
6

Decay of the False Vacuum

In this chapter we give the first example of an application of the methods we
have learned so far. We will apply the methods of instantons to the problem of
vacuum instability in quantum field theory. We consider a scalar field governed
by a Lagrangian of the form

L=

∫
d3x

1

2
∂μφ(x)∂

μφ(x)−V (φ(x)). (6.1)

The potential V (φ(x)) for φ(x) = φ, a constant independent of the spacetime
coordinates, has the form represented by the graph in Figure 6.1. There are two
minima, a global minimum at φ− and a local minimum at φ+. Classically the
configurations φ(x) = φ± are stable. The energy is given by the functional

E =

∫
d3x

1

2
φ̇(x)

2
+

1

2
�∇φ(x) · �∇φ(x)+V (φ(x)). (6.2)

When φ(x) is a constant the first two terms, which are positive semi-definite,
give zero contribution, thus the energy comes solely from the potential term. The
potential is minimized and normally adjusted by adding a constant to make it
vanish at the global minimum φ(x) = φ−, so normally the energy of this classical
configuration is zero. At φ(x) = φ+ the potential is in a local minimum, however,
and then the value of the potential is finite and the total energy is divergent.
The divergence is proportional to the volume. However, the physically important
quantity is not the total energy but the energy density, which is given directly
by the potential. Then the energy density difference between the two classical
ground states is finite. φ+ is the false vacuum while φ− is the true vacuum. The
false vacuum is unstable while the true vacuum is stable.

We will, however, adjust the zero of the potential not in the normal way but
as depicted in Figure 6.1, by adding a constant, so that the energy density of
the false vacuum state is zero. Such a redefinition cannot affect the local physics.
Then we will calculate the decay of the false vacuum to the true vacuum per
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72 Decay of the False Vacuum

Unstable VacuumStable Vacuum

V(φ)

φ– φ+

Figure 6.1. The potential giving rise to a false vacuum

unit time and per unit volume, Γ
V . We will find an expression of the form

Γ

V
=Ae−

B
� (1+0(�)) (6.3)

in the semi-classical limit. This form is exactly that which we have seen for
decays via tunnelling. B will correspond to the classical action for a critical
configuration while A will come from the quantum considerations. We proceed
in an analogous fashion to the problem we considered in quantum mechanics.
We wish to define the analytic continuation of the matrix element

A.C.{〈φ+|e−
βĤ
� |φ+〉} (6.4)

from a potential for which the vacuum constructed at φ+ is stable to the potential
we are considering. As we have seen, the analytic continuation instructs us on how
to deal with Gaussian integrals over fluctuations about a critical configuration
which correspond to negative frequencies.

6.1 The Bounce Instanton Solution

Otherwise we proceed in the usual way with the semi-classical analysis of the
Euclidean functional integral. We look at

N
∫
Dφe−

SE [φ(x)]
� (6.5)

with the boundary conditions φ
(
τ =±β

2

)
= φ+. Here

SE [φ(x)] =

∫
dtd3x

(
1

2
∂μφ(x)∂μφ(x)+V (φ(x)

)
(6.6)

with the equation of motion corresponding to

δSE [φ(x)]

δφ
=−∂μ∂μφ(x)+V ′(φ(x)) = 0. (6.7)
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Here we use the Euclidean metric. This equation is exactly the equation of motion
for the scalar field in minus the potential. We take the boundary conditions for
the case β =∞

lim
τ→±∞φ(�x,τ) = φ+ (6.8)

and we add the condition
∂τφ(�τ ,τ = 0) = 0, (6.9)

which determines the Euclidean time at the classical turning point. This time of
the classical turning point is completely at our disposal for the case β =∞. The
condition that the classical action should be finite gives

lim
|�x|→∞

φ(�x,τ) = φ+. (6.10)

We assume a form that is O(4)-invariant

φ(�x,τ) = φ
(
(|�x|2+ τ2)

1
2

)
. (6.11)

The equation of motion becomes, with ρ= (|�x|2+ τ2)
1
2

d2

dρ2
φ+

3

ρ

d

dρ
φ−V ′(φ) = 0. (6.12)

The action is

SE [φ] = 2π2

∫ ∞

0

dρρ3

(
1

2

(
dφ

dρ

)2

+V (φ)

)
(6.13)

with the boundary conditions dφ
dρ

∣∣∣
ρ=0

= 0 and limρ→∞φ(ρ) = φ+. The first

condition avoids a singularity at ρ = 0 while the second comprises all of the
asymptotic boundary conditions.

A rigorous proof of the existence of a solution and that it is the minimum action
solution is given by Coleman, Glaser and Martin [34], but we shall be content
with the following argument due to Coleman [31]. The equation of motion (6.12)
can be interpreted as that for a particle with “position” φ moving in “time” ρ.
The particle is subject to a force, −V ′(φ), and a frictional force with a “time”-
dependent Stokes coefficient of friction 3

ρ . The equation of motion for a particle
in a potential with Stokes coefficient of friction μ is

d2

dρ2
φ(ρ)+μ

d

dρ
φ(ρ)+V ′(φ(ρ)) = 0. (6.14)

The solution in the absence of a potential, V ′(φ(ρ))=0, is simply φ(ρ)=a−be−μρ
for arbitrary constants a,b, with a related to the initial position and b related
to the initial velocity. This solution confirms that motion with friction without
external forces will come to rest exponentially fast. In the present case μ depends
on ρ.
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Unstable VacuumStable Vacuum

–V(φ)

–V(0)

φ– φ1 φ+

Figure 6.2. The reversed potential and effective dynamical problem

We can prove the existence of a solution satisfying our boundary conditions by
the following continuity argument. We must show that there exists an initial point
φ0 from which the particle can start at ρ= 0 and achieve φ= φ+ at ρ=∞. The
potential is reversed to give −V (φ) as depicted in Figure 6.2, and φ1 is defined
as the point at which the potential crosses zero. If φ0 > φ1 , φ(ρ) will never
reach φ+ even as ρ→∞ starting with zero velocity. If, however, φ− < φ0 < φ1,
and φ0 is sufficiently close to φ−, φ(ρ) will surpass φ+ at some finite time. We
can understand this intuitively; if φ0 is arbitrarily close to φ−, the particle will
roll off this potential hill arbitrarily slowly. We can make this time so long that
the coefficient of friction, 3

ρ , becomes negligibly small. Then the particle will roll
off and eventually climb the hill at φ+ and even surpass φ+ since it is now a
conservative system. Indeed, for φ(ρ) close to φ− we can linearize the equation
of motion, (

d2

dρ2
φ+

3

ρ

d

dρ
φ−ω2

)
(φ(ρ)−φ−) = 0, (6.15)

which has the solution

(φ(ρ)−φ−) = 2(φ(0)−φ−)
I1(ωρ)

ωρ
(6.16)

where ω2 is V ′′(φ−), and I1(ωρ) is the modified Bessel function of the first
kind. This implies that for (φ(0)−φ−) sufficiently small, (φ(ρ0)−φ−) can be
kept arbitrarily small such that φ(ρ0)<φ1 so that the potential energy remains
positive, where ρ0 is determined by the condition that the subsequent energy
lost to the friction term is negligible. Once the friction term becomes negligible,
the system is conservative and, since at ρ0 the potential energy is positive, the
particle will clearly surpass φ+ at finite ρf . A measure of the energy lost in the
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friction is obtained by the integral∫ ρf

ρ0

dρ
3

ρ

d

dρ
φ <

3

ρ0

∫ ρf

ρ0

dρ
d

dρ
φ≈ 3

ρ0

∫ φ+

φ−
dφ=

3

ρ0
(φ+−φ−). (6.17)

Thus we choose ρ0 large enough so that this energy is negligible in comparison
to the energy scales that drive the dynamics, say V (0):

3

ρ0
(φ+−φ−)� V (0). (6.18)

Then finally we conclude that there must exist some intermediate φ0 from which
φ(ρ) will attain φ+ exactly as ρ→∞. This implies the existence of a solution of
the form we desire.

6.2 The Thin-Wall Approximation

We can go much further with the assumption that the energy density difference
between the two vacua is small.

V (φ) = U(φ)+
ε

2a
(φ−a) (6.19)

with U(φ) = U(−φ), U ′(±a) = 0, U ′′(±a) = ω2 and ε is arbitrarily small, as
depicted in Figure 6.3. We can calculate the action for the bounce to first order
in ε. The reversed potential is given in Figure 6.4. At ρ=0 the field is very close
to −a, it stays there for a very long “time”, and then it rolls relatively quickly
through the minimum of the reversed potential, up to the hill at φ = +a since
now the friction is negligible. It achieves φ=+a only as ρ→∞. The bounce is
like a large four-ball of radius R, in Euclidean space, of true vacuum, separated
by a thin wall, from the false vacuum without.

Unstable VacuumStable Vacuum

a–a
∈

U(φ)+∈(φ –a)/2a

Figure 6.3. The symmetric potential with a small asymmetry
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UnstableVacuumStableVacuum

a–a

–U(φ)–∈(φ –a)/2a

∈

Figure 6.4. The reversed symmetric potential with a small asymmetry

For ρ near R, if we drop the friction term we obtain the equation of motion
(to zero order in ε)

d2

dρ2
φ−U ′(φ) = 0. (6.20)

This is exactly the same equation that we have studied in the double-well problem
of Chapter (3). The instanton solution interpolates from one well to the other as
in Figure 3.3. It is given in this region, which is near the wall, approximately by
the equation

ρ−R=

∫ φ̃(ρ)

0

dφ√
2U(φ(ρ))

. (6.21)

For large |ρ−R|, the solution is given by

φ̃(ρ) =±
(
a−αe−ω|ρ−R|

)
. (6.22)

For example, for the choice of the potential

U(φ) =
λ

4

(
φ2−a2

)2 (6.23)

the solution is

φ̃(ρ) = atanh(ω (ρ−R)) (6.24)

with α= 2a and ω2 = 2λa2.
Thus our bounce is given by

φbounce(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
−a 0< ρ�R

φ̃(ρ) ρ≈R

a ρ�R

. (6.25)
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To find R we do a variational calculation in R.

