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Abstract. A number theoretical aspect of the fundamental cycle of a periodic
box-ball system is investigated. Using the formulae for the fundamental cycle of a class
of initial states, we point out that the asymptotic behaviour of the fundamental cycle
is closely related to the celebrated Riemann hypothesis.
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1. Introduction. The box-ball system (BBS) is a reinterpretation of a soliton
cellular automaton proposed by Takahashi-Satsuma [1] as a dynamical system of
balls in a one dimensional array of boxes [2]. It shows solitonic behaviour like KdV
solitons and, in fact, is obtained from the discrete KdV equation through a limiting
procedure called ultradiscretization [3]. Furthermore it is also a limit (crystallization)
of a two dimensional integrable lattice model with the symmetry of the quantum
algebra U ′

q(A(1)
N ) [4, 5, 6].

The periodic box-ball system (PBBS) is a BBS with a periodic boundary condition
[7]. Like the BBS, the PBBS is obtained through both ultradiscretization and
crystallization. For example, it is an ultradiscretization of the discrete Toda equation
[8] with a periodic boundary condition and its initial value problem is solvable by
combining the inverse scattering method and inverse ultradiscretization [9]. Hence we
may call both the PBBS and the BBS integrable cellular automata.

An important difference between the BBS and the PBBS is that the PBBS can
only take on a finite number of patterns and that the time evolution of the PBBS
is necessarily periodic. Recently Yoshihara et al. have obtained the formulae that
determine the fundamental cycle, i.e., the shortest period of the discrete periodic
motion of the PBBS [10], and its asymptotic behaviour has been discussed by the
authors [11]. In this article, using the results in [11], we will show that determining
the asymptotic behaviour of the fundamental cycle of the PBBS for a certain type of
initial state is equivalent to proving or disproving the Riemann hypothesis: all of the
nontrivial zeros of ζ (s) lie on Re[s] = 1/2 [12]. Here ζ (s) is the Riemann-zeta function
defined by ζ (s) := ∑∞

n=1
1
ns . As is well known, the Riemann hypothesis is one of the

most important unsolved problems in number theory, and it would be both interesting
and worthwhile to point out a link between integrable cellular automata and number
theory. In Section 2, we give the definition of the PBBS and briefly summarize the
results concerning its fundamental cycle. Then, in Section 3, we show that a hypothesis
on the fundamental cycle for a certain class of initial states is equivalent to the Riemann
hypothesis. Section 4 is devoted to concluding remarks.
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2. Periodic Box-Ball system and its fundamental cycle. Let us consider a one
dimensional array of N boxes. To be able to impose a periodic boundary condition,
we assume that the Nth box is adjacent to the first one. The box capacity is one for
each box. We denote the number of balls by M, such that M ≤ N

2 . The balls are moved
according to a deterministic time evolution rule. (See Figure 1.)

1. In each filled box, create a copy of the ball.
2. Move all the copies once according to the following rules.
3. Choose one of the copies and move it to the nearest empty box on the right of

it.
4. Choose one of the remaining copies and move it to the nearest empty box on

the right of it.
5. Repeat the above procedure until all the copies have moved.
6. Delete all the original balls.

A PBBS has conserved quantities which are characterized by a Young diagram with M
boxes. The Young diagram is constructed as follows. See also Figure 2. We denote an
empty box by ‘0’ and a filled box by ‘1’. Then the PBBS is represented as a 0, 1 sequence
in which the last entry is regarded as adjacent to the first entry. Let p1 be the number
of the ‘10’ pairs in the sequence. If we eliminate these ‘10’ pairs, we obtain a new 0, 1
sequence. We denote by p2 the number of ‘10’ pairs in the new sequence. We repeat
the above procedure until all the ‘1’s are eliminated and obtain p1, p2, p3, . . . , pl.
Clearly p1 ≥ p2 ≥ · · · ≥ pl and

∑l
i=1 pi = M. These {pi}l

i=1 are conserved in time. Since
{p1, p2, . . . , pl} is a weakly decreasing series of positive integers, we can associate it
with a Young diagram with pj boxes in the j-th row (j = 1, 2, . . . , l). Then the lengths
of the columns are also weakly decreasing positive integers, and we denote them

