Canad. Math. Bull. Vol. 18 (3), 1975

A RESULT ON SUMS OF SQUARES

BY
J. L. DAVISON

In this note we give an elementary proof of the following.
Theorem 1. Let $n \geq 1$ be an integer. Then, every positive even integer less than or equal to $n\left(n^{2}-1\right) / 3$ can be expressed as a sum of n squares of integers from the set $\{0,1,2, \ldots, n-1\}$.

Theorem 1 follows from Lagrange's Four Square Theorem. Indeed, using Lagrange's Theorem we can show that $[n / 3]+5$ squares are sufficient (a number smaller than n, for $n>7$). This will be proved in Theorem 2. The virtue of Theorem 1 , is that the proof is completely elementary, requiring no Number Theory and moreover gives a constructive method for finding such a representation.

Theorem 1 is obtained from some remarks on permutation groups. Let S_{n} denote the permutation group on $\{1,2, \ldots, n\}$. If $\sigma \in S_{n}$, let $m(\sigma)=\sum_{i=1}^{n} \mid \sigma(i)-$ $\left.i\right|^{2}$. Note that if i is the identity permutation, then $m(\iota)=0$ and if ρ is the reverse permutation, given by $\rho(i)=n+1-i$, then $m(\rho)=n\left(n^{2}-1\right) / 3$.

Proposition 1. For $\sigma \in S_{n}, m(\sigma)$ is even and lies in the interval $\left[0, n\left(n^{2}-1\right) / 3\right]$.
Proof. We show in fact that

$$
\begin{equation*}
m(\sigma)+m(\rho \circ \sigma)=\frac{n\left(n^{2}-1\right)}{3} \tag{1}
\end{equation*}
$$

Expanding we obtain

$$
m(\sigma)=\sum_{i=1}^{n} \sigma(i)^{2}+\sum_{i=1}^{n} i^{2}-2 \sum_{i=1}^{n} i \sigma(i)
$$

Thus

$$
\begin{equation*}
m(\sigma)=2 \sum_{i=1}^{n} i^{2}-2 \sum_{i=1}^{n} i \sigma(i) \tag{2}
\end{equation*}
$$

which shows that $m(\sigma)$ is even,
Similarly,

$$
\begin{equation*}
m(p \circ \sigma)=2 \sum_{i=1}^{n} i^{2}-2 \sum_{i=1}^{n} i(n+1-\sigma(i)) \tag{3}
\end{equation*}
$$

From the fact that $\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$, we find that adding (2) and (3) gives us (1).

Proposition 2. Let $n \geq 4$, and let w be an even integer between 0 and $n\left(n^{2}-1\right) / 3$. Then, there exists $a \sigma \in S_{n}$ with $m(\sigma)=w$.

Proof. The proof is by induction. For $n=4$, the result is true by inspection. So let $n>4$. From equation (1), we can assume that $w \leq n\left(n^{2}-1\right) / 6$. Since $n\left(n^{2}-1\right) / 6 \leq$ $(n-2)(n-1)(n) / 3$ for $n \geq 5$, it follows that $w \leq(n-2)(n-1)(n) / 3$. So by the inductive hypothesis, there exists $\hat{\sigma} \in S_{n-1}$ such that $m(\hat{\sigma})=w$. We let $\sigma(i)=\hat{\sigma}(i)$, $1 \leq i \leq n-1$ and $\sigma(n)=n$ and thus $m(\sigma)=w$.

Proof of Theorem 1. If $n=1,2$ or 3 the result is true by inspection. If $n \geq 4$, the result follows from Proposition 2 and the fact that $|\sigma(i)-i| \in\{0,1, \ldots, n-1\}$.

Remark. This proof gives us a constructive method for finding an expression for the integer w as a sum of squares. For example, if $w=62, n=6$. The problem is to solve $m(\sigma)=62, \sigma \in S_{6}$.

For $n=6, n\left(n^{2}-1\right) / 3=70$ so, we have $m(\rho \circ \sigma)=8$
From S_{4} we see that if $\hat{\sigma}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2\end{array}\right)$ then $m(\hat{\sigma})=8$.

$$
\begin{aligned}
& \text { So } \rho \circ \sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 4 & 3 & 2 & 5 & 6
\end{array}\right) \text { and hence } \\
& \sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 3 & 4 & 5 & 2 & 1
\end{array}\right)
\end{aligned}
$$

i.e. $62=5^{2}+1^{2}+1^{2}+1^{2}+3^{2}+5^{2}$

Theorem 2. Let $n \geq 1$. Then every positive integer not greater than $n\left(n^{2}-1\right) / 3$ can be expressed as a sum of $[n / 3]+5$ squares of integers from the set $\{0,1,2, \ldots$, $n-1\}$.

Proof. If $n=1$ or 2 , the proof is trivial. Let $n \geq 3$, and $1 \leq w \leq n\left(n^{2}-1\right) / 3$. Then $w=k(n-1)^{2}+\ell$, where $0 \leq \ell<(n-1)^{2}$. By Lagrange's Theorem [1], ℓ is a sum of 4 squares of integers from $\{0,1,2, \ldots, n-2\}$.
Now

$$
k=\left[\frac{w}{(n-1)^{2}}\right] \leq\left[\frac{n\left(n^{2}-1\right)}{3(n-1)^{2}}\right]=\left[\frac{n(n+1)}{3(n-1)}\right]
$$

But $n(n+1) / 3(n-1) \leq(n / 3)+1$ so it follows that $k \leq[n / 3]+1$. Thus, the number of squares required is at most $[n / 3]+5$, which concludes the proof.

Reference

1. G. H. Hardy \& E. M. Wright, An Introduction to The Theory of Numbers (Oxford Press), 1960, p. 302.