SE [φbounce] = 2π2

∫ R−Δ

0

dρρ3(−ε) + 2π2

∫ R+Δ

R−Δ

dρρ3

⎛
⎝1

2

(
dφ̃(ρ)

dρ

)2

+U
(
φ̃(ρ)

)⎞⎠+

+ 2π2

∫ ∞

R+Δ

dρρ3 (0)

≈−1

2
π2R4ε+2π2R3S1, for R�Δ, (6.26)

where S1 is the action for the one-dimensional instanton φ̃(ρ) calculated in
Equation (3.27) which is independent of R (we call it S1 here to emphasize
that it is the one-dimensional instanton action),

S1 ≈
∫ ∞

−∞
dx

(
1

2

d2

dx2
φ̃(x)+U

(
φ̃(x)

))
=

∫ a

−a
dφ

√
2U(φ). (6.27)

SE(R) should be stationary under variations of R,

dSE(R)

dR
=−2π2R2ε+6π2R2S1 = 0 (6.28)

hence
R=

3S1

ε
. (6.29)

This confirms our expectation that R→∞ as ε→∞. Finally, the Euclidean
action for the bounce is

SbounceE =
1

2
π2

(
3S1

ε

)4

ε+2π2

(
3S1

ε

)3

S1 =
27π2S4

1

2ε

(
1+ o(ε)3

)
. (6.30)

6.3 The Fluctuation Determinant

The calculation of the coefficient A of Equation (6.3) is not so straightforward,
even approximately. It is given by the determinant of the operator governing
small fluctuations about the bounce.

〈φ+|e−
βĤ
� |φ+ 〉= e−

Sbounce
E

� Ndet
− 1

2

(
− d2

dτ2
−∇2+V ′′ (φbounce)

)
. (6.31)

When we attempt to evaluate the determinant we encounter the same
problems that we have already seen in particle quantum mechanics: non-positive
frequencies for the spectrum of Gaussian fluctuations.

Zero modes come from invariance of the action under translations. We can
translate in space and Euclidean time which gives us four independent zero
modes (we write φbounce as φb for the sake of brevity)

φμ(�x,τ) =N
∂

∂xμ
φb(�x,τ). (6.32)
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78 Decay of the False Vacuum

Zero modes correspond to continuous degeneracies of the critical point of the
Euclidean action. Here they correspond to the arbitrariness of the location of
the centre of the bounce in Euclidean R4 which is actually R. We cannot
integrate over these directions in the integrations over fluctuations about the
bounce; however, we can equivalently integrate over the position of the bounce
in R4 which is actually R. This gives a (divergent) factor of βV and a Jacobian
corresponding to the change of integration variable from the fluctuation degree
of freedom to the coordinate giving the position of the bounce. The Jacobian
factor is of the same type as before, indeed,

δφ=
1

N

∂

∂xμ0
φb ((x−x0)ν)dc μ (6.33)

for an infinitesimal change dcμ of the coefficient of the Gaussian fluctuation along
the normalized zero-mode direction, 1

N
∂
∂x

μ
0
φb ((x−x0)ν), while

δφ=
∂

∂xμ0
φb ((x−x0)ν)dxμ0 . (6.34)

Equating the variation in Equations (6.33) and (6.34) gives
dcμ√
2π�

=
N√
2π�

dxμ0 . (6.35)

Now∫
d4x

1

N2

∂

∂xμ0
φb ((x−x0)ν)

∂

∂xν0
φb ((x−x0)ν) =

δμν
4N2

∫
d4x(∂λφb(x)∂λφb(x)) .

(6.36)
We can evaluate this integral by using the fact that the action SE is stationary
at the bounce.

0 =
d

dλ
SE [φb(λx)]

∣∣∣∣
λ=1

=
d

dλ

∫
d4x

(
1

2
(∂μφb(λx)∂μφb(λx))+V (φb(λx))

)∣∣∣∣
λ=1

=
d

dλ

∫
d4x

(
1

λ2
1

2
(∂μφb(x)∂μφb(x))+

1

λ4
V (φb(x))

)∣∣∣∣
λ=1

=

∫
d4x

(
−21

2
(∂μφb(x)∂μφb(x))− 4V (φb(x))

)
=−4SE [φb(x)]+

∫
d4x(∂μφb(x)∂μφb(x)) . (6.37)

Hence ∫
d4x(∂μφb(x)∂μφb(x)) = 4SE [φb(x)] (6.38)

and finally
N =

√
SE [φb(x)] (6.39)

exactly as in the one-dimensional case. The Jacobian factor becomes(√
SE [φb(x)]

2π�

)4

, giving the integration over the position of the bounce

(SE [φb(x)])
2

4π2�2
βV. (6.40)
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We do the same analysis for N well-separated bounces, which are approximate
critical points, which gives us(

(SE [φb(x)])
2

4π2�2

)N
(βV )N

N !
, (6.41)

where the N ! simply indicates that the permutations of the positions of the
bounces do not give new configurations. This gives

〈φ+|e−
βĤ
� |φ+〉 =Ndet

− 1
2 (−∂μ∂μ+V ′′ (φ+))e

−
(
βV

(
e
−SE [φb(x)]

�

)
(SE [φb(x)])

2

4π2�2
K

)
,

(6.42)
where K is now the ratio

K =

(
det′ (−∂μ∂μ+V ′′ (φb))
det(−∂μ∂μ+V ′′ (φ+))

)− 1
2

(6.43)

and the prime indicates that the zero modes are removed. The normalization
constant N is defined to exactly cancel the free determinant that appears

Ndet
− 1

2 (−∂μ∂μ+V ′′ (φ+)) = 1 (6.44)

This is, not the whole story, because the operator

−∂μ∂μ+V ′′ (φb) (6.45)

has a negative mode. Again our analysis of meta-stable states in quantum
mechanics applies directly. Taking into account the factor of 1

2 which comes
from the analytic continuation and deformation of the contour, we find

i
Γ

V
=

(SE [φb(x)])
2

4π2�2

(
e−

SE [φb(x)]
�

)(
det′ (−∂μ∂μ+V ′′ (φb))
det(−∂μ∂μ+V ′′ (φ+))

)− 1
2

. (6.46)

The prime still indicates that only the zero modes are removed, the square root
of the negative eigenvalue reproduces the imaginary nature and the factor of 1

2

is taken into account because the lifetime is 1
2 of the imaginary part. Analysis of

the negative modes is left for Section 6.5.

6.4 The Fate of the False Vacuum Continued

We continue our analysis of the decay of the false vacuum by considering
the evolution of the field after the tunnelling event. We can obtain some
intuition from the WKB analysis of tunnelling in particle quantum mechanics.
Consider the decay of a nucleus by α-particle emission. A reasonably successful
phenomenological potential has the form of a square well of depth extending to
less than zero attached to a short-range drop off potential from the top reaching
to zero, as depicted in Figure 6.5. The negative energy levels in the well are stable,
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tunnelling out point

meta-stable state

bound states

Figure 6.5. A nuclear tunnelling potential

but the positive energy levels are meta-stable and decay by tunnelling. The semi-
classical description of the decay process proceeds as follows. The particle stays
in the well up to a time, the “transition time”, which is a random variable, when
it makes a quantum jump to the other side of the barrier. It appears suddenly
at the other side at a point, which we call the “tunnelling out point”, with the
same energy as the meta-stable state within. Subsequently, it continues like a
free classical particle until it eventually moves off to infinity.

Quantum mechanics only enters in the calculation of the process of barrier
penetration. It allows us to calculate the mean value of the “transition time”.
In the WKB analysis, the tunnelling out point is the point on the other side
of the barrier with equal energy to the energy of the meta-stable state inside,
from which, if the particle were released, it would move off to infinity under
the classical dynamics. This is the turning point in the usual WKB analysis.
We identify this point as the point where all velocities are zero in the bounce
solution. We choose this point by the condition

∂τφ(�x,τ)|τ=0 = 0. (6.47)

This is satisfied by the O(4) symmetric ansatz that we have taken,

∂τφ(ρ)|τ=0 = ∂ρφ(ρ)

(
τ

ρ

)∣∣∣∣
τ=0

= 0. (6.48)

The field appears at τ =0 in the state described by φb(�x,τ =0) and then evolves
classically. The WKB analysis should not be taken too literally. It will not be
accurate for observations made just after the tunnelling event occurs. It is more
correctly an asymptotic description for what happens long after and far away
from the tunnelling event.

6.4.1 Minkowski Evolution After the Tunnelling

We continue nevertheless with the initial condition for after the tunnelling event

φ(�x,t= 0) = φb(�x,τ = 0), ∂τφ(�x,τ)|τ=0 = 0 (6.49)
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and then the field evolves according to the classical, now Minkowskian, equation
of motion, (

d2

dt2
−∇2

)
φ(�x,t)+V ′ (φ(�x,t)) = 0. (6.50)

At t=0, φ(�x,t= 0)=φb(�x,τ =0) is exactly a bubble of radius R of true vacuum,
separated by a thin wall from the false vacuum without. This is because φb(�x,τ)=
φb(

√
|�x|2+ τ2)→ φ(r) for t = 0 with r = |�x|. We can immediately write down

the solution to the classical Minkowskian equation of motion for the subsequent
evolution of the bubble. Simply

φ(�x,t) = φb

(√
|�x|2− t2

)
. (6.51)

In detail for the Minkowskian signature, with ρ̃≡
√
|�x|2− t2 =√−xμxμ,

∂μ∂
μφ(ρ̃) = ∂μ

(
d

dρ̃
φ(ρ̃)∂μρ̃

)
=

d2

dρ̃2
φ(ρ̃)∂μρ̃∂

μρ̃+
d

dρ̃
φ(ρ̃)∂μ∂

μρ̃. (6.52)

Using ∂μρ̃=−xμ
ρ̃ , ∂μρ̃∂μρ̃=−1 and hence ∂μ∂μρ̃=− 3

ρ̃ we get

∂μ∂
μφ(ρ̃) =−

(
d2

dρ̃2
+

3

ρ̃

)
φ(ρ̃). (6.53)

The Euclidean equation satisfied by φb
(√

|�x|2+ τ2
)

is(
d2

dτ2
+∇2

)
φb

(√
|�x|2+ τ2

)
−V ′

(
φb

(√
|�x|2+ τ2

))
= 0. (6.54)

Since

∂μ∂μφ(ρ) =

(
d2

dρ2
+

3

ρ

)
φ(ρ). (6.55)

gives (
d2

dρ2
+

3

ρ

)
φ(ρ)−V ′ (φ(ρ)) = 0. (6.56)

Thus (
d2

dt2
−∇2

)
φb

(√
|�x|2− t2

)
+V ′

(
φb

(√
|�x|2− t2

))
= 0 (6.57)

and it should be noted that this solution is only valid for |�x|2 > t2, i.e. for the
exterior of the bubble.

