ON THE RESTRICTION OF CHARACTERS OF STEINBERG-TITS TRIALITY GROUP ${}^{3}D_{4}(q)$ ON UNIPOTENT CLASSES

VAHID DABBAGHIAN

The IRMACS Centre, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada e-mail: vdabbagh@sfu.ca

(Received 29 May 2008; revised 23 October 2008; accepted 17 December 2008)

Abstract. Let G be a finite Steinberg–Tits triality group ${}^{3}D_{4}(q)$, and let H be a maximal unipotent subgroup of G. In this paper we classify irreducible characters χ of G such that χ_{H} has a linear constituent with multiplicity one.

2000 Mathematics Subject Classification. Primary 20C15; secondary 20C33.

1. Introduction. R. Steinberg [13, Theorem 49] asserts that for any finite Chevalley group G, the Gelfand–Graev representation of G is multiplicity-free. By Frobenius reciprocity, this means that the non-degenerate linear characters of a maximal unipotent subgroup of G appear with multiplicity at most 1 in the restriction of every irreducible character of G. This general result follows an earlier work by I. M. Gelfand and M. I. Graev [7] on groups SL(n, q) for arbitrary n with a particular attention to the case n = 3.

Subsequently, A. V. Zelevinsky [15] proved that if χ is an irreducible complex character of the general linear group G = GL(n, q), then χ_H contains a linear constituent of a maximal unipotent subgroup H of G with multiplicity 1. Zelevinsky's work was extended by Z. Ohmori in [11] to a family of irreducible characters of the general unitary group GU(n, q). Recently in the case that G is a symplectic group Sp(4, q), a Chevalley group $G_2(q)$, a Suzuki group Sz(q) or a Ree group Re(q) of characteristic 3, the author has classified all irreducible characters of G which their restriction on a maximal unipotent subgroup of G contain a linear constituent with multiplicity one (see [2]).

The classification of such irreducible characters is of interest for several reasons such as computing primitive idempotent elements [9], calculating Clifford classes [14] and computing matrix representations of finite groups [5, pp. 105–112].

In this paper we classify irreducible characters of another class of finite groups of Lie type, namely Steinberg–Tits triality groups $G = {}^{3}D_{4}(q)$. In fact we prove the following theorem:

THEOREM 1. Let G be a Steinberg–Tits triality group ${}^{3}D_{4}(q)$. Let H be a maximal unipotent subgroup and χ be an irreducible character of G. Then χ_{H} has a linear constituent with multiplicity one if and only if χ does not belong to the following characters:

 ${}^{3}D_{4}[-1], {}^{3}D_{4}[1], \chi_{3,1}, \chi_{4,qs}, \chi_{5,1}, \chi_{9,qs'}.$

