
JFP 14 (5): 489–502, September 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796802004471 Printed in the United Kingdom

489

FUNCTIONAL PEARL

Global variables in Haskell

JOHN HUGHES

Department of Computing Science, Chalmers University of Technology, S-412 96 Göteborg, Sweden

(e-mail: rjmh@cs.chalmers.se)

Abstract

Haskell today provides good support not only for a functional programming style, but also for

an imperative one. Elements of imperative programming are needed in applications such as

web servers, or to provide efficient implementations of well-known algorithms, such as many

graph algorithms. However, one element of imperative programming, the global variable, is

surprisingly hard to emulate in Haskell. We discuss several existing methods, none of which

is really satisfactory, and finally propose a new approach based on implicit parameters. This

approach is simple, safe, and efficient, although it does reveal weaknesses in Haskell’s present

type system.

1 Introduction

Simon Peyton-Jones calls Haskell (Peyton-Jones et al., 1999) “the world’s finest

imperative programming language” (Peyton-Jones, 2001) – but is that really true?

Something which is very easy in imperative languages is to declare a global variable,

and then refer to it and update it from anywhere in the program. Global variables

are useful: they may refer to long-lived imperative data structures, such as hash

tables, graphics contexts, priority queues, and so on, enabling the programmer to

refer to or modify these structures anywhere in the program, without needing to

pass a plethora of pointers as parameters. Yet Haskell offers no well-known and

really satisfactory way of creating them. In this paper, we review various ways this

has been done, and finally present the solution we favour. We shall use the simple

example of a global queue to illustrate the methods we discuss.

1.1 Imperative programming in Haskell

First we briefly review the way Haskell supports imperative programming. All

operations with side-effects are assigned monadic types of the form m a, where a is

the type of the result, and the monad m determines the kind of side effects which are

possible. For example, operations which perform input/output are assigned types

of the form IO a. The readFile function has the type String → IO String: given a

String (filename), it performs input/output and delivers a String (the file contents).

We think of a value of type m a as an m-computation delivering an a.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

490 J. Hughes

Many monad types are predefined in Haskell, and new ones can be introduced,

but every monad must support the operations return and ‘bind’ (>>=), via an instance

of the following class:

class Monad m where

return :: a→ m a

(>>=) :: m a→ (a→ m b)→ m b

The return operation constructs a computation which delivers its argument as the

result, while >>= sequences two computations. Haskell provides syntactic sugar for

>>= via the do syntax, for example,

do s← readFile “foo”

writeFile “baz” s

which binds s to the result of readFile in the remainder of the do.

These operations do not enable us to extract an a from an m a, so once we

have used a monadic operation, everything built from it will carry a monadic type,

thus recording (and sequencing) the use of side-effects. The top-level of a Haskell

program has type IO (), thus permitting (sequenced) input/output at the top-level

only.

Input/output is the only true form of side-effects permitted by the Haskell 98

standard, but most implementations support more general imperative programming,

by providing reference types and functions to read and write them (Launchbury &

Peyton-Jones, 1995). The type IORef a contains references which can be read and

written by operations in the IO monad, thus sequencing these side-effects along with

input/output operations. The operations on them are

newIORef :: a→ IO (IORef a)

readIORef :: IORef a→ IO a

writeIORef :: IORef a→ a→ IO ()

which create, read, and write references, respectively.

Haskell also provides a monad ST of ‘encapsulated’ side-effects, which can be used

to define pure (non-monadic) functions with an internal imperative implementation.

It is guaranteed that the encapsulated side-effects are invisible from outside. The

encapsulation function is

runST :: (∀s.ST s a)→ a

Here the argument of type ST s a is the encapsulated imperative computation,

and s is a ‘state thread identifier’, which as well as appearing in the type of the

computation, also appears in the types of the references, and the reference creation,

reading and writing operations:

newSTRef :: a→ ST s (STRef s a)

readSTRef :: STRef s a→ ST a

writeSTRef :: STRef s a→ a→ ST s ()

Note that the same s appears everywhere, so that these types force all the references

read, written, or created in a computation of type ST s a to carry the same state

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

Functional pearl 491

thread identifier s. Now, the rank-2 polymorphism in the type of runST demands

that the encapsulated computation can be run in any state thread s – it must be

polymorphic – which guarantees in turn that that it cannot have any effect on

references created elsewhere.