Then the O(4) invariance of the Euclidean solution is replaced by the O(3,1)

invariance of the Minkowskian regime. This implies that the evolution of the
bubble appears the same to all Lorentz observers. When the bubble is nucleated,
the wall of the bubble is at r ≈ R, and then it follows the hyperbola, ρ̃2 =

r2− t2 = R2. This is because the functional form of φ(ρ̃) describes the wall for
all ρ̃ ≈ R2. This means that the bubble grows with a speed which approaches
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Bubble wall

Bubble growth
t

R r

Figure 6.6. The growth of the bubble wall after tunnelling

First sighting

Collision
Warning

time

Observer

Bubble advance warning

R r

t

Figure 6.7. Collision warning time with the growth of the bubble wall

the speed of light asymptotically, as depicted in Figure 6.6. How quickly the
growth approaches c depends on R. If R is a microscopic number, like 10−10 →
10−30 as we would expect, the bubble grows with the speed of light almost
instantaneously. If a bubble is coming towards us, the warning time we have is
given by the projection of the forward light cone from the creation point to our
world line (vertical), as depicted in Figure 6.7. The time this gives us in warning,
T , is essentially the time it takes light to travel the distance R, as long as the

https://doi.org/10.1017/9781009291248.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.007
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observer is far from the creation point relative to R. For R micro-physical, T
is also microphysical. After the bubble hits us, quoting directly from Coleman
[31]: “We are dead. All constants of nature inside the bubble are different. We
cannot function biologically or even chemically”. But, paraphrasing, as further
pointed out by Coleman, this is no cause for concern, since for R∼ 10−15 metres,
T ∼ 3× 10−8 seconds, this is much less time than the time it takes for a single
neuron to fire. If such a bubble is coming towards us, we won’t know what hit us.

6.4.2 Energetics

The energy carried by the wall of the bubble is exactly all the energy gained by
converting a sphere of radius R of false vacuum into true vacuum. The energy
in the wall per unit area is

E =
1

4πR2

∫
|r|≈R
d3x

(
1

2

(
�∇φb

)2

+V (φb)

)

=
1

R2

∫ R+Δ

R−Δ

drr2
(
1

2

(
�∇φb

)2

+V (φb)

)
≈

∫ ∞

−∞
dr

(
1

2

(
�∇φb

)2

+V (φb)

)
= S1. (6.58)

Now, in time, the wall follows the hyperbola r2− t2 = R2, hence the energy in
the wall always stays in the wall. After some time, the element of area will have
a velocity v. Energy per unit area just transforms as the zero component of a
Lorentz vector,

S1 →
S1√
1− v2

. (6.59)

So at such a time the energy in the wall is

E = 4πr2
S1√
1− v2

(6.60)

with

v =
dr

dt
=
d

dt

√
R2+ t2 =

t√
R2+ t2

=

√
r2−R2

r2
=

√
1− R2

r2
. (6.61)

Thus
√
1− v2 =

√
1−

(
1− R2

r2

)
= R

r , and

E = 4πr2S1
r

R
=

4

3
πr3

(
3S1

R

)
=

4

3
πr3ε. (6.62)

(In the thin-wall approximation, we have R = 3S1
ε .) This is exactly the energy

obtained from the conversion of a ball of radius r of false vacuum into true
vacuum. Hence all the energy goes into the wall. Inside the bubble is just the
tranquil, true vacuum. There is no boiling, roiling, hot plasma of excitations.
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6.5 Technical Details

We complete this chapter with some technical points which we have left
unaddressed.

6.5.1 Exactly One Negative Mode

We have assumed that there was exactly one negative energy mode to the
operator governing small fluctuations

(−∂μ∂μ+V ′′ (φb))φn = λnφn. (6.63)

We can prove this in the thin-wall approximation. O(4) invariance means that
we can expand in the scalar spherical harmonics in four dimensions

φn,j (ρ,Ω) =
1

ρ
3
2

χn,j (ρ)Yj,m,m′ (Ω) , (6.64)

where Yj,m,m′ (Ω) transforms according to the representation Djj of SO(4) =

SO(3)× SO(3), with m and m′ independently going from −j to j. These are
the eigenfunctions of the transverse Laplacian in four dimensions. Then to zero
order in ε,(

− d2

dρ2
+

8j(j+1)+3

4ρ2
+U ′′ (φb(ρ))

)
χn,j (ρ) = λn,jχn,j (ρ) (6.65)

for the resulting radial equation. This is analogous to the Schrödinger equation
for a particle in a radial potential in three dimensions.

The zero modes
1√

SbounceE

∂μφb(ρ) (6.66)

transform according to the j = 1
2 representation. ( 12 + 1

2 = 1+ 0 for the three-
dimensional rotation subgroup.) Since φb(ρ) is an increasing function, it starts
at φ− and increases to φ+ at ρ=∞, the zero modes have no nodes. Hence they
are the modes of lowest “energy” for j = 1

2 . For j > 1
2 the Hamiltonian is simply

greater than for j = 1
2 , hence all modes have energy greater than zero. Thus

the negative modes can only arise in the sector with j = 0. There must be at
least one negative mode since the Hamiltonian is simply smaller for j =0. In the
thin-wall limit, U ′′ (φb(ρ)) has the form given in Figure 6.8 where ω2 =U ′′ (φ±).
This is because φb(ρ) starts at φ− at ρ= 0 and stays so until about ρ=R where
it interpolates relatively quickly to φ+, and then stays essentially constant until
ρ=∞. The zero modes, corresponding to derivatives of φb(ρ), hence have support
localized at the wall. The negative energy modes must also be localized there.
Thus we approximate the equation near ρ ≈ R by replacing in the centrifugal
term ρ→R. This yields the equation(

− d2

dρ2
+

8j(j+1)+3

4R2
+U ′′ (φb(ρ))

)
χn,j (ρ) = λn,jχn,j (ρ) . (6.67)
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R

ρ

ω2

U˝(φb(ρ))

Figure 6.8. The potential for the small fluctuations about a thin-wall bubble

Clearly

λn,j = λn+
8j(j+1)+3

4R2
(6.68)

with λn, ordered to be increasing with n, evidently independent of j. For R→∞,
λn are the eigenvalues of the one-dimensional operator(

− d2

dx2
+U ′′ (f(x))

)
, (6.69)

where f(x) = φb(x) with x ∈ [−∞,∞], i.e. we can neglect the effect of the
boundary at ρ = 0. We already know that for j = 1

2 the minimum eigenvalue
is zero, thus

λ0 → −8j(j+1)+3

4R2

∣∣∣∣
j= 1

2

=−
8 · 12 ·

3
2 +3

4R2
=− 9

4R2
. (6.70)

This gives

λ0,0 =− 9

4R2
+

3

4R2
=− 3

2R2
, (6.71)

which is negative. All other eigenvalues for j = 1
2 are positive, for all R. This

implies that all the other λn are greater than zero, since

lim
R→∞

(
λn+

8 · 12 ·
3
2 +3

4R2

)
= lim
R→∞

(λn)> 0 for n> 0. (6.72)

Thus also for j = 0

λn+
3

4R2
> 0, for n> 0, (6.73)

for R large, hence there are no other negative eigenvalues.
In the limit ε→ 0 we obtain the double-well potential depicted in Figure 6.9.

There are no bounce-type solutions for this potential. Our solution just becomes
a ball of true vacuum of infinite radius, R = 3S1

ε →∞. There exist only the
solutions

φ= φ− or φ= φ+ (6.74)
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U(φ)

φ– φ+

Figure 6.9. The symmetric double-well potential U(φ)

to the Euclidean equation of motion. This is different from the case of particle
quantum mechanics, where there are tunnelling-type solutions between the two
wells. This difference is completely consistent with our understanding of quantum
field theory in a potential with two symmetric wells of the same depth. In such
a theory there is spontaneous symmetry breaking. The two vacua, constructed
above each well, correspond to inequivalent representations of the quantum field.
They cannot exist in the same Hilbert space, and hence there is no tunnelling
between them.

6.5.2 Fluctuation Determinant and Renormalization

The determinant that we must compute is

κ≡ det(−∂μ∂μ+V ′′ (φb)) = eln(det(−∂μ∂μ+V
′′(φb))) = etr ln(−∂μ∂μ+V

′′(φb)).

(6.75)
We expand about φ= φ+, then V ′′ (φ+)≈ ω2, then we have

κ= etr ln(−∂μ∂μ+ω
2+(V ′′(φb)−ω2))

= e
tr ln

(
(−∂μ∂μ+ω2)

(
1+(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)

))

= e
tr ln

(
(−∂μ∂μ+ω2)+trln

(
1+(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)

))

= κ0e
tr

(
(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)− 1

2

(
(−∂μ∂μ+ω2)

−1
(V ′′(φb)−ω2)

)2
+···

)
(6.76)

where κ0 = det
(
−∂μ∂μ+ω2

)
. The free determinant will be absorbed in the

definition of the factor K = (κ/κ0)
− 1

2 of Equation (6.43).
The first two terms in this expansion are infinite; however, all the rest are finite.