VAHID DABBAGHIAN

Characters	q Odd	q Even
$St_H =$	g + 4e + 2c + b + a - 2d - 1	g + 2f + 2e + b + a - 1
$(\chi_{3,1})_H =$	d + c + a + 1	d + c + a + 1
$(\chi_{3,St})_H =$	g + 4e + 3c + 2b + a - d - 1	g + 2f + 2e + d + c + 2b + a - 1
$(\chi_{4,1})_H =$	e + 2c - a - d + 1	f + c - a + 1
$(\chi_{4,qs})_H =$	2d + b + a - c - e	d+b+a-f
$(\chi_{4,\mathrm{St}})_{H} =$	g + 5e + 4c + a - 3d - 1	g + 3f + 2e + c + a - 1
$(\chi_{5,1})_H =$	d + c + b + 1	d + c + b + 1
$(\chi_{5,St})_H =$	g + 4e + 3c + b + 2a - d - 1	g + 2f + 2e + d + c + b + 2a - 1
$(\chi_6)_H =$	g + 4e + 4c + 2b + 2a	g + 2f + 2e + 2d + 2c + 2b + 2a
$(\chi_{7,1})_H =$	2e + c + a - d - 1	f + e + a - 1
$(\chi_{7,St})_H =$	g + 2e + c + a - d - 1	g + f + e + a - 1
$(\chi_8)_H =$	$g + 4e + 2c + 2a - 2d - 2 \cdot 1$	$g + 2f + 2e + 2a - 2 \cdot 1$
$(\chi_{9,1})_H =$	e + d - a - 1	e + d - a - 1
$(\chi_{9,qs'})_H =$	e + c + b + a - 2d	f + b + a - d
$(\chi_{9,\mathrm{St}})_H =$	g + 3e + 2c + 2b + a - 3d - 1	g + 2f + e + 2b + a - d - 1
$(\chi_{10,1})_H =$	2e + c + b - d - 1	f + e + b - 1
$(\chi_{10,St})_H =$	g + 2e + c + b - d - 1	g + f + e + b - 1
$(\chi_{11})_H =$	$g + 4e + 2c + 2b - 2d - 2 \cdot 1$	$g + 2f + 2e + 2b - 2 \cdot 1$
$(\chi_{12})_H =$	g + 7e + 7c - a - b - 6d	g+5f+2e+2c-a-b-d
$(\chi_{13})_H =$	g + 3e + 3c + 3b + 3a - 6d	g+3f+3b+3a-3d
$(\chi_{14})_H =$	g + 5e + c + b + a - 2d	g + 2f + 3e + b + a - c
${}^{3}D_{4}[1]_{H} =$	e + c - d	
$(\chi_{2,1})_H =$	d - e + 1	
$(\chi_{2,St})_{H} =$	e + c + a	
$(\chi_{2,\mathrm{St}'})_H =$	e + c + b	
$(\chi_{2,\mathrm{St},\mathrm{St}'})_H =$	g + 3e + 2c + b + a - d - 1	

Table 1. Linear combinations of restricted characters of ${}^{3}D_{4}(q)$ on H

NOTATION. For a group H and a character θ , Lin(H) and Lin(θ) denote the set of all linear characters of H and the set of all non-principal linear constituents of θ , respectively.

2. Restriction of characters. Suppose that *G* is a Steinberg–Tits triality group ${}^{3}D_{4}(q)$ of characteristic *p* with *n* conjugacy classes. Let *t* of the conjugacy classes of *G* be unipotent classes. Then t = 7 and 8 when *q* is odd and even, respectively. Consider the $n \times n$ matrix *X* constructed from the character table of *G* and the $n \times t$ submatrix *P* whose columns correspond to the unipotent classes. Since *X* is invertible, the columns of *P* are linearly independent, and so *P* is rank *t*. Thus there exist *t* irreducible characters $\theta_1, \ldots, \theta_t$, say, of *G* such that for every irreducible character χ of *G* the restriction χ_H is a linear combination of the restrictions $(\theta_1)_H, \ldots, (\theta_t)_H$. What we shall see below (Table 1) that we can choose the characters $\theta_1, \ldots, \theta_t$ in such a way that every χ_H is an *integral* linear combination of $(\theta_1)_H, \ldots, (\theta_t)_H$. This is analogous to the theory of π -partial characters of solvable groups developed by I. M. Isaacs, where π is a set of prime divisors of the order of group (see [8]). In fact he proves that if *G* is a solvable group and *H* is a π -subgroup, where π is a set of prime divisors of |G|, then there is a set of prime divisors of and H is a π -subgroup, where π is a set of prime divisors of |G|, then there is a set of G and H is a π -subgroup.

$$\chi_H = \sum_{i=1}^t m_i(\theta_i)_H$$

with non-negative integer coefficients m_i , for each irreducible character χ of G.

This property has already been investigated by the author in [1]–[3] for some classes of finite groups of Lie type in the case that $\pi = \{p\}$ is the defining characteristic and m_i are integers. These classes are special linear groups SL(l, q) for l = 2 and 3, special unitary groups SU(3, q), symplectic groups Sp(4, q), Chevalley groups G₂(q), Suzuki groups Sz(q) and Ree groups Re(q) of characteristic 3. These outcomes and the result obtained in this paper support the following conjecture, which is related to a conjecture by N. Kawanaka [10, 3.3.1, pp. 175–206].

