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Hermite-Fejer interpolation at the

'practical1 Chebyshev nodes

R.D. Riess

Berman has raised the question in his work of whether Hermite-

Fejer interpolation based on the so-called "practical" Chebyshev

points, t. = cos "— , 0{l)n , is uniformly convergent for al l
3 n

continuous functions on the interval [-1, l ] . In spite of

similar negative results by Berman and Szego, this paper shows

this result is true, which is in accord with the great

similarities of Lagrangian interpolation based on these points

versus the points x. = cos - * — IT , l ( l )n .
0 C.rl

1. Introduction

This paper answers some questions which naturally arise from the work

of Berman [I ] in his consideration of "extended" Hermite-Fejer interpol-

ation processes. We consider the point sets S = [t .} ._ ,

V {*;K . -d s = h]7=l'where *d= cos"? and

x- = cos - ^ — IT . In what follows, for a given function f{x) ,

-1 S x 5 1 , and P being the set of al l polynomials of degree m or

less, we define the following three Hermite-Fejer operators:

(1) HX
n{f; x) 6 P 2 n + 1 , where E^[f; t.) = f{t.) and D ^ f ; t..)] = ° .

0 2 j 5 n ;
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(2) **(/; x) € P2n_3 , where ^ ( / ; t..) = /(*..) and D^f; *..)] = 0 ,

1 <

( 3 ) L (f; x ) € P , w h e r e L if; x.) = f[x.) and £ > [ & ( / ; x . ) 1 = 0 ,
71 £.rl—A. " J J X 71 J

0 S j £ n-X .

In 1916, Fejer [5] proved the resul t that L ( / ; x) i s uniformly

convergent to f{x) , for a l l f{x) € C[- l , l ] ; that i s , the set of

continuous functions on the closed interval [ -1 , l ] . In 1969, Berman [7]

showed tha t , surpr is ingly , th i s resul t i s not true for the "extended

Hermite-Fejer" interpolat ion process, that i s , the polynomials are of

degree 2n + 3 and interpola te f(x) a t ±1 , and the i r derivatives are

zero at ±1 , in addition to the points x . , 0 £ j £ n-1 . In fact
3

Berman showed th is process was everywhere divergent for the function

f{x) = 1 - x2 , x € ( - 1 , 1) , and also for / (x ) = x , x i ( - 1 , l ) ,

x / 0 . Szego [9 ] , Theorem il l .6, p . 3^0, shows that the Hermite-Fejer

interpolat ion at the roots of the Jacobi polynomials, a > -1 , 3 > -1 ,

i s uniformly convergent to any continuous function on any closed

subinterval of [ -1 , l ] , and shows divergence for some continuous

functions a t x = 1 when a 2 0 .

This leaves open the question of convergence for the "practical"

Chebyshev nodes, 5. . Berman begins to answer th i s question by showing

convergence for f(x) = |x | at x = 0 and uniform convergence for the

functions / ( x ) = x and f{x) = x . But since the sequence of operators

is not monotone (see Cheney [3] , p . 67), this i s not enough to

insure uniform convergence for al l / i C[-X, l ] . However, we shal l show

tha t th i s i s indeed t rue , by showing the norms of the operators are

uniformly bounded. In a l l that follows T (x) and U (x) are the
Til Tit

Chebyshev polynomials of degree m of the first and second kind,

respectively.
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2. Construction of the interpolating polynomials

It is relatively easy, though often tedious, to compute H [T, ; x) ;

i = 1, 2 ; for an arbitrary integer k , using elementary trigonometric

identities and the following discrete orthogonality relationship (Cheney

[3], p. 135):

00 f j V ^ . ) ^ - ) = A(n, i,m) ,

where the double prime indicates the first and last terms are to be halved,

and A(n, i, m) denotes the number of integers in the set i——, — — \ .

We will not go through the lengthy derivation of the necessary inter-

polating polynomials. In each case the derivation proceeds by writing each

H
ni^k; x) in the form £ y^T^x) and using CO and the interpolating

properties to solve for the cp.'s. Calling on the uniqueness of the inter-

polating polynomials, we shall verify our answers in one case and leave the

others to the reader, since their validity rather than their derivation is

of central importance to this paper. In all that follows, we write

k = 2vn + a , with r > 0 and -n 5 a S n-\ , with n taken as an even

integer for simplicity. Although the first case is of primary importance,

we list the results for all three cases mainly in the interests of

construction and error analyses of particular functions.

https://doi.org/10.1017/S0004972700043392 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043392


