Canad. Math. Bull. Vol. 18 (3), 1975

A RESULT ON SUMS OF SQUARES

BY

J. L. DAVISON

In this note we give an elementary proof of the following.

THEOREM 1. Let $n \ge 1$ be an integer. Then, every positive even integer less than or equal to $n(n^2-1)/3$ can be expressed as a sum of n squares of integers from the set $\{0, 1, 2, ..., n-1\}$.

Theorem 1 follows from Lagrange's Four Square Theorem. Indeed, using Lagrange's Theorem we can show that [n/3]+5 squares are sufficient (a number smaller than n, for n>7). This will be proved in Theorem 2. The virtue of Theorem 1, is that the proof is completely elementary, requiring no Number Theory and moreover gives a constructive method for finding such a representation.

Theorem 1 is obtained from some remarks on permutation groups. Let S_n denote the permutation group on $\{1, 2, ..., n\}$. If $\sigma \in S_n$, let $m(\sigma) = \sum_{i=1}^n |\sigma(i) - i|^2$. Note that if *i* is the identity permutation, then $m(\iota)=0$ and if ρ is the reverse permutation, given by $\rho(i)=n+1-i$, then $m(\rho)=n(n^2-1)/3$.

PROPOSITION 1. For $\sigma \in S_n$, $m(\sigma)$ is even and lies in the interval $[0, n(n^2-1)/3]$.

Proof. We show in fact that

(1)
$$m(\sigma) + m(\rho \circ \sigma) = \frac{n(n^2 - 1)}{3}$$

Expanding we obtain

$$m(\sigma) = \sum_{i=1}^{n} \sigma(i)^{2} + \sum_{i=1}^{n} i^{2} - 2\sum_{i=1}^{n} i\sigma(i)$$

Thus

(2)
$$m(\sigma) = 2\sum_{i=1}^{n} i^2 - 2\sum_{i=1}^{n} i\sigma(i),$$

which shows that $m(\sigma)$ is even, Similarly,

(3)
$$m(p \circ \sigma) = 2 \sum_{i=1}^{n} i^2 - 2 \sum_{i=1}^{n} i(n+1-\sigma(i))$$

From the fact that $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$, we find that adding (2) and (3) gives us (1).

PROPOSITION 2. Let $n \ge 4$, and let w be an even integer between 0 and $n(n^2-1)/3$. Then, there exists a $\sigma \in S_n$ with $m(\sigma) = w$.

425

J. L. DAVISON

Proof. The proof is by induction. For n=4, the result is true by inspection. So let n>4. From equation (1), we can assume that $w \le n(n^2-1)/6$. Since $n(n^2-1)/6 \le (n-2)(n-1)(n)/3$ for $n\ge 5$, it follows that $w \le (n-2)(n-1)(n)/3$. So by the inductive hypothesis, there exists $\hat{\sigma} \in S_{n-1}$ such that $m(\hat{\sigma})=w$. We let $\sigma(i)=\hat{\sigma}(i)$, $1\le i\le n-1$ and $\sigma(n)=n$ and thus $m(\sigma)=w$.

Proof of Theorem 1. If n=1, 2 or 3 the result is true by inspection. If $n \ge 4$, the result follows from Proposition 2 and the fact that $|\sigma(i)-i| \in \{0, 1, ..., n-1\}$.

REMARK. This proof gives us a constructive method for finding an expression for the integer w as a sum of squares. For example, if w=62, n=6. The problem is to solve $m(\sigma)=62$, $\sigma \in S_6$.

For n=6, $n(n^2-1)/3=70$ so, we have $m(\rho \circ \sigma)=8$ From S_4 we see that if $\hat{\sigma} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$ then $m(\hat{\sigma})=8$. So $\rho \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 2 & 5 & 6 \end{pmatrix}$ and hence $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix}$ i.e. $62=5^2+1^2+1^2+1^2+3^2+5^2$

THEOREM 2. Let $n \ge 1$. Then every positive integer not greater than $n(n^2-1)/3$ can be expressed as a sum of [n/3]+5 squares of integers from the set $\{0, 1, 2, ..., n-1\}$.

Proof. If n=1 or 2, the proof is trivial. Let $n \ge 3$, and $1 \le w \le n(n^2-1)/3$. Then $w=k(n-1)^2+\ell$, where $0 \le \ell < (n-1)^2$. By Lagrange's Theorem [1], ℓ is a sum of 4 squares of integers from $\{0, 1, 2, ..., n-2\}$. Now

$$k = \left[\frac{w}{(n-1)^2}\right] \le \left[\frac{n(n^2-1)}{3(n-1)^2}\right] = \left[\frac{n(n+1)}{3(n-1)}\right]$$

But $n(n+1)/3(n-1) \le (n/3)+1$ so it follows that $k \le [n/3]+1$. Thus, the number of squares required is at most [n/3]+5, which concludes the proof.

Reference

1. G. H. Hardy & E. M. Wright, An Introduction to The Theory of Numbers (Oxford Press), 1960, p. 302.

DEPARTMENT OF MATHEMATICS, LAURENTIAN UNIVERSITY

426