CONJECTURE 2. Let *G* be a finite group of Lie type, and let *H* be a maximal unipotent subgroup of *G*. Let *t* be the number of conjugacy classes of unipotent elements of *G*. Then there exist irreducible characters $\theta_1, \ldots, \theta_t$ of *G* such that χ_H is an integral linear combination of $(\theta_1)_H, \ldots, (\theta_t)_H$ for each irreducible character χ of *G*.

3. Proof of the theorem. Let $G = {}^{3}D_{4}(q)$ be a Steinberg-Tits triality group in which q is a power of a prime p. Then G is a simple group of order $q^{12}(q^8 + q^4 + 1)(q^6 - 1)(q^2 - 1)$. Values of eight unipotent irreducible characters of G have been computed in [12]. This work is continued by computing the values of non-unipotent irreducible characters of G as a linear combination of Deligne-Lusztig characters in [4]. Throughout this paper all notations concerning conjugacy classes and irreducible characters are referred from [12] and [4].

Let $a = [\varepsilon_1]_H$, $b = [\varepsilon_2]_H$, $c = (\rho_1)_H$, $d = (\rho_2)_H$, $e = {}^3D_4[-1]_H$, $g = (\chi_{15})_H$, and let **1** be the principal character of *H*. Let $f = {}^3D_4[1]_H$ for *q* even. Then using the CHEVIE computer algebra system [**6**] we compute χ_H as an *integral* linear combination of *a*, *b*, *c*, *d*, *e*, *f*, *g* and **1** for each irreducible character χ of *G*. These linear combinations are listed in Table 1.

Since G has the Steinberg character St whose restriction to a maximal unipotent subgroup H is the regular character ρ on H; thus we can write ρ as an integral linear combination of a, b, c, d, e, f, g and **1**. In the next two lemmas, using the fact that $\langle \rho, \varphi \rangle = 1$ for each $\varphi \in \text{Lin}(H)$, we obtain information about the multiplicities of the linear constituents of each of these characters. Then we use this and ad hoc arguments to determine which of the χ_H have linear constituents of multiplicity one.

One observation is frequently used. The degrees of the irreducible characters of H are all powers of p. Therefore, for each χ , the sum of the multiplicities of the linear constituents of χ_H must be congruent to $\chi(1) \pmod{p}$.

Using [12], if B is a Borel subgroup of G, then

$$\mathbf{1}_{B}^{G} = \mathbf{1}_{G} + [\varepsilon_{1}] + [\varepsilon_{2}] + 2[\rho_{1}] + 2[\rho_{2}] + St.$$

Now by considering the fact that $\langle \chi_H, \mathbf{1} \rangle = \langle \chi, \mathbf{1}^G \rangle = \langle \chi, \mathbf{1}^G_B \rangle$ we have

 $\langle a, \mathbf{1} \rangle = \langle b, \mathbf{1} \rangle = 1$ and $\langle c, \mathbf{1} \rangle = \langle d, \mathbf{1} \rangle = 2$.

LEMMA 3. Let q be odd:

1. $\langle e, \varphi \rangle = 0$ for all $\varphi \in \text{Lin}(H)$;

2. $\langle c, \varphi \rangle = \langle d, \varphi \rangle$ for all $1 \neq \varphi \in \text{Lin}(H)$;

3. $\langle a + b + g, \varphi \rangle = 2$ if $\varphi = 1$ and 1 otherwise.

Proof. Considering Table 1 we have $St_H = g + 4e + 2c + b + a - 2d - 1$. Since St_H is the regular character of H, $\langle St_H, 1 \rangle = 1$. Now using $\langle a, 1 \rangle = \langle b, 1 \rangle = 1$ and

 $\langle c, \mathbf{1} \rangle = \langle d, \mathbf{1} \rangle = 2$ we have $\langle e, \mathbf{1} \rangle = \langle g, \mathbf{1} \rangle = 0$. Suppose $\langle e, \varphi \rangle = m$ and $\langle g + 2c + b + a, \varphi \rangle = l$ for $\mathbf{1} \neq \varphi \in \text{Lin}(H)$. Since $\langle St_H, \varphi \rangle = 1$ we have $4m + l - 2\langle d, \varphi \rangle = 1$. Thus $\langle d, \varphi \rangle = 2m + (l-1)/2$. On the other hand $\langle g + 3c + 3b + 3a, \varphi \rangle \leq 3\langle g + c + b + a, \varphi \rangle \leq 3\langle g + 2c + b + a, \varphi \rangle = 3l$; so $0 \leq \langle (\chi_{13})_H, \varphi \rangle \leq -9m + 3$, and we get m = 0. This proves $\langle e, \varphi \rangle = 0$ for all $\varphi \in \text{Lin}(H)$.

