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A RESULT ON SUMS OF SQUARES 

BY 

J. L. DAVISON 

In this note we give an elementary proof of the following. 

THEOREM 1. Let «>;1 be an integer. Then, every positive even integer less than or 
equal to n(n2—1)/3 can be expressed as a sum ofn squares of integers from the set 
{ 0 , l , 2 , . . . , n - l } . 

Theorem 1 follows from Lagrange's Four Square Theorem. Indeed, using 
Lagrange's Theorem we can show that [w/3]+5 squares are sufficient (a number 
smaller than n, for «>7). This will be proved in Theorem 2. The virtue of Theorem 
1, is that the proof is completely elementary, requiring no Number Theory and 
moreover gives a constructive method for finding such a representation. 

Theorem 1 is obtained from some remarks on permutation groups. Let Sn 

denote the permutation group on {1, 2 , . . . , « } . If a e Sn9 let m(o')=2r==i | #(0— 
i |2. Note that if i is the identity permutation, then m(c)=0 and if p is the reverse 
permutation, given by p(i)=n+l —i, then m(p)=n(n2—l)j3. 

PROPOSITION 1. For a e Sni m(o) is even and lies in the interval [0, n(n2—1)/3]. 

Proof. We show in fact that 

' , x , x n(n2-\) 
(1) m(a)+m(p 0 a) = — - — 

Expanding we obtain 

m(cr) = i c r ( 0 2 + i / 2 - 2 i f c r ( 0 

Thus 

(2) m(o) = 22i2-2%i<!(ï), 
i=l i = l 

which shows that m(a) is even, 
Similarly, 

(3) m(po cr) = 2 £ i 2 - 2 £ i (n+l-cr(0) 

From the fact that ^==1i
2=n(n+l)(2n+l)l6, we find that adding (2) and (3) 

gives us (1). 

PROPOSITION 2. Let n>4, and let w be an even integer between 0 and n(n2—l)/3. 

Then, there exists a a e Sn with m((f)=w. 
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Proof. The proof is by induction. For « = 4 , the result is true by inspection. So 
let «>4 . From equation (1), we can assume that w<n(n2—1)/6. Since n(n2—1)/6< 
(/2-2)(n-l)(«)/3 for n>5, it follows that w<(«-2) (« - l ) (« ) /3 . So by the in
ductive hypothesis, there exists aeSn_x such that m(a)=w. We let a(i)=a(i)9 

l<i<n—l and a(ri)==n and thus m(o)=w. 

Proof of Theorem 1. If w=l , 2 or 3 the result is true by inspection. If n>4, 
the result follows from Proposition 2 and the fact that | o(i) — i | e { 0 , 1 , . . . , « — 1}. 

REMARK. This proof gives us a constructive method for finding an expression 
for the integer w as a sum of squares. For example, if w=62, n=6. The problem 
is to solve m(o)=62, a e S6. 

For 7i=6, n(n2—1)/3=70 so, we have m(p ° (r)=8 
/ l 2 3 4\ 

From 54 we see that if o*= 11 A n >>) then 7w(d)=8. 

/I 2 3 4 5 6\ J t 
S o / > ° ' = \ l 4 3 2 5 6 j a n d h e n C e 

/ l 2 3 4 5 6\ 
* = \ 6 3 4 5 2 l j 

i.e. 6 2 = 5 2 + l 2 + l 2 + l 2 + 3 2 + 5 2 

THEOREM 2. Ze/ « > 1 . TAew every positive integer not greater than n(n2—1)/3 
caw Z>e expressed as a sum of [w/3]+5 squares of integers from the set {0, 1, 2 , . . . , 
K - l } . 

Proof. If n=l or 2, the proof is trivial. Let n>3, and l<w<n(n2—1)/3. Then 
H>=&(>2—1)2+/, where 0</<(«—l) 2 . By Lagrange's Theorem [1], / i s a sum of 4 
squares of integers from {0,1, 2 , . . . , n—2}. 
Now 

k = r w i < r ^ ^ i = rn(n+i)i 
L(n-l)2J ~ L3(n-l)2J L3(n-l)J 

But / I ( / I + 1 ) / 3 ( / I - 1 ) ^ ( / I / 3 ) + 1 so it follows that fc< [TI/3] + 1. Thus, the number of 
squares required is at most [«/3]+5, which concludes the proof. 
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