{L1, L1, . . . , L1,︸ ︷︷ ︸
n1

L2, L2, . . . , L2,︸ ︷︷ ︸
n2

· · · , Ls, Ls, . . . , Ls︸ ︷︷ ︸
ns

}

where L1 > L2 > · · · > Ls. The set {Lj, nj}s
j=1 is an alternative expression of the

conserved quantities of the system. In the limit N → ∞, Lj means the length of
jth largest soliton and nj is the number of solitons with length Lj.

The following proposition is essential in our arguments below. Let �0 := N −
2M = N − ∑l

j=1 2pj = N − ∑s
j=1 2njLj, N0 := �0, Ls+1 := 0, and

�j := Lj − Lj+1 (j = 1, 2, . . . , s) (1)

Nj := �0 + 2n1(L1 − Lj+1) + 2n2(L2 − Lj+1) + · · · + 2nj(Lj − Lj+1)

= �0 +
j∑

k=1

2nk(Lk − Lj+1). (2)

Then, for a fixed number of boxes N and conserved quantities {Lj, nj}, the fundamental
cycle T is determined by the following proposition.

PROPOSITION 1 (YYT). Let T̃ be defined by

T̃ := L.C.M.
(

NsNs−1

�s�0
,

Ns−1Ns−2

�s−1�0
, · · · , N1N0

�1�0
, 1

)
, (3)
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Figure 1. Time evolution rule for PBBS
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Figure 2. Correspondence between PBBS and Young diagram
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where L.C.M. (x, y) := 2max[x2,y2]3max[x3,y3]5max[x5,y5] · · · for x = 2x2 3x3 5x5 · · · and y =
2y2 3y3 5y5 · · ·. Then T is a divisor of T̃. In particular, when there is no internal symmetry
in the state, the fundamental cycle T coincides with T̃.

The definition of internal symmetry in the above proposition is rather complicated and
we refer to the original article [10]. However, for a given number of conserved quantities,
we can always construct initial states which do not have any internal symmetry, in
particular, if ∀i, ni = 1 the PBBS never has internal symmetry and T = T̃ . A number
theoretical aspect of the PBBS is suggested by the fact that T̃ is essentially given by the
least common multiple of integers constructed from the conserved quantities.

3. Asymptotic behaviour of the fundamental cycle and the Riemann hypothesis. We
would like to consider the asymptotic behaviour of the fundamental cycle for a class
of initial states. To take an appropriate limit, we fix the ball density ρ := M/N. We
assume that N is an even integer and ρ is sufficiently large:

2
5

< ρ <
9

20
. (4)

(These two assumptions are not essential in the arguments below, but they make the
proof of our statements simpler.) Since �0 = N − 2M, �0 is also an even integer. Let k
and s be the integers which are determined uniquely for a given N and M by

k(k − 1) ≤ �0 ≤ k(k + 1) − 2 (5)

(k + s − 1)(k + s) ≤ N ≤ (k + s)(k + s + 1) − 2 (6)

Then we consider an initial state which consists of s kinds of solitons with length
1, 2, . . . , s (�j = 1 ∀j ≥ 1). In view of (5) and (6), we choose the conserved quantities
so that n1 = k(k + 1) − �0

2 , n2 = �0 − k(k − 1) + 2
2 , ns = N − (k + s)(k + s − 1) + 2

2 , and nj = 1 (3 ≤
j ≤ s − 1). By the definiton of Nj (2), we have

N1 = k(k + 1), N2 = (k + 1)(k + 2), N3 = (k + 2)(k + 3), . . . ,

Ns−1 = (k + s − 2)(k + s − 1) (Ns ≡ N).

