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Abstract. Accurate characterization of the astrometric errors in the forthcoming Gaia catalogue
is essential for making optimal use of the data. Using small-scale numerical simulations of the
astrometric solution, we investigate the expected spatial correlation between the astrometric
errors of stars as function of their angular separation. Extrapolating to the full-scale solution
for the final Gaia catalogue, we find that the expected correlations are generally very small, but
could reach some fraction of a percent for angular separations smaller than about one degree. The
spatial correlation length is related to the size of the field of view of Gaia, while the maximum
correlation coefficient is related to the mean number of stars present in the field at any time.
Our scalable simulation tool (AGISLab) makes it possible to characterize the astrometric errors
and correlations, e.g., as functions of position and magnitude.
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1. Introduction
The space astrometry mission Gaia, planned to be launched in 2012 by the European

Space Agency (ESA), will provide the most comprehensive and accurate catalogue of
astrometric data for galactic and astrophysical research in the coming decades. Accura-
cies of 8–25 μas are expected for the trigonometric parallaxes, positions at mean epoch
and annual proper motions of simple (apparently single) stars down to 15th magnitude
with lower accuracy down to 20th magnitude. The astrometric data are complemented
by photometric and spectroscopic information collected by the satellite. The resulting
catalogue will become available to the scientific community around 2020.

Accurate characterization of the errors in the catalogue is essential for making optimal
use of the data. While estimates of the standard errors for individual stars have been
reported elsewhere (e.g., Lindegren 2009), little is yet known about what happens when
Gaia data are combined for large numbers of objects. This will often be the case in
important applications dealing with stellar clusters, nearby dwarf galaxies, galactic stellar
populations, and when looking for large-scale patterns e.g. in the apparent proper motions
of quasars. In such cases it may be important to know the statistical correlation of the
astrometric errors as a function of the angular separation of the objects, which we refer
to as spatial correlations. In this paper we present the first results of an estimation of
spatial correlations in the future Gaia catalogue.

2. The importance of correlations
We examine the estimated value of the generic astrometric parameter x (representing

α, δ, π, μα , or μδ ) for star i, denoted xi . It is assumed that the estimate is unbiased, so
E[ei ] = 0, where ei = xi − xtrue

i is the error. For the two stars i �= j the estimates are
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correlated with correlation coefficient ρij if

Cov[xi, xj ] ≡ E[eiej ] = ρijσiσj �= 0 (2.1)

where σi =
√

E[e2
i ], σj =

√
E[e2

j ] are the standard errors.
Consider now any quantity y calculated from the estimated parameters x1 . . . xN of

N different stars. We can generally formulate this as y = f(x) where x is the vector of
estimates. Assuming that f is linear in the small errors, the variance of y is given by

σ2
y =

(
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∂xj
ρijσiσj (2.2)

The first sum is the computed variance if correlations are neglected; depending on the
sign of the correlations this can be an under- or overestimate of the true variance.

As a simple example, consider the calculation of the mean parallax or proper motion
of N stars in a cluster, so y = N−1 ∑

i xi . If the stars are of approximately the same
magnitude, they will have roughly the same standard error, σi � σ. If the area on the
sky occupied by the cluster is small, it will be found (cf. Sect. 5) that the correlation
coefficient is positive and roughly the same for all pairs of stars, ρij � ρ > 0. Then

σ2
y � σ2

(
1
N

+
N − 1

N
ρ

)
(2.3)

In the absence of correlations the improvement in σy is by a factor N−1/2 , as could be
expected. However, in the presence of (positive) correlations, σy → σ

√
ρ as N → ∞. The

limiting accuracy is effectively reached by averaging over some ρ−1 stars.

3. Origin of spatial correlations in the Gaia catalog
Although the individual positional measurements in Gaia’s focal plane are essentially

uncorrelated (the errors are dominated by photon noise), the geometry of the observations
and the way they are combined in the astrometric solution will create spatial correla-
tions on different angular scales. Gaia’s scanning law and the two fields of view, widely
separated by the basic angle of 106.5◦, are designed to minimize large-scale correlations,
but cannot entirely eliminate them.

The origin of spatial correlations in the Gaia catalog can be understood in terms of
errors in the attitude determination (Fig. 1). An error in the attitude at a particular
time will ‘bias’ all observations made at that time, in both fields of view, thus partially
correlating stars within each field of view as well as stars separated by the basic angle.
This suggests that we can expect spatial correlations to fall off over an angular scale
on the order of the field of view size, or � 0.7◦ for the astrometric instrument of Gaia,
possibly reappearing to some degree for separations of about 106.5◦.

In a single realization of the Gaia catalogue (which is all that we will have!), the
spatially correlated errors may look like localized ‘biases’ on the sky. However, it is
important to realize that they originate from attitude errors that are themselves also a
result of the random observation noise and that a different realization of the observation
noise would have resulted in a completely different set of ‘biases’.
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Figure 1. Gaia scans the sky roughly along great circles, observing stars in two fields of view
separated by the basic angle. An error in the attitude at a particular time will affect all ob-
servations in both fields of view, producing correlations among stars both for small angular
separations and for separations of about 106.5◦, as illustrated by the all-sky map on the lower
right.

4. Monte Carlo experiments with AGISLab
The baseline method for determining the astrometric parameters of Gaia stars is the

Astrometric Global Iterative Solution (AGIS). This is an iterative least-squares estima-
tion of the five astrometric parameters for a subset of ∼108 well behaved (non-variable,
apparently single) ‘primary’ stars, with additional unknowns for the spacecraft attitude,
instrument calibration, and global parameters such as PPN γ (Hobbs et al. 2009). The
total number of unknowns is ∼5×108. This large number prevents a rigorous calculation
of the covariance matrix of the solution. To overcome this we estimate the correlations
statistically from Monte Carlo experiments with different noise realizations.