V ′′ (φb)−ω2 is exponentially small for ρ�R, so we may Fourier transform it to
obtain

f̃(kμ) =

∫
d4x

(2π)4
e−ikμxμ

(
V ′′ (φb)−ω2

)
. (6.77)
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Figure 6.10. Feynman diagram for the first term in the expansion of
Equation (6.76)

f̃(kμ) its Fourier transform is then also exponentially small for large kμ. Then

tr
((
−∂μ∂μ+ω2

)−1 (
V ′′ (φb)−ω2

))
=

∫
d4xd4y〈x| 1

−∂μ∂μ+ω2
|y〉〈y|V ′′ (φb)−ω2|x〉

=

∫
d4xd4y

∫
d4k

(2π)4
eikμ(xμ−yμ)

k2+ω2

(
V ′′ (φb(x))−ω2

)
δ(x− y)

=

∫
d4k

(2π)4

∫
d4xd4y

∫
d4q

eikμ(xμ−yμ)eiqμxμ

k2+ω2
f̃(qμ)δ(x− y)

=

∫
d4k

(2π)4

∫
d4q

∫
d4x

eiqμxμ f̃(qμ)

k2+ω2

=

∫
d4k

(2π)4
1

k2+ω2

(∫
d4qδ(qμ)f̃(qμ)

)
. (6.78)

The integral over d4k is divergent, and can be represented by the diagram given
in Figure 6.10. The infinity arising here must be absorbed via a non-trivial
renormalization of the theory. The next term is

tr

(
1

2

((
−∂μ∂μ+ω2

)−1 (
V ′′ (φb)−ω2

))2
)

=
1

2

∫
d4xd4y〈x| 1

−∂μ∂μ+ω2
|y〉〈y| 1

−∂μ∂μ+ω2
|x〉×(

V ′′ (φb(y))−ω2
)(
V ′′ (φb(x))−ω2

)
=

1

2

∫
d4xd4y

∫
d4kd4ld4pd4q

(2π)8
eikμ(x−y)μ+ilμ(y−x)μ+iqμyμ+ipμxμ

(k2+ω2)(l2+ω2)
f̃(qμ)f̃(pμ)

=
1

2

∫
d4pd4l

1

((l− p)2+ω2)

1

(l2+ω2)
f̃(pμ)f̃(−pμ), (6.79)

where integrating over x and y obtains two delta functions in momentum, and
then integrating over k and q eliminates these two variables. The integrals can
be represented diagrammatically as depicted in Figure 6.11. The integration over
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Figure 6.11. Feynman diagram for the second term in the expansion of
Equation (6.76)

Figure 6.12. General Feynman diagram of the expansion of Equation (6.76)

l is divergent and also requires a non-trivial renormalization of the theory.
In general we get a diagram of the form given in Figure 6.12. It corresponds

to the integral∫
d4l

∫
d4p1 · · ·d4pN
(2π)4(N−1)

δ(p1+ p2+ · · ·+ pN )f̃(p1μ) · · · f̃(pNμ)
(l2+ω2)((l− pN )2+ω2) · · ·

(
(l−

∑N
i=2 pi)

2+ω2
) .
(6.80)

It is only the integration over l which can cause problems, the f(piμ) are
exponentially decreasing for piμ→∞. For three or more insertions the integral
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is finite∫
d4l

1

(l2+ω2)((l− p1)2+ω2)((l− (p1+ p2))2+ω2)
∼

∫
dl

l2
. (6.81)

The solution of the problem of how to remove the divergences is by adding
a set of (an infinite number of) counter-terms to the action, which will cancel
the infinities arising from the integrations. It is a property of a renormalizable
field theory that all such counter-terms can be reabsorbed into a multiplicative
redefinition of the coupling constants and fields of the original theory. This means
that the counter-terms correspond to terms which are of the same form as those
already present.

Sbare (φ) = SR (φ)+�S1 (φ)+ · · · , (6.82)

where SR (φ) is finite, but S1 (φ) is not and the higher terms are not. This implies
a change in the bounce, which will also be of the form

φb = φRb +�φ1+ · · · , (6.83)

where φRb is the same function as φb but now of the renormalized parameters.
Now

Sbare
(
φRb +�φ1+ · · ·

)
= SR

(
φRb

)
+�S1

(
φRb

)
+
δSR (φ)

δφ
|φR

b
�φ1+ o(�2)

= SR
(
φRb

)
+�S1

(
φRb

)
+ o(�2), (6.84)

where the third term in the first equality vanishes by the equations of motion.
Then

Γ

V
=

(
SR

(
φRb

))2
4π2�2

e−
SR(φRb )+�S1(φRb )+···

�

⎛
⎝det′

(
−∂2+V R′′ (

φRb
))

det
(
−∂2+V R′′ (

φR+
))

⎞
⎠

− 1
2

(6.85)

with the stipulation that

e−
�S1(φRb )+···

�

⎛
⎝det′

(
−∂2+V R′′ (

φRb
))

det
(
−∂2+V R′′ (

φR+
))

⎞
⎠

− 1
2

(6.86)

be finite. We choose S1 (φb) so that we cancel the two divergent terms in the
expansion of the determinant. This can be made even clearer by ensuring that
the bare action to o(�) vanish at the renormalized unstable vacuum value φR+.
This requires

SR
(
φR+

)
+�S1

(
φR+

)
= �S1

(
φR+

)
= 0 (6.87)

since by definition SR
(
φR+

)
=0. We can achieve this by subtracting the constant

�S1
(
φR+

)
from the bare action in Equation (6.82), giving

Sbare (φ) = SR (φ)+�
(
S1 (φ)−S1

(
φR+

))
+ · · · . (6.88)
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This change implies the condition that

e−
�(S1(φRb )−S1(φR+))+···

�

⎛
⎝det′

(
−∂2+V R′′ (

φRb
))

det
(
−∂2+V R′′ (

φR+
))

⎞
⎠

− 1
2

(6.89)

be free of infinities. We see that one factor of counter-terms matches with each
determinant, ensuring the independent renormalizability.

In a renormalizable theory, such as φ4 theory, it is possible to prove that
it can be done keeping S1 (φ) of the same form as Sbare (φ). In the general
case, it is clear that the infinities can be cancelled; however, it is not clear
that it can be done keeping the same functional form of the bare Lagrangian.
Continuing the perturbative expansion of the functional integral beyond the
Gaussian approximation will yield higher loop corrections and infinities, for
which it will be necessary to add further counter-terms, written as �2S2(φ)+ · · · .
These again, for a renormalizable theory will be of the same form as the bare
Lagrangian. We will not belabour the point any further.

One final avenue for controlling the determinant is to decompose it into angular
momentum eigen-sectors using

−∂2j +V ′′ (φb) =
d2

dρ2
+

8j(j+1)+3

4ρ2
+V ′′ (φb (ρ)) (6.90)

in the angular momentum j sector. The multiplicity of the spherical harmonics
of order j is (2j+1)2. Then

det′
(
−∂2+V ′′ (φb)

)
det(−∂2+ω2)

= e

∑′∞
j=0, 1

2
,1,···

⎛
⎜⎝tr ln

(
−∂2j+V ′′(φb)

−∂2
j
+ω2

)(2j+1)2

−counter terms

⎞
⎟⎠
.

(6.91)
Each term is a one-dimensional determinant which we know in principle how to
calculate. It is finite. The infinities reappear after the summation over j.

6.6 Gravitational Corrections: Coleman–De Luccia

In this section we will consider gravitational corrections to vacuum decay. This
is eminently reasonable as the application of these methods will be to situations
where gravity is important, such as the evolution of the universe, where we invoke
Lorentz invariance. The relevance of gravitational effects to vacuum decay in
condensed matter systems may not be so important. However, in cosmological
applications, the consideration of gravitational effects is clearly indicated. This
analysis was first done by Coleman and De Luccia [33], and we will follow their
presentation closely.
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φ– φ+

Figure 6.13. The potential with a small asymmetry

For simplicity, we consider a single scalar field with the Euclidean action

SE [φ] =

∫
d4x

((
1

2
∂μφ

)2

+V (φ)

)
, (6.92)

which is valid with the absence of gravity. The potential V (φ) will be as in
Figure 6.13, with a true minimum at φ− and a false minimum at φ+; however,
we will not assume that the potential is symmetric under reflection φ→ −φ.
We will further assume that the value of the potential at each minimum is very
small, proportional to a parameter ε. Thus

V (φ) = V0(φ)+ o(ε), (6.93)

where V0(φ±) = 0.
Adding gravitational corrections may seem pointless at microscopic scales, but

for other scales they can be very important. Indeed, if a bubble of radius Λ of false
vacuum is converted to a true vacuum, an energy in the amount E = ε4πΛ3/3

will be released, and this energy will gravitate in the usual Newton–Einstein
fashion. The Schwarzschild radius of the gravitating energy will be 2GE. This
radius will be equal to the radius of the bubble when Λ = 2GE = 2Gε4πΛ3/3.
This gives

Λ= (8πGε/3)
−1/2

. (6.94)

For energy densities of the order of ε≈ (1GeV )4 this gives a radius of about 0.8
kilometres. Thus the gravitational effects of vacuum decay occur at scales which
are neither microscopic nor cosmological, but right in the scales of planetary and
terrestrial physics. It might well be that gravitational effects in vacuum decay
are very relevant.
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Adding the gravitational interaction, the action changes to

SE [φ,gμν ] =

∫
d4x

√
gLE =

∫
d4x

√
g

(
1

2
gμν∂μφ∂νφ+V (φ)+

1

16πG
R

)
,

(6.95)
where gμν is the spacetime metric, gμν its inverse, g is the determinant of the
metric and R is the curvature scalar. We note that in Euclidean spacetime,
the determinant of the metric g is positive. Adjusting the zero of the potential
V (φ)→ V (φ)− V0, V0 a constant, corresponds to adding √

gV0 to the action,
which is exactly the same as modifying or adding a cosmological constant.
Thus the gravitational spacetime inside the bubble and outside the bubble will
necessarily be quite different, with different values of the cosmological constant.
This makes perfect sense with our understanding that gravitation is sensitive to
and couples to the total energy in a system, including the vacuum energy density.
Thus we have to specify the cosmological constant of our initial false vacuum,
of which we are going to compute the decay. The cosmological constant being
exceptionally small at the present time, we will consider two cases of potential
interest. First we will consider the possibility that we are living in a false vacuum
with zero cosmological constant and this false vacuum decays to a true vacuum
of negative cosmological constant, i.e. V (φ+) = 0. Second, we will consider that
a false vacuum with a finite, positive cosmological constant decays to the true
vacuum without cosmological constant where we live, i.e. V (φ−) = 0.