Our running example will use a Queue module which represents queues in the

standard imperative way, as a pair of pointers to the front and back of the queue,

adding elements in constant time by overwriting the pointer in the last cell. We could

choose to implement such a module using either the IO or the ST monad, but ideally,

the queue implementation should be useable with either one. We shall achieve this

by using Haskell’s overloading: we define a class of monads with references

class Monad m⇒ RefMonad m r | m→ r where

newRef :: a→ m(r a)

readRef :: r a→ m a

writeRef :: r a→ a→ m ()

This declares that a monad m is a ‘RefMonad’, with references of type r, if it supports

the given operations. The ‘| m → r’ is a functional dependency (Jones, 2000), which

declares that the monad type determines the reference type – IO determines IORef,

ST s determines STRef s. This is important information for resolving ambiguity

during type inference.

Now we can declare IO and ST to be RefMonads as follows:

instance RefMonad IO IORef where

newRef = newIORef

readRef = readIORef

writeRef = writeIORef

instance RefMonad (ST s) (STRef s) where

newRef = newSTRef

readRef = readSTRef

writeRef = writeSTRef

Using these overloaded operations, we define a queue package which works with

either monad, providing the following operations. Note that the Queue type must

be parameterised on the reference type it uses.

data Queue r a = . . . — queue of a using

— references of type r

empty :: RefMonad m r ⇒
m (Queue r a)

— create a new queue

add :: RefMonad m r ⇒
a→ Queue r a→ m ()

— add an element

remove :: RefMonad m r ⇒
Queue r a→ m ()

— remove an element

front :: RefMonad m r ⇒
Queue r a→ m a

— the front element

isEmpty :: RefMonad m r ⇒
Queue r a→ m Bool

— test for empty

We omit the implementations of these operations, which are standard.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

492 J. Hughes

We have now implemented queues imperatively, but our goal in this paper is

to implement a single, global queue. This we have not done: to use the operations

above, we must create a queue and bind it to a variable, then pass it explicitly to

every function which uses it. In the following sections we will examine various ways

of avoiding this.

2 Using unsafePerformIO

We aim to define functions addG, removeG, etc., which refer to a single global queue,

and thus do not need to take a queue as a parameter. The natural way to do so

is to declare the global queue in the same scope that these functions are declared

– that is, via a top-level declaration. But, using the primitives above, there is no

way to bind a Queue to a top-level variable! The reason is that a Queue contains

references, and reference creation has a monadic type, such as IO (IORef a). Now the

only way to bind a variable to the reference itself is using (>>=) (or the do syntactic

sugar), but such a variable is bound by a λ-expression, and not at top level. There

is no top-level expression of type IORef a, and so no top-level expression of type

Queue IORef a either.

It might seem that runST enables us to create a top-level STRef using

runST (newSTRef a)

but recall that the purpose of runST is to encapsulate side effects. Since the state

thread variable appears in the type of the reference created, and would thus appear

in the type of runST ’s result, it cannot be bound in runST ’s argument, as the rank-2

type requires. So this expression is rejected by the type-checker.

The solution presented by Peyton-Jones (2001) is to use a new primitive

unsafePerformIO :: IO a→ a

which solves the problem of extracting the reference returned by newIORef from its

monadic type. We can now define a global queue by

globalQ :: Queue IORef a

globalQ = unsafePerformIO empty

and go on to define

addG :: a→ IO ()

addG a = add a globalQ

and so on. Peyton-Jones reports that this is one of three ‘very common’ uses of

unsafePerformIO.

What is wrong with this solution? Well, one objection is that it only works for the

IO monad – there is no unsafePerformST (although GHC (ghc, n.d.) permits an ST

value to be converted to an IO value, thus providing a somewhat roundabout way to

achieve the same effect). However, the biggest objection is that unsafePerformIO is

– well – unsafe! It clearly violates the property that monads are designed to ensure,

that computations with side effects have monadic types. Peyton-Jones says:

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

Functional pearl 493

“unsafePerformIO is a dangerous weapon, and I advise you against using it

extensively. unsafePerformIO is best regarded as a tool for systems programmers

and library writers, rather than for casual programmers. . . . you need to know what

you are doing.”

