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A RESULT ON SUMS OF SQUARES

BY
J. L. DAVISON

In this note we give an elementary proof of the following.

THEOREM 1. Let n>1 be an integer. Then, every positive even integer less than or
equal to n(n*—1)/3 can be expressed as a sum of n squares of integers from the set
{0,1,2,...,n—1}

Theorem 1 follows from Lagrange’s Four Square Theorem. Indeed, using
Lagrange’s Theorem we can show that [#/3]45 squares are sufficient (a number
smaller than n, for n>>7). This will be proved in Theorem 2. The virtue of Theorem
1, is that the proof is completely elementary, requiring no Number Theory and
moreover gives a constructive method for finding such a representation.

Theorem 1 is obtained from some remarks on permutation groups. Let S,
denote the permutation group on {1, 2,...,n} If 6 € S, let m(0)=>7, | o(i)—
i [2. Note that if i is the identity permutation, then m(:)=0 and if p is the reverse
permutation, given by p(i)=n+1—1, then m(p)=n(n*—1)/3.

PROPOSITION 1. For o € S, m(o) is even and lies in the interval [0, n(n®—1)/3].

Proof. We show in fact that

n(n2—1)
3

M m(o)+mlp o 0) =

Expanding we obtain

m(o) = éa(i)2+ aniz——Z Z"Iia(i)

Thus

2 m(o) = 2}:; 1'2—2ﬁ1 io(i),
which shows that m(o) is even,

Similarly,

) m(pe) =23 =2 3 i(n+1-o(0)

From the fact that >, i?=n(n+1)(2n+1)/6, we find that adding (2) and (3)
gives us (1).

PROPOSITION 2. Let n>4, and let w be an even integer between 0 and n(n*—1)/3.
Then, there exists a o € S,, with m(c)=w.
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Proof. The proof is by induction. For n=4, the result is true by inspection. So
let n>4. From equation (1), we can assume that w<n(n*—1)/6. Since n(n2—1)/6 <
(n—2)(n—1)(n)/3 for n>5, it follows that w<(n—2)(n—1)(n)/3. So by the in-
ductive hypothesis, there exists 6 € S,_; such that m(¢)=w. We let o(i)=35(i),
1<i<n—1 and o(n)=r and thus m(c)=w.

Proof of Theorem 1. If n=1, 2 or 3 the result is true by inspection. If n>4,
the result follows from Proposition 2 and the fact that | ¢(i)—i| €{0, 1, . .., n—1}.

ReMARK. This proof gives us a constructive method for finding an expression
for the integer w as a sum of squares. For example, if w=62, n=6. The problem
is to solve m(0)=62, o € S,.

For n=6, n(n*—1)/3=70 so, we have m(p o 0)=38

. (1 2 3 4 a

From S, we see that if 6= (1 4 3 2) then m(6)=38.

1 23 456
So,o<><7=(1 43 2 5 6) and hence

_(123456)
=6 34 5 21

ie. 62=52412412412432452

THEOREM 2. Let n>1. Then every positive integer not greater than n(n*—1)/3
can be expressed as a sum of [n[3]45 squares of integers from the set {0,1,2, ...,
n—1}.

Proof. If n=1 or 2, the proof is trivial. Let n>3, and 1<w<n(n*—1)/3. Then
w=k(n—1)*+/¢, where 0</<(n—1)% By Lagrange’s Theorem [1], £ is a sum of 4
squares of integers from {0,1,2,...,n—2}.

Now
2
k=) < ooy = ot
(n—1)* 3(n—1)* 3(n—1)
But n(n+1)/3(n—1)<(n/3)+1 so it follows that k< [#/3]+ 1. Thus, the number of
squares required is at most [#/3]4-5, which concludes the proof.
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