6.6.1 Gravitational Bounce

We assume that the bounce in the presence of gravity will have maximal
symmetry, O(4) symmetry. The metric, remember that we are now in Euclidean
spacetime, then must be of the form

ds2 = dξ2+ ρ(ξ)2dΩ2, (6.96)

where dΩ2 is the metric on the three-sphere S3, and ξ is the Euclidean
radial coordinate and corresponds to the proper radial distance along a radial
trajectory. ρ(ξ) is the radius of curvature of each concentric S3 that foliate the
space. dΩ2 can be expressed in a number of coordinates, for example the analogue
of spherical polar coordinates in IR4, or in a more sophisticated manner in terms
of left invariant 1-forms on the group manifold of SU(2) which is exactly S3. But
we will not need this part of the metric explicitly and hence we will not exhibit
it, as we will assume everything is spherically symmetric and hence independent
of the angular degrees of freedom.

We can then compute the Euclidean equations of motion. These for the scalar
field are

∂μ (
√
ggμν∂νφ)−

√
gV ′(φ) = 0. (6.97)
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Using the rather simple form for the metric and the assumption that our field φ
does not depend on the angular coordinates, we find the equation simplifies to

∂ξ
(√
ggξξ∂ξφ

)
−√gV ′(φ) = 0. (6.98)

Furthermore, gξξ = 1 and √
g = ρ3(ξ)

√
gΩ where gΩ is the determinant of the

metric of the angular coordinates, which is just the metric on a unit three-sphere.
gΩ depends explicitly on the angular coordinates but it does not depend on ξ.
Since the only derivative that appears in the equation of motion is with respect
to ξ, gΩ simply factors out of both terms and then can be cancelled. This gives

0 = ∂ξ
(
ρ3(ξ)∂ξφ

)
− ρ3(ξ)V ′(φ)

= ρ3(ξ)∂2ξφ+3ρ2(ξ)∂ξρ∂ξφ− ρ3(ξ)V ′(φ). (6.99)

Dividing through by ρ3 yields

∂2ξφ+
3∂ξρ

ρ
∂ξφ= V ′(φ). (6.100)

This field equation is augmented by the Einstein equation Gμν =−8πGTμν . The
sign in this equation is convention-dependent, corresponding to the definition of
the curvature tensor, the signature of the metric and the definition of the Ricci
tensor. We will use the sign convention in Coleman–De Luccia [33], which is not
our favourite convention, but we will stick with it to be close to the original
paper. The Einstein equation yields only one net equation,

Gξξ =−8πGTξξ. (6.101)

The other components, which are just the diagonal spatial components, are either
trivial identities or equivalent to this equation. The energy momentum tensor of
the scalar field is

Tμν = ∂μφ∂νφ− gμνLE . (6.102)

To obtain the Einstein equation, Equation (6.101), one has to compute the
Ricci curvature through the Christoffel symbols, which is straightforward but
somewhat tedious. We will not spell out the details here; with the use of symbolic
manipulation software, the calculation is actually trivial. We find that there is
only one independent equation,

(∂ξρ)
2
= 1+

1

3
8πGρ2

(
1

2
(∂ξφ)

2−V (φ)

)
. (6.103)

It makes perfect sense that there are only two independent equations of motion,
as there are only two independent fields, ρ and φ. The two equations of motion
can be obtained from an effective one-dimensional Euclidean action

SE [φ,ρ] = 2π2

∫
dξ

(
ρ3

(
1

2
(∂ξφ)

2
+V (φ)

)
+

3

8πG

(
ρ2∂2ξρ+ ρ(∂ξρ)

2− ρ
))

.

(6.104)
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The equation of motion for φ is straightforward, that for ρ appears only after
self-consistently using the derivative of Equation (6.103) to eliminate the second-
order derivative in its usual equation of motion.

We solve Equation (6.100) in the approximation that the first derivative term
is negligible, and the assumption that the potential term can be approximated
by a function V (φ) = V0(φ) + o(ε) with the condition that V ′(φ±) = 0 and
V0(φ+)=V0(φ−). This latter assumption is very reasonable if the actual potential
is obtained from a small perturbation of a degenerate double-well potential. We
do not assume that the double well is symmetric, however, just that the minima
have the same value for the potential. Then Equation (6.100) becomes

∂2ξφ= V ′
0(φ), (6.105)

which admits an immediate first integral

1

2
(∂ξφ)

2
= V0(φ)+C, (6.106)

where C is the integration constant. C is determined by the value of V0 at φ+,
as we are looking for a solution that interpolates from φ− at the initial value of
ξ, which is normally taken to be zero, to φ+ as ξ→∞. Thus

1

2
(∂ξφ)

2
= V0(φ)−V0(φ+). (6.107)

This equation can be easily integrated as∫ φ

(φ++φ−)/2

dφ
√
2(V0−V0(φ+)) =

∫ ξ

ξ̄

dξ = ξ− ξ̄, (6.108)

where ξ̄ is the value at which the field is mid-way between φ+ and φ−, which
can be taken as the position of the wall. In principle, then, we should solve for
φ which is implicitly defined by this equation. This will not be done explicitly
and, continuing implicitly, once we have φ, we can solve Equation (6.103) for
ρ. To solve this first-order differential equation requires the specification of one
integration constant, we choose that as

ρ̄= ρ(ξ̄), (6.109)

which is the radius of curvature of the wall. We do not need to have φ or ρ
explicitly, if all we want is the value of the action for the bounce. This will depend
on ρ̄; however, we can determine ρ̄ by imposing that the action be stationary
with respect to variations of ρ̄.

We start with the Euclidean action, Equation (6.104), and integrate by parts
on the two-derivative term to bring it all in terms of single derivatives. We will
only be calculating the action relative to its value for the false vacuum, thus it is
calculated in a limiting fashion as the difference of two terms which separately
do not make sense and diverge in principle, but the difference is finite. Thus the
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surface term is irrelevant as we will do the same to the action without the bounce
instanton with just the false vacuum. This gives

SE = 4π2

∫
dξ

(
ρ3

(
1

2
φ′2+V

)
− 3

8πG

(
ρρ′2+ ρ

))
(6.110)

and then we eliminate ρ′ with Equation (6.103). This gives the rather compact
expression

SE = 4π2

∫
dξ

(
ρ3V − 3ρ

8πG

)
=−12π2

8πG

∫
dξρ

(
1− 8πG

3
ρ2V

)
. (6.111)

Now we use the thin-wall approximation, i.e. we assume that the bounce
instanton will be much like the same in the absence of gravity, and for ε→ 0, it will
be of the form of a thin-wall bubble. We will justify the thin-wall approximation
after the analysis. Outside the bubble the bounce configuration is entirely in the
false vacuum and we are comparing the bounce action to the action of exactly
the false vacuum, thus the contribution to the action is zero

SE, outside = 0. (6.112)

Within the wall, we can put ρ= ρ̄, and V → V0 up to o(ε) terms, giving

SE, wall = 4π2ρ̄2
∫
dξ (V0(φ)−V0(φ+)) = 2π2ρ̄3S1, (6.113)

where S1 was defined by Equation (6.27) in the absence of gravity. Finally,
for the inside of the bubble, φ = φ± is a constant, for both cases when we are
computing the action for the bounce or for the false vacuum, thus we have from
Equation (6.103)

dξ = dρ

(
1− 8πG

3
ρ2V (φ±)

)−1/2

. (6.114)

Thus choosing φ− for the bounce and φ+ for the false vacuum we have

SE, inside =−12π2

8πG

∫ ρ̄

0

ρdρ

((
1− 8πG

3
ρ2V (φ−)

)1/2

−
(
1− 8πG

3
ρ2V (φ+)

)1/2
)

=
12π2

(8πG)2

(
1

V (φ−)

((
1− 8πG

3
ρ̄2V (φ−)

)3/2

− 1

)

− 1

V (φ+)

((
1− 8πG

3
ρ̄2V (φ+)

)3/2

− 1

))
(6.115)

where,
SE = SE, outside +SE, wall +SE, inside. (6.116)

This yields an unwieldy expression; however, for the cases which interest us, it
is quite simple.
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Firstly, for the case φ+ = ε,φ− =0, the case where we are living in a spacetime
after the formation of a bubble, we have the simple expression (after taking the
limit V (φ−)→ 0 in the action SE, inside)

SE = 2π2ρ̄3S1+
12π2

(8πG)2

(
−4πGρ̄2− 1

ε

((
1− 8πG

3
ρ̄2ε

)3/2

− 1

))
. (6.117)

Then setting the derivative with respect to ρ̄ to vanish, gives

dSE
dρ̄

= 0= 6π2ρ̄2S1+
12π2

8πG
ρ̄

(
−1+

(
1− 8πG

3
ρ̄2ε

)1/2
)
, (6.118)

which is easily solved as

ρ̄=
12S1

4ε+24πGS2
1

≡ ρ̄0

1+ (ρ̄0/2Λ)
2 , (6.119)

where ρ̄0 = 3S1/ε, which is the bubble radius in the absence of gravity, and
Λ =

√
3/(8πGε), the radius at which the Schwarzschild radius of the energy

from converting a false vacuum to a true vacuum is equal to the bubble radius
as defined in Equation (6.94). Evaluating the action at the value of ρ̄ yields

SE =
1(

1+ (ρ̄0/2Λ)
2
)2

27π2S4
1

2ε3
=

S0
E(

1+ (ρ̄0/2Λ)
2
)2 , (6.120)

where S0
E is the action of the bounce in the absence of gravity. We can obtain

this formula by brute force replacement for ρ̄; however, we can minimize the
algebra by noting the Euclidean action, as a function of ρ̄, has the form

SE = αρ̄3−βρ̄2+ γ− δ
(
1− ζρ̄2

)3/2 (6.121)

with α = 2π2S1, β = 3π/4G, γ = 3/16G2ε, δ = 8πGε/3 and ρ̄ = (3S1/ε)/(1 +

(ρ̄0/2Λ)
2) and the above definitions of ρ̄0 and Λ. The action is stationary at ρ̄

hence
3αρ̄2− 2βρ̄− 3δ

(
1− ζρ̄2

)1/2
(−ζρ̄) = 0. (6.122)