Such a function should not be used for such a common task as defining a global

variable!

It is worth pointing out that the dangers of using unsafePerformIO strike in

this very example. It is well known that unrestricted references and assignment

make the Hindley–Milner type system unsound (Tofte, 1990). To restore soundness

ML (Milner et al., 1997) imposes the ‘value restriction’ on bindings, and Haskell

assigns these operations monadic types. Using unsafePerformIO circumvents these

restrictions and makes the type system unsound.

Look back at the definition of globalQ again. Notice it is declared with a

polymorphic type – the one the type checker would infer. Consequently addG is

also polymorphic, and can be used to add elements of different types to the same

global queue. The frontG operation is also polymorphic, which allows an element to

be removed with a different type from the one it was added with! Clearly this may

lead to run-time type errors. To avoid this, the programmer must declare global

variables with a completely monomorphic type. It is dangerous, to say the least, to

expect that programmers will always do so.

3 A queue monad

If we cannot bind a top-level variable to the global queue, perhaps we can at least

make the process of passing it as a parameter less painful. A well established way to

do so is to define another monad (a ‘reader’ monad), in which the queue is passed

as an extra parameter to every computation (Wadler, 1995). Let us define

newtype QMonad m r a b = QMonad (Queue r a→ m b)

to introduce a new monad, parameterised on an underlying monad m with references

of type r. (This newtype declaration defines a new type QMonad, with constructor

also called QMonad, isomorphic to Queue r a → m b). The monad operators just

pass the global queue everywhere:

instance Monad m⇒ Monad (QMonad m r a) where

return b = QMonad (λq → return b)

QMonad f >>= g = QMonad (λq → do b← f q

let QMonad h = g b

h q)

Then we can define the global queue operations just by

addG n = QMonad (add n)

removeG = QMonad remove

frontG = QMonad front

isEmptyG = QMonad isEmpty

with types of the form

addG :: RefMonad m r ⇒ a→ QMonad m r a ()

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

494 J. Hughes

We also need a function to extract a result from a QMonad. We define withQueue

to do so, returning a computation in the underlying monad m. This is a natural

place to initialise the queue to be empty:

withQueue :: RefMonad m r ⇒ QMonad m r a b→ m b

withQueue (QMonad f) = do q ← empty

f q

Now we can use the global queue operations in programs which need not mention

a queue explicitly, such as

runST (withQueue (do addG 1

addG 2

removeG

frontG))

which evaluates to 2.

This approach brings us the benefits of global variables, without their disadvant-

ages: we need not pass the queue explicitly any more, but even so we can use more

than one instance of the queue library without risking interference. Each application

of withQueue creates a separate queue, which enclosed uses of the queue operations

implicitly refer to.

However, suppose we want to use both a global queue, and a global hash table,

in the same piece of code? With this approach, we would also have defined a

HashMonad to pass a pointer to the hash table implicitly. Now, to use the global

queue operations, we must work in the QMonad, while to use the hash table

operations we must work in the HashMonad. We cannot combine computations in

different monads – the result would be a type error. Therefore we cannot use a

queue and a hash table together.

Of course, we could define a QHashMonad to pass both global variables together

– but this is not an acceptable solution! We naturally expect queues and hash tables

to be implemented by independent libraries; for them to share a monad would break

the abstraction barrier between them. They would have to be written together,

and should really then be regarded as a single library, with a single global state

containing both a queue and a hash table.

It is unreasonable to be limited to using a single global variable at a time, which

severely limits the usefulness of the technique in this section.