382 R.D. Riess

(5) x) -

|ot | (2«- |a | ) 2n-\a\ , . |g[
, 2 2n i | a | U ; 2rc ^ 2w-1 ot I

I a I ( 2 w - | a |
kn2

{x) , for 2 5 | a | 2 rc-2 even,

kn2
T (x) -

8n2

for |a| = 1 ,

TQ{x) , for a = 0 ,

*2n-\a\
(x)

| a | ( 2n - | a | )
n 2

for 3 5 |a| 2 n-l , odd,

' f o r

1 p

The uniform convergence of H for /"(a;) = x and / (x) = x on

[ -1 , l ] displayed by Berman is immediate from (5). In fact (5) yields

uniform convergence of H for any polynomial of fixed degree k . [Note

that for k fixed and n sufficiently large, k = a. , and uniform

convergence for each ^V.(x) i s evident.] (5) also immediately yields the

resu l t that H (f) i s uniformly convergent to any function f{x) which

has an absolutely and uniformly convergent Fourier-Chebyshev series on

[ -1 , l ] . I t is easily seen from (5) that

(6a) ; x) = | (x)

but since H [T.; I ) f ? , formula (6a) is valid only when |a| > 3 .
YL K. c.Yl~~ j

The cases |a| = 1 and |a| = 2 must be considered individually. These

results are, for n even,

2n-3
(6b) I

^=3
odd

^-2t t
2n T.{x) , for |a | = 1 ,
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(6c) H2(T • x) - - i
2n-k

Hn{Tk
i-2n

2n
T.{x) , for | a | = 2 .

The following two formulas may be used to simplify (6b) and (6c). (They

are proved by induction and well-known ident i t ies given, for example, in

Snyder [8] , p . 97.

(7)

(8)

i=2
even

1-x
, m even,

I iT€{x) =^Um(x) - J - ^ 4
i=\ 1-x
odd

, m odd.

With the aid of (7) and (8) we can further Szego's resu l t , and show

divergence at ±1 for ff (2\) for a l l k . The final formula i s :

( 9 ) L[T.; x) =J n ' • k

r2 , , , for

(-1) TQ(x) , for a = 0 .

We shall verify only the f i rs t line of formula (5), the other cases

being similar. 'le shall need the following identit ies easily verified by

elementary trigonometric formulas:

( i ) Tk{t.) =Tlal[t.) ,

( i i ) T2n[t.) = 1 ,

(iv) - 3 S n-l , and

T h u s , b y ( i ) , ( i i ) , a n d ( i i i ) ,

D \HX\TV; t.]\ = | a

^) = Tk{t.) . Now,

2 n 2n-\a\-l(
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Thus, by (iv) and (v) , D \B [T,; t.) = 0 for 1 5 j 5 n-1 . Also,

D U1^; l ) l = | a |
'-"' 2n 2n

= ]£f- [2«|a|-|a|2+lm2-lm|a| + |a|2-lm2+2n|

2n

= 0

3. Convergence at the "practical" nodes

We let W(x) = (x2-l)y (x) ; then the "practical" Hermite-Fejer

operator can be written as

(10) ; *) = I /(*,•)
J=0

1 -

12 _ 2It is easily shown by trigonometric identities that W' [t .) = n ,

0
1 S j 5 n-1 , and V'(±l)2 = lm2 . Using the well-known differential

equation, Davis [4], p. 366, [l-x2)y" - 3xy' + [n2-l)y = 0 , satisfied by
U Ax) , i t is easily shown that V(x) satisfies

(11) (l-x2)V(a:) + x[l-x2)W(x) + [[l-x2] [n2-l)+2]w{x) = 0 .

Thus we have

for 1 5 j < n-1 ,

i(2n2+l) , for to = l ,

- i(2n2
+l] , for tn = -1 .

Thus (10) becomes
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(13) f{t)
1+xt .-2t.

,7 .7

W(x)'

kn2

kn

(x-1)

,7=1
f{t.)A.{x)t.)A{

Now consider any x € ( - 1 , l ) , and l e t r(x, t) = 1 + xt - 2t
o

Now, r(x, x) = 1 - x > 0 , and thus there exists a & such that i f

\x-t\ 5 6 , then 2°(x, t) 2 0 . Note that <5 is a monotonic decreasingx x

function of x as x -*• ±1 inside [-1> l ] . Thus the same 6 makes the
2C

above valid for any other x1 € [-x, x] . Let

Jx = {o : \x-tj\ S 6J u {0, n) and ^ = {j : \x-t^\ > &J ,
•n

1 5 j S n-1 . Now, J /I .(x) = 1 , and A .(x) > 0 for j £ J ; thus
J=0 3 0 x

(HO
j = 0

A Ax)

N o w , | V ( x ) | = | - | c o s ( n + l ) 6 - c o s ( n - l ) 6 | S I , x = c o s 6 . T h u s

where the constant bounding £ |/1 .(x) | i s independent of x because
3

of the monotonicity of 6 . Thus, given any Y > 0 , and

x i. [-1+Y, 1-Y] , t he r e e x i s t s a cons tan t M such t h a t £ \A . (X) | 5 M ,
3=0 °

for all n . How consider any e > 0 and choose, by the Weierstrass
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Theorem, a polynomial P^x) *• Pm such that

Wf-pJ. = max \f[x)-pN(x)\ < e .