As was mentioned in the previous section, we can suppose that there is no internal
symmetry in this state and its fundamental cycle T(N) is estimated as

Tρ(N) = L.C.M.
(

NsNs−1

�s�0
,

Ns−1Ns−2

�s−1�0
, . . . ,

N2N1

�1�0
, 1

)

≥ 1
�0

L.C.M. (Ns−1Ns−2, Ns−2Ns−3, . . . , N2N1)

= 1
�0

L.C.M. ((k + s − 1)(k + s − 2)2(k + s − 3), . . . ,

(k + 3)(k + 2)2(k + 1), (k + 2)(k + 1)2k)

≥ 1
�0

L.C.M. ((k + s − 2)2, (k + s − 3)2, . . . , (k + 1)2)

= 1
�0

(L.C.M. ((k + s − 2), (k + s − 3), . . . , (k + 1)))2
. (7)
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in a similar manner, we have

Tρ(N) ≤ L.C.M. (NsNs−1, Ns−1Ns−2, . . . , N2N1)

≤ N (L.C.M. ((k + s − 1), (k + s − 2), . . . , (k + 1), k))2
. (8)

For two positive integers n and m (n > m), we define

L(n, m) := L.C.M. (n, n − 1, . . . , m + 2, m + 1) . (9)

Clearly L(n, m) ≤ L(n, 1) and L(n, 1) = L(n, m) when 2m ≤ n. From (7) and (8), we
have

(L(k + s − 2, k))2

�0
≤ Tρ(N) ≤ N(L(k + s − 1, k − 1))2 (10)

From (5) and (6), we have
√

N − 1 < k + s <
√

N + 1 and
√

�0 − 1 < k <
√

�0 + 1.
Since �0 = N − 2M < N/5 implies 2k < k + s − 2 for sufficiently large N, the
fundamental cycle is estimated as

(L(k + s − 2, 1))2

�0
≤ Tρ(N) ≤ N(L(k + s − 1, 1))2. (11)

Now we introduce the Chebyshev function ψ(n) [13]

ψ(n) :=
∑

p,j
p j≤n

log p, (12)

where the sum runs over all primes p and j ∈ �+ such that pj ≤ n.
Then L(n, 1) = L.C.M. (n, n − 1, n − 2, . . . , 2) is expressed as

L(n, 1) = exp [ψ(n)] (13)

and we obtain the inequality

2ψ(k + s − 2) − log �0 ≤ log Tρ(N) ≤ 2ψ(k + s − 1) + log N (14)

The asymptotic formulae for the Chebyshev function ψ(n) have been extensively
investigated since the nineteen century in relation to the theory of prime numbers,
and it is well known that the Riemann hypothesis is equivalent to the estimate [14]:

ψ(x) = x + O
(
x1/2 log2 x

)
(x → +∞). (15)

Since k + s = [
√

N] or [
√

N] + 1 and log �0 � 2 log
√

N we found the following
theorem.

THEOREM 1. The Riemann hypothesis is equivalent to the estimate

log Tρ(N) = 2
√

N + O
(
N1/4 log2 N

)
(N → +∞). (16)

The following corollary is an immediate consequence of the Theorem 1.
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COROLLARY 1. Let the maximum fundamental cycle for a given N and ρ which satisfy
the inequality (4) be TMax

ρ (N). Then the estimate

log TMax
ρ (N) = 2

√
N + O

(
N1/4 log2 N

)
(N → +∞) (17)

implies the Riemann hypothesis.

As discussed in [11], we conjecture that Tρ(N) � TMax
ρ (N), hence we think the

above corollary has some significance.

4. Concluding remarks. We have shown a relation between the fundamental cycle
of a PBBS and the Riemann hypothesis. Since the fundamental cycle is in principle
obtained from the theta function solutions of the discrete Toda equation (through
ultradiscretization), the investigation of the ultradiscretized period matrices may give
some information about the Riemann hypothesis. Furthermore, as the eigenvalues of
the transfer matrix of a particular two dimensional integrable lattice model also gives
information about the fundamental cycle of the PBBS, it will be an important problem
to construct an analogue of the Bethe anzatz for ultradiscrete systems.

Although there are many statements equivalent to the Riemann hypothesis [15]
and Theorem 1 is only one of them, it reveals an important number theoretical aspect
of the theory of integrable systems and we hope for new developments in this direction.
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