4 A queue monad transformer

The astute reader will have noticed that Queue defined above is not only a monad,

it is a monad transformer (Liang et al., 1995). A monad transformer is a monad

parameterised on another monad, such that computations in the underlying

monad can be ‘lifted’ to the new one. We demonstrate that Queue is indeed a

monad transformer by defining this lifting1

1 It is possible to overload the lift operation, by defining a MonadTransformer class, but this would
force us to give the parameters to the Queue type in a different order, which I find less ‘natural’.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

Functional pearl 495

liftQ :: m b→ QMonad m r a b

liftQ m = QMonad (λq → m)

Now, suppose we have also defined a monad transformer HashMonad m r k v a,

where m and r are the underlying monad and reference types, k and v are the types

of the keys and values in the global hash table, and a is the result type as usual. We

cannot combine HashMonad and QMonad values with the same underlying monad,

but we can form a combined monad

HashMonad (QMonad m r a) r k v

which passes both a hash table and a queue as parameters to each computation.

In principle, computations of this type can manipulate both a global queue and a

global hash table. In practice, there is a little more to do before that is possible.

First, the hash table operations are defined in terms of reference operations in

the underlying monad. Originally we expected this to be IO or ST, but now the

underlying monad is the Queue monad. We must therefore provide implementations

of the reference operations in the Queue monad:

instance RefMonad m r ⇒ RefMonad (QMonad m r a) r where

newRef a = liftQ (newRef a)

readRef r = liftQ (readRef r)

writeRef r a = liftQ (writeRef r a)

Secondly, the global queue operations are defined only for the Queue monad

itself. The combined monad is a HashMonad with an underlying QMonad. To use

the queue operations with this type also, we must overload them. We therefore define

a new class

class IsQMonad m a | m→ a where

addG :: a→ m ()

removeG :: m ()

frontG :: m a

isEmptyG :: m Bool

and declare both QMonad and HashMonad to be instances:

instance RefMonad m r ⇒ IsQMonad (QMonad m r a) a where

. . . same definitions as before. . .

instance IsQMonad m a⇒ IsQMonad (HashMonad m r k v) a where

addG n = liftHash (addG n)

removeG = liftHash removeG

frontG = liftHash frontG

isEmptyG = liftHash isEmptyG

With these definitions, we can mix queue operations, hash table operations,

and (provided we implement RefMonad for HashMonad too) ordinary reference

operations in the same code. We have achieved all we set out to do.

But at what cost? Suppose we write N libraries, each implementing an imperative

data structure, and each defining its own monad transformer to provide access to its

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

496 J. Hughes

global variables. With this approach, the operations in each library must be declared

in a class, and each monad transformer must be made into an instance of RefMonad,

so that the others can build on top of it. However, most seriously, every monad

transformer must be made into an instance of each library’s class, so that whichever

library’s monad is outermost, all the libraries’ operations will be available. Thus we

must write O(N2) instance declarations. Sadly, this approach does not scale.

In principle, we could avoid the quadratic growth in the number of instance

declarations by defining a class MonadTransformer t m, with an operation

lift :: m a→ t m a

corresponding to liftQ, liftHash, and so on. That would permit us to write a single

instance declaration

instance (IsQMonad m a,MonadTransformer t m)⇒ IsQMonad (t m) a where

addG n = lift (addG n)

removeG = lift removeG

frontG = lift frontG

isEmptyG = lift isEmptyG

to lift the queue operations through every other monad transformer. The problem

with this approach is that this single instance declaration overlaps with the instance

for the QMonad itself. It is critical, then, that the compiler choose the right instance

in each case. For this reason, overlapping instances are somewhat dangerous, and

indeed Peyton-Jones, Jones and Meijer concluded they should be prohibited in their

exploration of Haskell’s design space (Peyton-Jones et al., 1997), so we prefer to

avoid using them2.

Note that there is no ambiguity if we avoid this overlapping instance declaration: a

type such as QMonad (HashMonad (QMonad m)) a is an instance of both IsQMonad

and IsHashMonad, but the queue operations refer unambiguously to the outermost

QMonad, since of course we do not define an instance

instance IsQMonad m a⇒ IsQMonad (QMonad m) a where

. . .

to lift other queue operations from the underlying monad to the QMonad.

5 Using implicit parameters

Our goal in the last two sections has been to pass the global queue implicitly to

each function that uses it. We have seen that this is hard to do satisfactorily using

monads. Yet a recent extension to Haskell provides implicit parameters directly

(Lewis et al., 2000), and they have been implemented in both GHC and Hugs (hug,

n.d.) – let us try using them.