Then factoring out by 3, multiplying by ρ̄ and adding and subtracting terms we
can reconstruct SE

3

(
αρ̄3−βρ̄2+ γ− δ

(
1− ζρ̄2

)1/2 (
1− ζρ̄2

)
+ δ

(
1− ζρ̄2

)1/2− γ+ β

3
ρ̄2

)
= 0

(6.123)
so then we get

SE = γ− β

3
ρ̄2− δ

(
1− ζρ̄2

)1/2
. (6.124)

From the derivative, Equation (6.122), we can easily find

δ
(
1− ζρ̄2

)1/2
=

2β

3ζ
− αρ̄

ζ
(6.125)
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and then we have
SE = γ− β

3
ρ̄2− 2β

3ζ
+
αρ̄

ζ
, (6.126)

which now is straightforward to evaluate, yielding Equation (6.120).
For the second case, V (φ+) = 0, V (φ−) = −ε, where we are now living in a

false vacuum that may decay at any moment, we obtain with similar algebra

ρ̄=
ρ̄0

1− (ρ̄/2Λ)
2 (6.127)

while

SE =
S0
E(

1− (ρ̄/2Λ)
2
)2 . (6.128)

For the thin-wall approximation to be valid, we required that the radius of the
bubble was much larger than the length scale over which φ changed significantly.
The friction term, (3/ρ)(dφ/dρ), was neglected in Equation (6.12) as the factor
(3/ρ)∼ (3/ρ̄)≈ 0. Now in the presence of gravitation we have a different friction
term, (3∂ξρ)/ρ), which is given by Equation (6.103)

1

ρ2

(
d2ρ

dξ2

)2

=
1

ρ2
+

8πG

3

(
1

2

(
dφ

dξ

)2

−V
)
. (6.129)

The first term is the same as without gravity and small if ρ̄ is large. The second
term vanishes on one side of the wall, is constant and of o(ε) on the other, and
over the wall it interpolates between these two values. From Equation (6.107)
it is to lowest order a constant, −V0(φ+), which in our two cases is of o(ε)
plus corrections which are also of o(ε). Hence we lose nothing by replacing
it with ε. This turns the second term into 1/Λ2. Hence the two terms which

control the size of 1
ρ2

(
d2ρ
dξ2

)2

are negligible, justifying self-consistently the thin-
wall approximation, if ρ̄ and Λ are large compared to the variation of φ. The
variation of φ is from φ+ to φ−, over the thickness of the wall. This thickness
is determined by the masses and coupling constants that are in V0 which are
not taken to be remarkable, i.e. neither very large nor very small. Thus the wall
thickness will be independent of ε and hence the variation of φ is of o(1). Thus
self-consistently, for small ε, we can impose that ρ̄ and Λ are large compared to
the variation of φ, and the thin-wall approximation is justified. It is important
to note that this puts no constraint on ρ̄0/Λ which governs the difference in the
solutions Equations (6.119), (6.120), (6.127), (6.128) with gravitation and those
without, Equations (6.29), (6.30), for ρ̄ and SE above. Thus ρ̄0/Λ can be taken
as large as we want. Although this may not be phenomenologically relevant, it
is interesting to consider the possibility.

In the first case with φ+ = ε,φ− = 0 we see that the effect of gravitation is to
increase the probability of vacuum decay, as the denominator in Equation (6.120)
is greater than 1 and hence reduces SE . Gravitation also diminishes the bubble
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radius. For the second case, V (φ+) = 0, V (φ−) = −ε, the effects of gravitation
are in the opposite direction, making it harder for the vacuum to decay as
the denominator in Equation (6.128) is less than 1 and can even vanish, hence
increasing SE to arbitrarily large values. In this case, the bubble radius is
increased by gravity, in the limiting case, pushing it to infinite radius at a finite
value of ρ̄0/Λ = S1

√
24πG/ε. Thus for fixed S1 and ε but for increasing G, we

reach a point when the bubble has infinite radius and its action is infinite,
completely suppressing vacuum decay. Thus gravitation totally suppresses
vacuum decay for ρ̄0 = 2Λ, which means

ε= 6πGS2
1 . (6.130)

An explanation of the quenching of vacuum decay is because of energy
conservation. If we calculate the energy of a bubble of radius ρ̄ first in the
absence of gravitation, we have the volume term and the surface term

E =−4π

3
ερ̄2+4πS1ρ̄

2. (6.131)

In this (second) case of interest, V (φ+) = 0, V (φ−) =−ε, thus we are living in
a false vacuum of zero-energy density and the true vacuum has negative energy
density. Then using the expression ρ̄0 = 3S1/ε we have

E =
4π

3
ερ̄2(ρ̄0− ρ̄), (6.132)

thus we see that the energy vanishes for the bubble, which is expected as the
energy before the bubble materialized was zero. Then the effects of gravitation
can be taken into account, imposing energy conservation. If gravitation increases
the total energy of the bubble, then the bubble must grow in size to compensate
and if the gravitation decreases the energy it must shrink. In the case at hand,
evidently the bubble must grow.

The gravitational contribution to the energy has two terms. First, the ordinary
Newtonian potential energy, which is computed by integrating the gravitational
field squared over all space

ENewton =− επρ̄
5
0

15Λ2
. (6.133)

This follows from the straightforward calculation of the Newtonian energy of the
gravitational field inside a sphere with negative mass density −ε. That energy is

ENewton =
1

2

∫
d3x(−ε)Φ(�x), (6.134)

where the gravitational potential satisfies

∇2Φ(�x) = 4πG(−ε). (6.135)

Then the energy is given by

ENewton =
1

2

∫
d3x

∇2Φ

4πG
Φ=− 1

8πG

∫
d3x |�g|2 , (6.136)
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where �g =−�∇Φ is the gravitational field. Applying Gauss’ law to

�∇·�g =−4πG(−ε) (6.137)

yields

�g =
4πG

3
ε�r (6.138)

for the interior of the bubble. The gravitational field vanishes in the exterior. The
integral Equation (6.136) quickly yields the result, Equation (6.133). The second
contribution comes because the existence of the energy distorts the geometry
correcting the volume of the bubble and hence correcting the volume term in the
energy. From Equation (6.114) we can write the volume element of the bubble

4πρ2dξ = 4πρ2dρ

(
1− 1

2

ρ2

Λ2

)
+ o(G2). (6.139)

Then integrating over the bubble, the energy density −ε yields a change

Egeom =
2περ̄50
5Λ2

(6.140)

giving a total change

Egrav =
περ̄50
3Λ2

. (6.141)

Thus the change in energy is positive, which means that, with gravitation,
the radius of the bubble must increase. It appears that for finite values of
the couplings and parameters, when ρ̄0 = 2Λ, the bubble size becomes infinite.
Increasing the gravitational coupling then gives no solution, i.e. the false vacuum
becomes stable.

Once the bubble has materialized through quantum tunnelling, we can
describe its subsequent evolution essentially classically. For Minkowski space-like
separated points with respect to the centre of the bubble, all we have to do is
analytically continue the solution back to Minkowski time. Thus for flat space we
had ρ2 = �x ·�x+ τ2→ �x ·�x− t2. However, we must continue both the solution and
the metric back to Minkowski time. Thus an O(4)-invariant Euclidean manifold
becomes a O(3,1)-invariant Minkowskian manifold. The metric starts as

ds2 =−dξ2− (ρ(ξ))2dΩ2, (6.142)

the negative definite metric being chosen as we wish to continue to a metric
of signature (+,−,−,−) where dΩ2 becomes the metric on a unit hyperboloid
with space-like normal once continued to Minkowski spacetime. For this region
φ=φ(ρ) the solution that we have implicitly assumed to exist (although we have
not been required to find it explicitly) and for a thin wall, the bubble wall is
always at ρ= ρ̄ and lies in this region. If we are outside a materializing bubble,
then this is all we have to know about the manifold. It is possible to describe
further the evolution of the bubble for the two cases that we have considered;
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however, we will not continue the discussion further, it no longer requires the
methods of instantons. We recommend the reader to consult the original article
of Coleman and De Luccia [33].

6.7 Induced Vacuum Decay

We continue our study of the decay of the false vacuum precipitated by the
existence of topological defects in that vacuum [79, 85]; we restrict our attention
to the example of the decay of a “false cosmic string”. Such a topological soliton
corresponds to a topologically stable, non-trivial configuration inside a spacetime
that is in the false vacuum. We will not worry about gravitational corrections.
Topological solitons exist when the vacuum is degenerate and, generically, we
have spontaneous symmetry breaking.

6.7.1 Cosmic String Decay

Cosmic strings occur in a spontaneously broken U(1) gauge theory, a generalized
Abelian Higgs model [61]. This model contains a complex scalar field interacting
with an Abelian gauge field, hence scalar electrodynamics. However, we consider
the inverse from the usual case, the potential for the complex scalar field φ, has a
local minimum at a non-zero value φ2 = a2, where the symmetry is broken, while
the true minimum occurs at vanishing scalar field, φ=0. The scalar field potential
is considered an effective potential, we do not worry about renormalizability.
We assume the energy density splitting between the false vacuum and the
true vacuum is very small. The spontaneously broken vacuum is the false
vacuum.

In a scenario where from a high-temperature, unbroken symmetry phase the
theory passes through an intermediate phase of spontaneous symmetry breaking,
it is generic that there will be topological defects trapped in the symmetry-broken
vacuum. Furthermore, the system could be trapped in the spontaneously broken
phase, even though, as the temperature cools, the true vacuum returns to the
unbroken symmetry phase. For the complex scalar field, its phase eiθ, can wrap
the origin an integer number of times so that Δθ = 2nπ, as we go around a
given line in three-dimensional space. The line can be infinite or form a closed
loop. Corresponding to the given line there must exist a line of zeros of the
scalar field, where the scalar field vanishes and corresponds to the true vacuum.
The corresponding minimum energy configuration (when the roles of the false
vacuum and true vacuum are reversed) is called a cosmic string, alternatively
a Nielsen–Olesen string [96] or a vortex string [3]. In the scenario that we have
described, the true vacuum lies at the regions of vanishing scalar field, thus the
interior of the cosmic string is in the true vacuum while the exterior is in the
false vacuum. It is already interesting that such classically stable configurations
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actually exist. Such strings must be unstable to quantum mechanical tunnelling
decay. In this section we show how to calculate the amplitude for this decay, in
the thin-wall limit.