By the remark following formula (5), # [T )-T can be made a rb i t ra r i ly

small for m fixed and n sufficiently large, and that M (p J - p J < e

for n suff icient ly la rge . Therefore,

(15) max *£(/; x)-/(x max
£l-y

5 H/-p»L

< (M+l)e + e , for n sufficiently large.

Thus we have proved,

f 1 )°°
THEOREM 1. <LH (f; x) > is uniformly convergent to any

"• 'n=\

f € C[-l, 1] on any closed sub-interval [-1+Y, 1-Y] •

Since the interpolat ing polynomials are constructed such that

HX(f; ±1) = f(.±l) , for a l l / , we have the immediate r e su l t ,

COROLLARY 1. Given any x (. [ -1 , l ] and any f € C[- l , 1] ,

lim ^ ( / ; x) = f{x) .

Because of these resu l t s and because of the s t r ik ing similari ty

between the properties of Lagrangian interpolation on 5̂ ^ versus 5

(Salzer [7 ] , see especially comparison of Lebesgue constants and remainder

norms), one might expect Fejer 's result to be true for H (f) as well as

L ( / ) , in spi te of Berman's negative resul ts in [7] and [2 ] . We sha l l

now show that th i s i s indeed the case.

Define the continuous l inear operator
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(16) Rn{f\ x) = /(*) - /£ ( / ; a) , / € C[-l, 1] .

Now,

I I* II = s u p \\R ( f ) \ \ m £ | l + I \ A . ( x ) \ \ \
11/11 =i ii J-Q o Ho

n
= 1 + 1 \A.[a)\ , for some a € [ - 1 , l ] .

j=0 3 n n

Since A .\th) = 6 ., , i t i s obvious that a t cos *— , 0 £ j S n , for
3 K j K n yi

each n . By choosing / € C[-l , l ] such that f[t.) = -sgn(/l .(a )) ,
J Oft

A a
n ) = 1 » H/lloo = 1 » we see that this upper bound is attained and

(17)

Furthermore, we see from Theorem 1, t h a t i f the sequence {11^11} _, i s

{ . C D

a t n must cluster e i ther at 1 or -1 .

We shal l show that the norms are uniformly bounded by showing that

I \A.[a } \ i s uniformly bounded for any sequence {a } converging to
j=0 ° n n "-1

± 1 .

Let \a J be any sequence converging to 1 from the left,

2
a t 1 , and n sufficiently large such that — < a < 1 . Then there

exists a corresponding sequence {6 } , such that a = cos9 , 9 * 8 .

Again let r(x, t) = 1 + xt - 2t 2 , -1 < x , t < 1 . Then

r K ' ar) = 1 " an > ° ' rKi' l) < ° » and r(an, -l) < 0 . Then

Tn ~ \ Yn + n+^ a n d °M = \ \an ~ « + 8 a r e t h e o n l y t w o z e r o s o f

r (aw, t) and -1 < o^ < 0 < a^ < T^ < 1 . (Note that AQ(x) 2: 0 and

A (x) > 0 , x € [-.I, 1] , and thus we need only consider 1 £ j £ n-1 .)
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I ITT 1

Let J = S3 * 0 : cos "— > 1 > . Then for a l l 3 £ J ,

r[a , t.) 5 0 , and so | r ( a , t . ) | < | r (a , l) | = 1 - a . Also, for a l l

3 * Jn ,

cos i * - a I"1 5 (T -a T 1 = »a I 5 (T an n) K n n J

Por+8-3an n

2
and since — < a < 1 , it is easily seen that there exists a constant

K , independent of n , such that

i < & < xi = 5=

n n)

Similarly, for 0 5 9 5 — , there exists a constant K , independent of

6 , such that (sinS)"1 5 # /9 , and thus for 3 6 Jn ,

(19) =
1-t . sin

Now, (V(aM)2 5 s in 2 6 n , and so for 3

(20) M

since 0 5 0 5 — , and A/. i s independent of n . Thus,

n M M7T2

(21) I \Aj[an)\ 5 j - | < -^g- .

Now, l e t J = •jj i- n : cos "— 5 a > . For j € J ,
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)an -cos ^r) -1 ' l r K ' *jJI s u > and

For a l l j £ [Jn
ul

n) > r[%, tj) > 0 , and thus A^aJ > 0 . Since

n
1 = J <4 . (a ) , then again

3=0 3 n

n
(23) I \AAa\\ 5 1 + 2 I \A.{a)\ £ W , f o r a l l n .

These steps can obviously be mimicked for any sequence {a } ,

a -* -1 . Thus, since the sequence {\\R ||} _ is uniformly bounded and

\\R (p )-p\\oo •* 0 , for any polynomial p , we have by the Banach-Steinhaus

Theorem (Goldstein [6] , p. 108):

THEOREM 2. H1(f) is uniformly convergent to f , for all

f € C[-l, 1] .
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