2 At the time of writing, the current version of GHC chose the wrong instance, and the Hugs type-checker
reported non-existent errors involving functional dependencies. This illustrates the practical risks of
depending on deprecated and little used features!

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

Functional pearl 497

An implicit parameter is referred to via a name beginning with ‘?’, for example

?queue. Such names are simply used, without declaration, in the functions which

require them. Thus we can define

addG a = add a ?queue

removeG = remove ?queue

frontG = front ?queue

isEmptyG = isEmpty ?queue

Use of implicit parameters is recorded in these functions’ types. For example, the

addG function has the type

addG :: (RefMonad m r, ?queue :: Queue r a)⇒ a→ m ()

The presence and type of the implicit parameter is recorded in the context of the

type, just like class contraints on polymorphic type variables. A caller need not

explicitly provide a value for ?queue – instead, callers inherit the use of the implicit

parameter. For example, we can define

test :: (RefMonad m r, ?queue :: Queue r Int)⇒ m Int

test = do addG 1

addG 2

removeG

frontG

The type checker infers that test needs the implicit parameter ?queue, and that it

should be passed on to the queue operations. It also ensures that implicit parameters

are always used with the same type, and so attempts to add elements of two different

types to the global queue would lead to a type error in the definition of test.

Implicit parameters are bound using the ‘with’ construction. For example, we can

define withQueue as follows:

withQueue :: RefMonad m r ⇒ (?queue :: Queue r a⇒ m b)→ m b

withQueue m = do q ← empty

m with ?queue = q

which binds ?queue to the newly created empty queue in m.

Notice the type of withQueue: its argument depends upon an implicit parameter,

while its result does not. This type signature must be stated explicitly, since it is

not ‘rank 1’ (Peyton-Jones, n.d.). We might call it a ‘rank 2 qualified type’, since a

qualifier (?queue :: Queue r a) appears under a function arrow, but it is not rank 2

polymorphic since there is no forall. Such rank 2 qualified types are entirely useless

except in the presence of implicit parameters, since without polymorphism, a class

constraint C a qualifying a parameter’s type can be resolved in only one way – and

thus can equally well be resolved at the top-level. It is the possibility of binding

implicit parameters to different values of the same type which has made rank 2

qualified types interesting3.

3 Perhaps this is why, at the time of writing, the definition of withQueue above was wrongly rejected
due to (different) bugs in the type-checkers of both Hugs and GHC, even though both support rank
2 polymorphism!

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

498 J. Hughes

With the implicit parameter approach, only one monad is required, and thus we

can freely mix functions which refer to a global queue with those which refer to a

global hash table, and so on. There is no need to ‘lift’ operations from one monad to

another. The type-checker infers which parameters are required where, and implicitly

generates code to pass them where necessary. Provided we bind them eventually, by

invoking withQueue and similar operations, everything works without problem.

The only disadvantage of this approach is that function types become more

complicated, because of the references to the implicit parameters. These parameters

are implicit, as far as the code itself is concerned, but explicit where types are

concerned. This is not so serious if the programmer allows the type-checker to infer

most type signatures, but could be a major problem if many type signatures are

given explicitly. Small changes to code which uses global variables could force the

programmer to change a large number of type signatures, making maintenance more

difficult. However, explicit type signatures are normally unnecessary in Haskell, so

by choosing not to state them, programmers can largely avoid this problem. It is an

advantage that type inference can tell us exactly which global variables each function

uses – information which is not readily available at all in an imperative language.

The most awkward problem is raised by Haskell’s monomorphism restriction, which

requires a type signature on variable bindings with a non-empty context. Thus every

variable definition involving an implicit parameter requires a type signature. For

example, the type signature on the definition of test above is not optional. However,

the monomorphism restriction does not apply to function definitions, and so we can

avoid the need for a type signature just by redefining test as folllows:

test () = do addG 1

addG 2

removeG

frontG

It is not a great sacrifice to adopt this style when using implicit parameters.

6 Performance

Does the choice of global variable representation have a significant impact on

performance? This is a difficult question to answer in general, since it depends

upon many factors such as the number of global variables, the dynamic and static

frequency with which they are used, perhaps even exactly where they are used.

