2 − 26μ + 4).

Here 2 is an eigenvalue of L(G) + λP for any λ, and the remaining eigenvalues are
given by the solutions of g(μ) = λ, where

g(μ) = μ5 − 10μ4 + 34μ3 − 46μ2 + 20μ

μ4 − 9μ3 + 26μ2 − 26μ + 4
.

Again there are eigenvalues of high multiplicity, and the eigenvalue 2 is a member
of the exceptional set for the spectral similarity.

4.3. Examples without high multiplicity.

EXAMPLE 4. A simple example starts with the graph G being the complete graph
on two vertices, with adjacency matrix

A(G) =
(

0 1
1 0

)
.

This example does not satisfy the symmetry condition of Lemma 8.
In this case eigenvalues of A(G) + λP are given by solutions to

λμ = μ2 − 1.

There are no values which are solutions to this for all λ, no values which are
eigenvalues of both A and Â, and there are no eigenvalues of A(G�n) with high
multiplicity: the eigenvalues of A(G�n) can be generated by starting with the eigenvalues
of A(G), −1 and 1, and iteratively solving the equation h(μ) = λ, where

h(μ) = μ2 − 1
μ

,
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giving 2n distinct eigenvalues of A(G�n). The only value in the exceptional set is μ = 0,
for which h(μ) is undefined; it does not occur as an eigenvalue.

EXAMPLE 5. For a more complex example not satisfying the symmetry condition
of Lemma 8, we consider a graph G with

A(G) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 0
0 1 1 0 0

⎞
⎟⎟⎟⎟⎠ .

In this case eigenvalues of A(G) + λP are given by solutions to

λ(μ4 − 4μ2 − 2μ + 1) = μ5 + 5μ3 + 2μ2 − 3μ.

Again, there are no values which are solutions to this for all λ, no values which
are eigenvalues of both A and Â, and there are no eigenvalues of A(G�n) with high
multiplicity: the eigenvalues of A(G�n) can be generated by starting with the 5 distinct
eigenvalues of A(G) and iteratively solving the equation h(μ) = λ, where

h(μ) = μ5 + 5μ3 + 2μ2 − 3μ

μ4 − 4μ2 − 2μ + 1
,

giving 5n distinct eigenvalues of A(G�n). The values in the exceptional set (roots of
μ4 − 4μ2 − 2μ + 1 = 0, for which h(μ) is undefined) do not occur as eigenvalues.
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