While AGIS is currently being tested with 106–107 primary stars, these simulations
take too much time and resources for making a significant number of Monte Carlo exper-
iments. They also depend on externally generated simulated observations which are not
always suitable for the tests we want to run. We have therefore developed a scaled version
of AGIS called AGISLab, which allows us to run simulations with less than 106 stars in
a (much) shorter time and using input observations that fit our experiments (e.g., with
many different noise realizations but otherwise identical conditions). The scaling uses a
single parameter S such that S = 1 corresponds to the astrometric solution using ap-
proximately the current Gaia design and a minimum of 106 primary stars, while S = 0.1
would only use 10% as many primary stars. When S < 1 the Gaia design used in the
simulations is modified to preserve certain key quantities such as the mean number of
stars in the focal plane at any time, the mean number of field transits of a given star over
the mission, and the mean number of observations per degree of freedom of the attitude
model. In practice this is done by formally reducing the focal length of the astrometric
telescope and the spin rate of the satellite by the factor S1/2 , and increasing the interval
between attitude spline knots by the factor S−1 .

For the present study we made astrometric solutions with AGISLab, using 3 000, 10 000,
and 30 000 uniformly distributed primary stars (i.e., for S = 0.003, 0.01 and 0.03). In each
experiment (A, B, C) many different noise realizations were made and the corresponding
solutions computed in order to improve the statistics. As the scaling preserves the mean
number of stars per field of view, additional experiments (D, E) were made in which
this number could be increased. An overview of the experiments is given in Table 1. All
experiments used a noise level of 100 μas per along-scan observation, which is roughly the
expected noise for bright stars down to magnitude V = 13 (for unreddened G2V stars).
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Table 1. Overview of experiments in this study. S = scale parameter; Nstar = number of stars
in the solution; Φ = field of view size (side length); n = mean number of stars per field of view;
Nrun = number of runs in the experiment (with different noise realizations); ρm ax = maximum
correlation of parallaxes (for separations θ � Φ); θ1/2 = correlation half-length. The reference
case for the scaling law (corresponding to S = 1) has Nstar = 106 , Φ = 0.7◦ and n = 12.

Experiment S Nstar Φ [deg] n Nrun ρm ax θ1/2 [deg] Figure

A 0.030 30 000 4 12 49 0.085 1.7 2, 3
B 0.010 10 000 7 12 112 0.085 3.0 2, 3
C 0.003 3 000 13 12 759 0.085 5.2 2, 3, 4
D 0.0031 9 000 13 36 25 0.032 5.2 4
E 0.0031 30 000 13 120 17 0.010 5.0 4

1 In these experiments n is increased with respect to the usual scaling law.

Although the actual noise level is irrelevant for studying correlations, the assumption of
a single noise level, as well as the uniform sky distribution of the stars, are of course gross
simplifications of the real case. These complications will be addressed in a future paper.

To estimate the correlation as a function of pair separation θ, the range 0 � θ � 180◦

was divided into bins of 0.5◦ or 1.0◦ and the sample correlation coefficient calculated in
each bin by summing over all relevant pairs in all the runs:

ρ(θ) =

⎛
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eiej

⎞
⎠

⎡
⎣

⎛
⎝ ∑

ij∈bin

e2
i

⎞
⎠

⎛
⎝ ∑

ij∈bin

e2
j

⎞
⎠

⎤
⎦
−1/2

(4.1)

5. Results and discussion
Results are shown graphically in Figs. 2–4. In all cases the strongest correlation is

obtained for the smallest separations. For θ � 106.5◦ there is also a much weaker positive
correlation for α and μα , and a similar negative correlation for π, δ and μδ (Fig. 2). This
is expected if the attitude errors are mainly a rotation offset around the spin axis.

Table 1 gives two key characteristics of the correlation curves for small separations: the
maximum correlation coefficient ρmax (obtained in the first 0.5◦ bin), and the correlation
half-length, i.e., the angle θ1/2 such that ρ(θ1/2) � ρmax/2. It is noted that: (i) the
correlation length scales with the size of the field of view, θ1/2 � 0.4Φ; and (ii) the
maximum correlation depends mainly on the number of stars in the field.

Extrapolating to the real Gaia mission with Φ = 0.7◦, the expected correlation half-
length is � 0.3◦. The maximum correlation depends on the assumed number of primary
stars and their magnitude distribution. Although the final solution will use about 100 mil-
lion primary stars, their combined astrometric weight corresponds to a smaller number
of perhaps 20 million bright primary stars, suggesting ρmax � 0.005 for bright stars
(V < 13) and smaller for fainter stars. More detailed studies are needed to determine
how the magnitude distribution and real-sky non-uniformity affect the correlations. The
final goal is to model the covariance of all astrometric parameters for any pair of stars
in terms of their magnitudes and positions on the sky, as required for astrophysical
applications combining Gaia data for many stars.
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Figure 2. Spatial correlations in experiments A, B and C (see Table 1). Thin black lines are α
and δ, the thick black line is π, thick gray lines are μα and μδ (binsize 1.0◦).

Figure 3. Same as Fig. 2 but plotted for separations θ = 0–20◦ (binsize 0.5◦).

Figure 4. Spatial correlations in experiments C, D and E (see Table 1). Binsize is 1.0◦.
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