In small experiments with very global-variable-intensive programs, we found that

the implicit parameter approach performed best, unsafePerformIO was almost 10%

slower, and the two monadic approaches were up to 30% slower than using implicit

parameters. These figures would no doubt vary somewhat in real programs, and

probably exaggerate the performance differences. The conclusion we draw is only

that, when choosing between unsafePerformIO and the implicit parameter method

we advocate, there is no a priori reason to think that the better software engineering

properties of implicit parameters are accompanied by a significant performance

cost.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

Functional pearl 499

7 Language design issues

The style we advocate in this paper does reveal weaknesses in Haskell’s type system.

It is distressing that, to write maintainable code, programmers must omit type

signatures: many like to include them, as documentation checked by the compiler,

or even as a partial specification of functions yet to be written. Haskell should really

offer more flexibility here, so that type signatures can be included without hindering

maintenance.

One way to do so would be to allow partial specification of contexts. One might

write

test :: (RefMonad m r, . . .)⇒ m Int

to indicate that there may be further constraints in the context of test. This permits

programmers to specify the type of test, without fixing all of its global variables

(or other constraints on its type variables). If the definition is later changed to use

additional globals, then the type signature need not be. Alternatively, one might

name parts of a context, and just use the name in function type signatures, thus

allowing a new global variable to be added by a change in just one place. It is

not clear what the trade-offs are in this design space, but it is clear that there is a

problem to be solved.

Reasoning about implicit parameters can sometimes be surprisingly subtle. For

example, suppose that within a computation which uses a global queue, we need

a subcomputation which uses its own queue – so that we need to manipulate two

queues simultaneously. For example, suppose we write

do . . .

addG 1

. . .

withQueue $ do . . .

addG 2

. . .

As expected, the first addG adds an element to the outer (global) queue, and the

second addG adds to the inner (local) one.

Now suppose we want to add an element to the outer queue, from within the

computation using the inner one. We can do so by binding a name to the outer

addG operation, as follows:

do . . .

addG 1

. . .

let addOuter = addG in

withQueue $ do . . .

addG 2

addOuter 3

. . .

As we would expect, the third addition (using addOuter) adds an element to the

outer queue, and all seems well.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

500 J. Hughes

Now suppose we change the definition of addOuter to

let addOuter n = addG n

instead, a subtle change, involving η-converting the definition. Now the call of

addOuter adds an element to the inner queue instead! Likewise if we add a type

signature to the binding,

let addOuter :: (RefMonad m r, ?queue :: Queue r Int)⇒ Int→ m ()

addOuter = addG

then the call also adds to the inner queue!

The reason is that Haskell’s monomorphism restriction applies to the first form

of the binding, but to neither of the others. Both the second and third definitions

define addOuter with the type given in the signature: it is polymorphic in m, r, and

the ?queue, and thus takes the binding for ?queue from the point where it is called.

With the first form of definition, the type of addOuter is monomorphic: it is

addOuter :: Int→ m ()

where m is not quantified here, but is a type in scope at the point of definition, and

the context of the definition must guarantee

(RefMonad m r, ?queue :: Queue r Int)

Thus, the binding for ?queue is taken from the point where the definition appears –

and so refers to the outer queue in this case, as we hoped. The problem is that we

have no way to write down this type for addOuter in Haskell, and so the only way

we can express a monomorphic binding is by writing a variable definition with no

type signature – one that the monomorphism restriction applies to.

Clearly, such a subtle semantics may lead to errors. I believe Haskell should

syntactically distinguish two forms of binding: polymorphic/overloaded binding with

a call-by-name semantics, and monomorphic binding with call-by-need semantics. If

= is used for the former, then := might be used for the latter. Then in this example,

it would make no difference whether we wrote

let addOuter := addG

or

let addOuter n := addG n

It is clear in both cases that the binding is monomorphic, and references to implicit

parameters are resolved at the definition. Likewise, if the definition used =, then

it would clearly be overloaded in both cases. Another nice consequence is that the

equality

(λx→ e) e′ = let x = e′ in e

which holds in Haskell ‘except for typing’, is replaced by

(λx→ e) e′ = let x := e′ in e

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

Functional pearl 501

which holds, full stop. Sadly, though, this would be a major and incompatible change

to the language4. In the meantime, programmers must just be careful!