In [85], the decay of vortices in the strictly two-spatial-dimensional context
was considered. There, the vortex was classically stable at a given radius R0.
Through quantum tunnelling, the vortex could tunnel to a larger vortex of radius
R1, which was no longer classically stable. Dynamically the interior of the vortex
was at the true vacuum, thus energetically lower by the energy density splitting
multiplied by the area of the vortex. The vacuum energy behaves as ∼ −εR2,
while the magnetic field energy behaves like ∼ 1/R2 and the energy in the wall
behaves like ∼R. Thus the energy functional has the form

E = α/R2+βR− εR2. (6.143)

For sufficiently small ε, this energy functional is dominated by the first two
terms. It is infinitely high for a small radius due to the magnetic energy, and
will diminish to a local minimum when the linear wall energy begins to become
important. This occurs at a radius R0, well before the quadratic area energy, due
to the energy splitting between the false vacuum and the true vacuum becoming
important, when ε is sufficiently small. Clearly, though, for large enough radius of
the thin-wall string configuration, the energy splitting will be the most important
term, and a thin-walled vortex configuration of sufficiently large radius will be
unstable to expanding to infinite radius. However, a vortex of radius R0 will
be classically stable and only susceptible to decay via quantum tunnelling. The
amplitude for such tunnelling, in the semi-classical approximation in the strictly
two-dimensional context, has been calculated in [85].

Here we consider the model in a 3+1-dimensional setting. The vortex can be
continued along the third additional dimension as a string, called a cosmic string.
The interior of the string contains a large magnetic flux distributed over a region
of the true vacuum. It is separated by a thin wall from the outside, where the
scalar field is in the false vacuum. The analysis of the decay of two-dimensional
vortices cannot directly apply to the decay of the cosmic string, as the cosmic
string must maintain continuity along its length. Thus the radius of the string at
a given position cannot spontaneously make the quantum tunnelling transition
to the larger iso-energetic radius, called R1, as it is continuously connected to
the rest of the string. The whole string could, in principle, spontaneously tunnel
to the fat string along its whole length, but the probability of such a transition is
strictly zero for an infinite string, and correspondingly small for a closed string
loop. Here we will describe the tunnelling transition to a state that corresponds
to a spontaneously formed bulge in the putatively unstable thin cosmic
string.
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6.7.2 Energetics and Dynamics of the Thin, False String

6.7.2.1 Set-up We consider the Abelian Higgs model (spontaneously broken
scalar electrodynamics) with a modified scalar potential as in [85] but now
generalized to 3+1 dimensions. The Lagrangian density of the model has the
form

L=−1

4
FμνF

μν +(Dμφ)
∗(Dμφ)−V (φ∗φ), (6.144)

where Fμν = ∂μAν−∂νAμ and Dμφ= (∂μ+eAμ)φ. The potential is a sixth-order
polynomial in φ [79, 111], written

V (φ∗φ) = λ(|φ|2− εv2)(|φ|2− v2)2. (6.145)

Note that the Lagrangian is no longer renormalizable in 3+1 dimensions;
however, the understanding is that it is an effective theory obtained from a
well-defined renormalizable fundamental Lagrangian. The fields φ and Aμ, the
vacuum expectation value v have mass dimension 1, the charge e is dimensionless
and λ has mass dimension 2 since it is the coupling constant of the sixth-
order scalar potential. The potential energy density of the false vacuum |φ|= v

vanishes, while that of the true vacuum has V (0) =−λv6ε. We rescale as

φ→ vφ Aμ→ vAμ e→ λ1/2ve x→ x/(v2λ1/2) (6.146)

so that all fields, constants and the spacetime coordinates become dimensionless,
then the Lagrangian density is still given by Equation (6.144) where now the
potential is

V (φ∗φ) = (|φ|2− ε)(|φ|2− 1)2. (6.147)

and there is an overall factor of 1/(λv2) in the action.
Initially, the cosmic string will be independent of z, the coordinate along its

length, and will correspond to a tube of radius R with a trapped magnetic flux in
the true vacuum inside, separated by a thin wall from the false vacuum outside.
R will vary in Euclidean time τ and in z to yield an instanton solution. Thus
we promote R to a field R→ R(z,τ). Hence we will look for axially symmetric
solutions for φ and Aμ in cylindrical coordinates (r, θ, z, τ). We use the following
ansatz for a vortex of winding number n:

φ(r,θ,z,τ) = f(r,R(z,τ))einθ, Ai(r,θ,z,τ) =−n
e

εijrj
r2

a(r,R(z,τ)), (6.148)

where εij is the two-dimensional Levi–Civita symbol. This ansatz is somewhat
simplistic; it is clear that if the radius of the cosmic string swells out at some
range of z, the magnetic flux will dilute and hence through the (Euclidean)
Maxwell’s equations some “electric” fields will be generated. In three-dimensional,
source-free Euclidean electrodynamics, there is no distinct electric field, the
Maxwell equations simply say that the three-dimensional magnetic field is
a divergence-free and rotation-free vector field that satisfies superconductor
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boundary conditions at the location of the wall. It is clear that the correct form
of the electromagnetic fields will not simply be a diluted magnetic field that
always points along the length of the cosmic string as with our ansatz; however,
the correction will not give a major contribution and we will neglect it. Indeed,
the induced fields will always be smaller by a power of 1/c2 when the usual units
are used.

The Euclidean action functional for the cosmic string then has the form

SE [Aμ,φ] =
1

λv2

∫
d4x

⎡
⎣∑

i

(
1

2
F0iF0i+

1

2
Fi3Fi3

)
+

1

2
F03F03+

∑
ij

1

4
FijFij

+ (∂τφ)
∗(∂τφ)+ (∂zφ)

∗(∂zφ)+
∑
i

Di(φ)
∗(Diφ)+V (φ∗φ)

]
(6.149)

where i, j take values just over the two transverse directions and we have already
incorporated that A0 =A3 = 0.

Substituting Equations (6.147) and (6.148) into Equation (6.149), we obtain

SE =
2π

λv2

∫
dzdτ

∫ ∞

0

drr

[
n2ȧ2

2e2r2
+
n2a′2

2e2r2
+
n2(∂ra)

2

2e2r2
+ ḟ2+ f ′2+(∂rf)

2

+
n2

r2
(1−a)2f2+(f2− ε)(f2− 1)2

]
, (6.150)

where the dot and prime denote differentiation with respect to τ and z,
respectively. Then ȧ =

(
∂a(r,R)
∂R

)
Ṙ and a′ =

(
∂a(r,R)
∂R

)
R′, and likewise for f ,

hence the action becomes

SE =
2π

λv2

∫
dzdτ

∫ ∞

0

drr

⎡
⎢⎣n2

((
∂a(r,R)
∂R

)
Ṙ
)2

2e2r2
+
n2

((
∂a(r,R)
∂R

)
R′

)2

2e2r2
+
n2(∂ra)

2

2e2r2

+

(
∂f(r,R)

∂R
Ṙ

)2

+

(
∂f(r,R)

∂R
R′

)2

+(∂rf)
2+

n2

r2
(1−a)2f2+(f2− ε)(f2− 1)2

]

=
2π

λv2

∫
dz

∫ ∞

0

drr

[(
n2

2e2r2

(
∂a(r,R)

∂R

)2

+

(
∂f(r,R)

∂R

)2
)
(Ṙ2+R′2)

+
n2(∂ra)

2

2e2r2
+(∂rf)

2+
n2

r2
(1−a)2f2+(f2− ε)(f2− 1)2

]
. (6.151)

We note the two- (Euclidean) dimensional, rotationally invariant form (Ṙ2+R′2)
which appears in the kinetic term. This allows us to make the O(2) symmetric
ansatz for the instanton, and the easy continuation of the solution to Minkowski
time, to a relativistically invariant O(1,1) solution, once the tunnelling transition
has been completed.

https://doi.org/10.1017/9781009291248.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.007


104 Decay of the False Vacuum

In the thin-wall limit, the Euclidean action can be evaluated essentially
analytically, up to corrections which are smaller by at least one power of 1/R.
The method of evaluation is identical to that in [85] and we shall not give the
details here; we get

SE =
1

λv2

∫
d2x

1

2
M(R(z,τ))(Ṙ2+R′2)+E(R(z,τ))−E(R0), (6.152)

where

M(R) =

[
2πn2

e2R2
+πR

]
(6.153)

E(R) =
n2Φ2

2πR2
+πR− επR2. (6.154)

Φ is the total magnetic flux and R0 is the classically stable thin tube string
radius.