8 Conclusions

Many imperative algorithms require global variables. The “world’s finest imper-

ative programming language” should provide a safe and easy way to use them.

unsafePerformIO is not safe, and the monadic approaches are not easy. However,

implicit parameters are both safe and easy: they provide exactly the functionality

required. Moreover, when we bind an implicit parameter (as in withQueue), we delimit

the scope of the “global” variable, and we can thus – in contrast to conventional

imperative languages – use several instances of an algorithm with global variables

without the instances interfering with each other.

This paper underlines the importance of implicit parameters: every Haskell

implementation ought to provide them. It also raises questions about aspects of

Haskell’s type system. The monomorphism restriction, already infamous, forces a

somewhat artificial style in this setting. Replacing it with a (safe) alternative should

be a high priority. It is even more disturbing that, to write maintainable code,

a programmer must omit type signatures! A mechanism for abbreviating contexts

might make type signatures readable and maintainable, even in this kind of program.

Finally, the reader may wonder whether our conclusion isn’t so obvious as to

be common knowledge – surely once implicit parameters were introduced it was

obvious they should be used for this purpose? We note that

• the original paper on implicit parameters (Lewis et al., 2000) does not explicitly

mention global variables as an application;

• the unsafePerformIO solution is in common use (Peyton-Jones, 2001), despite

its dangers;

• functions which bind global variables, such as withQueue, cannot have been

used previously, since all type-checkers supporting implicit parameters had

bugs preventing these functions from being compiled.

We conclude that the idea, although simple, is not obvious, and deserves wider

exposure.

References

Hugs online. www.haskell.org/hugs/.

The Glasgow Haskell Compiler. www.haskell.org/ghc/.

Jones, M. P. (2000) Type classes with functional dependencies. Proceedings 9th European

Symposium on Programming, ESOP 2000: Lecture Notes in Computer Science 1782. Springer-

Verlag.

4 Adding := as a monomorphic binding operator would be a simple and relatively harmless extension;
the dangerous part would be to change the semantics of = by removing the monomorphism restriction.
Interestingly, nhc does not implement the restriction anyway, and GHC provides a flag to disable it –
which suggests that this incompatible change is already accepted by a part of the community, at least.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

502 J. Hughes

Launchbury, J. and Peyton-Jones, S. (1995) State in Haskell. Lisp & Symbolic Computation,

8(4), 293–341.

Lewis, J., Shields, M., Meijer, E. and Launchbury, J. (2000) Implicit parameters: Dynamic

scoping with static types. Proceedings 27th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 108–118.

Liang, S., Hudak, P. and Jones, M. (1995) Monad transformers and modular interpreters.

Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pp. 333–343.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML

(Revised). MIT Press.

Peyton-Jones, S. Explicit quantification in Haskell. http://research.microsoft.com/users/

simonpj/Haskell/quantification.html.

Peyton-Jones, S. (2001) Tackling the awkward squad: monadic input/output, concurrency, ex-

ceptions, and foreign-language calls in Haskell. In: Hoare, T., Broy, M. and Steinbruggen, R.

(eds.), Engineering Theories of Software Construction, pp. 47–96. IOS Press.

Peyton-Jones, S., Jones, M. and Meijer, E. (1997) Type classes: exploring the design space.

Haskell workshop. ACM SIGPLAN.

Peyton-Jones, S., Hughes, J. (eds.), Augustsson, L., Barton, D., Boutel, B., Burton, W.,

Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J.,

Meijer, E., Peterson, J., Reid, A., Runciman, C. and Wadler, P. (1999) Report on the

Programming Language Haskell 98, a Non-strict, Purely Functional Language. Available

from http://haskell.org

Tofte, M. (1990) Type inference for polymorphic references. Infor. & Computation, 89(1).

Wadler, P. (1995) Monads for functional programming. In: Jeuring, J. and Meijer, E. (eds.),

Advanced Functional Programming: Lecture Notes in Computer Science 925, pp. 24–52.

Springer-Verlag.

https://doi.org/10.1017/S0956796802004471 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004471