6.7.3 Instantons and the Bulge

6.7.3.1 Tunnelling Instanton We look for an instanton solution that is O(2)

symmetric. The appropriate ansatz is

R(z,τ) =R(
√
z2+ τ2) =R(ρ) (6.155)

with the imposed boundary condition that R(∞)=R0. It is useful to understand
what this ansatz means. We expect that the solution will be localized in
Euclidean two space, say around the origin. Far from the origin, the solution
will be R = R0. Thus if we go to τ = −∞, the string will be in its dormant,
thin state, all at R=R0. As Euclidean time progresses, at some Euclidean time
τ =−R1 a small bulge, an increase in the radius, will start to form at z=0. This
bulge will then increase dramatically, until at τ = 0 it will be distributed over a
region of the original string of length 2R1, the factor of 2 because the radius of the
O(2) symmetric bubble is R1 in both directions. Then the bubble will “bounce”
back and shrink and the string will return to its original radius. An alternative
description is in terms of the creation of a soliton–anti-soliton pair. The instanton
solution will describe the transition from a string of radius R0 at τ =−∞, to a
point in τ =−R1 at z = 0 when a soliton–anti-soliton pair starts to be created.
The configuration then develops a bulge which forms when the pair separates to
a radius which again has to be R1 because of O(2) invariance and which is the
bounce point of the instanton along the z-axis at τ = 0. Finally the subsequent
Euclidean time evolution continues in a manner which is just the (Euclidean)
time reversal of evolution leading up to the bounce point configuration, until a
simple cosmic string of radius R0 is re-established for τ ≥R1 and all z, i.e. for
ρ≥R1. The action functional is given by

SE =
2π

λv2

∫
dρ ρ

[
1

2
M(R(ρ))

(
∂R(ρ)

∂ρ

)2

+E(R(ρ))−E(R0)

]
. (6.156)
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Figure 6.14. The energy as a function of R, for n= 100, e= .005 and ε= .001

The instanton equation of motion is

d

dρ

(
ρM(R)

dR

dρ

)
− 1

2
ρM ′(R)

(
dR

dρ

)2

− ρE′(R) = 0 (6.157)

with the boundary condition that R(∞) = R0, and we look for a solution
that has R ≈ R1 near ρ = 0, where R1 is the large radius for which the
string is approximately iso-energetic with the string of radius R0. The solution
necessarily “bounces” at τ = 0 since ∂R(ρ)/∂τ |τ=0 = R′(ρ)(τ/ρ)|τ=0 = 0. (The
potential singularity at ρ= 0 is not there since a smooth configuration requires
R′(ρ)|ρ=0 = 0.)

The equation of motion is better cast as an essentially conservative, dynamical
system with a “time”-dependent mass and the potential given by the inversion of
the energy function as pictured in Figure 6.14, but in the presence of a “time”-
dependent friction where ρ plays the role of time:

d

dρ

(
M(R)

dR

dρ

)
− 1

2
M ′(R)

(
dR

dρ

)2

−E′(R) =−1

ρ

(
M(R)

dR

dρ

)
. (6.158)

As the equation is “time”-dependent, there is no analytic trick to evaluating
the bounce configuration and the corresponding action. The solution must be
found numerically, which starts with a given R≈R1 at ρ= 0 and achieves R=

R0 for ρ > ρ0. We can be confident of the existence of a solution by showing
the existence of an initial condition that gives an overshoot and another initial
condition that gives an undershoot, as pioneered by Coleman [32, 23]. If we start
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at the origin at ρ= 0 high enough on the far right side of the (inverted) energy
functional pictured in Figure 6.14, the equation of motion, Equation (6.158), will
cause the radius R to slide down the potential and then roll up the hill towards
R = R0. If we start too far up to the right, we will roll over the maximum
at R = R0, while if we do not start high enough we will never make it to the
top of the hill at R = R0. The right-hand side of Equation (6.158) acts as a
“time”-dependent friction, which becomes negligible as ρ→∞, and once it is
negligible, the motion is effectively conservative. It is not unrealistic to believe
that there will be a correct initial point that will give exactly the solution that
we desire, that as ρ→∞, R(ρ)→R0. We find the solution exists using numerical
integration. For the parameter choice n=100, e= .005 and ε= .001, if we start at
R≈ 11,506.4096, we generate the profile function R(ρ) in Figure 6.15. Actually,
numerically integrating to ρ≈ 80,000 the function falls back to the minimum of
the inverted energy functional Equation (6.14). On the other hand, if we increase
the starting point by .0001, the numerical solution overshoots the maximum
at R = R0. Hence we have numerically implemented the overshoot/undershoot
criterion of [32, 23].

The cosmic string emerges with a bulge described by the function numerically
evaluated and represented in Figure 6.15 which corresponds to R(z,τ = 0). A
three-dimensional depiction of the bounce point is given in Figure 6.16. One
should imagine the radius R(z) along the cosmic string to be R0 to the left,
then bulging out to the the large radius as described by the mirror image of the
function in Figure 6.15 and then returning to R0 according to the function in
Figure 6.15. This radius function has argument ρ=

√
z2+ τ2. Due to the Lorentz

invariance of the original action, the subsequent Minkowski time evolution is
given by R(ρ)→R(

√
z2− t2), which is only valid for z2−t2≥ 0. Fixed ρ2= z2−t2

describes a space-like hyperbola that asymptotes to the light cone. The value of
the function R(ρ) therefore remains constant along this hyperbola. This means
that the point at which the string has attained the large radius moves away
from z ≈ 0 to z →∞ at essentially the speed of light. The other side moves
towards z→−∞. Thus the soliton–anti-soliton pair separates quickly, moving
at essentially the speed of light, leaving behind a fat cosmic string, which is
subsequently classically unstable to expand and fill all space.

The rate at which the classical fat string expands depends on the actual value
of ε. Once the string radius is large enough, its boundary wall is completely
analogous to a domain wall that separates a true vacuum from a false vacuum.
The true vacuum exerts a constant pressure on the wall, and it accelerates
into the region of false vacuum. Obviously, if there is nothing to retard its
expansion, it will accelerate to move at a velocity that eventually approaches
the speed of light. The only effects retarding the velocity increase are the inertia
and possible radiation. Radiation should be negligible as there are no massless
fields in the exterior and there are no accelerating charges. The acceleration,
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Figure 6.15. The radius as a function of ρ

a, is proportional to pressure divided by the mass per unit area. The pressure
is simply the energy density difference, p = ε. The mass per unit area can be
obtained from Equation (6.153). Here the contribution to the mass per unit
length from the wall is simply πR. Thus the mass per unit area, μ, is obtained
from πR×L = μ2πR×L for a given length L, which gives μ = 1/2. Then we
have

a≈ ε/μ= 2ε. (6.159)

Thus it is clear that this acceleration can be arbitrarily small, for small ε, and
it is possible to imagine that once the tunnelling transition has occurred the fat
cosmic string will exist and be identifiable for a long time.

6.7.4 Tunnelling Amplitude

It is difficult to say too much about the tunnelling amplitude or the decay rate per
unit volume analytically in the parameters of the model. The numerical solution
we have obtained for some rather uninspired choices of the parameters gives rise
to the profile of the instanton given in Figure 6.15. This numerical solution could
then be inserted into the Euclidean action to determine its numerical value, call
it S0(ε). It seems difficult to extract any analytical dependence on ε; however,
it is reasonable to expect that as ε→ 0 the tunnelling barrier, as can be seen in
Figure 6.14, will get bigger and bigger and hence the tunnelling amplitude will
vanish. On the other hand, there should exist a limiting value, call it εc, where
the tunnelling barrier disappears at the so-called dissociation point [126, 81, 80],
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Figure 6.16. (a) Cosmic string profile at the bounce point. (b) Cut away of
the cosmic string profile at bounce point

such that as ε→ εc, the action of the instanton will vanish, analogous to what
was found in [85]. In general, the decay rate per unit length of the cosmic string
will be of the form

Γ=Ac.s.

(
S0(ε)

2π

)
e−S0(ε), (6.160)

where Ac.s. is the determinantal factor excluding the zero modes and
(
S0(ε)
2π

)
is

the correction obtained after taking into account the two zero modes of the bulge
instanton. These correspond to invariance under Euclidean time translation and
spatial translation along the cosmic string [32, 23]. In general, there will be a
length L of cosmic string per volume L3. For a second-order phase transition
to the meta-stable vacuum, L is the correlation length at the temperature of
the transition which satisfies L−1 ≈ λv2Tc [70, 69, 130, 129]. For first-order
transitions, it is not clear what the density of cosmic strings will be. We will
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keep L as a parameter, but we expect that it is microscopic. Then in a large
volume Ω, we will have a total length NL of cosmic string, where N = Ω/L3.
Thus the decay rate for the volume Ω will be

Γ× (NL) = Γ

(
Ω

L2

)
=Ac.s.

(
S0(ε)

2π

)
e−S0(ε)

Ω

L2
(6.161)

or the decay rate per unit volume will be

Γ× (NL)

Ω
=

Γ

L2
=
Ac.s.

(
S0(ε)
2π

)
e−S0(ε)

L2
. (6.162)

A comparable calculation with point-like defects [85] would give a decay rate per
unit volume of the form

Γpoint like

L3
=

Apoint like

(
S
point like
0 (ε)

2π

)3/2

e−S
point like
0 (ε)

L3
(6.163)

and the corresponding decay rate from vacuum bubbles (without topological
defects) [32, 23] would be

Γvac.bubble =Avac.bubble

(
Svac.bubble
0 (ε)

2π

)2

e−S
vac.bubble
0 (ε). (6.164)

Since the length scale L is expected to be microscopic, we would then find that
the number of defects in a macroscopic volume (i.e. universe) could be incredibly
large, suggesting that the decay rate from topological defects would dominate
over the decay rate obtained from simple vacuum bubbles [32, 23]. Of course the
details depend on the actual values of the Euclidean action and the determinantal
factor that is obtained in each case.

There are many instances where the vacuum can be meta-stable. The
symmetry-broken vacuum can be meta-stable. Such solutions for the vacuum
can be important for cosmology, and for the case of supersymmetry breaking see
[1, 47] and the many references therein. In string cosmology, the inflationary
scenario that has been obtained in [67] also gives rise to a vacuum that is
meta-stable, and it must necessarily be long-lived to have cosmological relevance.

In a condensed matter context, symmetry-breaking ground states are also of
great importance. For example, there are two types of superconductors [7]. The
cosmic string is called a vortex-line solution in this context, and it is relevant to
type II superconductors. The vortex line contains an unbroken symmetry region
that carries a net magnetic flux, surrounded by a region of broken symmetry.
If the temperature is raised, the true vacuum becomes the unbroken vacuum,
and it is possible that the system exists in a superheated state where the false
vacuum is meta-stable [41]. This technique has actually been used to construct
detectors for particle physics [11, 105]. Our analysis might even describe the
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decay of vortex lines in superfluid liquid Helium III [86]. The decay of all of
these meta-stable states could be described through the tunnelling transition
mediated by instantons in the manner that we have computed. For appropriate
limiting values of the parameters, for example when ε→ εc, the suppression of
tunnelling is absent, and the existence of vortex lines or cosmic strings could
cause the decay of the meta-stable vacuum without bound.
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