Using ${}^{3}D_{4}[1]_{H}$ and the fact that St_{H} is the regular character of H we have

 $\langle d, \varphi \rangle = \langle c, \varphi \rangle$ for all $1 \neq \varphi \in \text{Lin}(H)$.

Furthermore it is easy to see that $\langle a + b + g, \varphi \rangle = 1$ and φ is a constituent of one and only one of g, b and a for each $1 \neq \varphi \in \text{Lin}(H)$.

Now we prove a similar lemma for q even.

LEMMA 4. Let q be even: 1. $\langle e, \varphi \rangle = \langle f, \varphi \rangle = 0$ for all $\varphi \in \text{Lin}(H)$; 2. $\langle a + b + g, \varphi \rangle = 2$ if $\varphi = 1$ and 1 otherwise.

Proof. Since $St_H = g + 2f + 2e + b + a - 1$ is the regular character of H, $\langle e, \varphi \rangle = \langle f, \varphi \rangle = 0$ for all $1 \neq \varphi \in \text{Lin}(H)$. Also $\langle e, 1 \rangle = \langle f, 1 \rangle = 0$, since $2 \mid e(1)$ and $2 \mid f(1)$; $\langle St_H, 1 \rangle = 1$ proves part (2).

Proof of Theorem 1. Case I. *q* odd: Since $\langle a, \mathbf{1} \rangle = \langle b, \mathbf{1} \rangle = 1$, $\langle g, \mathbf{1} \rangle = 0$ and $p \mid a(1), p \mid b(1), p \nmid g(1)$ there exist non-principal characters $\varphi_1, \varphi_2, \varphi_3 \in \text{Lin}(H)$ such that $\langle a, \varphi_1 \rangle = \langle b, \varphi_2 \rangle = \langle g, \varphi_3 \rangle = 1$ and $\varphi_i \neq \varphi_j$ for $i \neq j$.

Suppose $\langle g, \psi \rangle = 1$ for a non-principal character $\psi \in \text{Lin}(H)$; then using $(\chi_{13})_H$ we have $\langle c, \psi \rangle = 0$ (and so $\langle d, \psi \rangle = 0$). This proves the theorem for

$$\chi \in \{St, \chi_{2,St,St'}, \chi_{3,St}, \chi_{4,St}, \chi_{5,St}, \chi_{6}, \chi_{7,St}, \chi_{8}, \chi_{9,St}, \chi_{10,St}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}\}.$$

Since $\langle c, \varphi \rangle = \langle d, \varphi \rangle$ and $\langle e, \varphi \rangle = 0$ for all $\varphi \in \text{Lin}(H)$ the theorem holds for $\chi \in \{\chi_{7,1}, \chi_{10,1}\}$. Suppose $\langle a, \varphi \rangle = 1$ for a non-principal character $\varphi \in \text{Lin}(H)$; then by $(\chi_{4,1})_H$ we have $\langle c, \varphi \rangle \neq 0$ (and so $\langle d, \varphi \rangle \neq 0$). Also using $(\chi_{9,St})_H$ we get $\langle d, \varphi \rangle = \langle c, \varphi \rangle = 1$. This holds the theorem for $\chi \in \{\rho_1, \rho_2, \chi_{2,1}\}$.

Using $(\chi_{12})_H$, $(\chi_{9,qs'})_H$ and the fact that $\langle c, \varphi \rangle = \langle d, \varphi \rangle$ for all $\varphi \in \text{Lin}(H)$ we have $\langle c, \varphi \rangle = 1$ if and only if either $\langle a, \varphi \rangle = 1$ and $\langle b, \varphi \rangle = 0$ or $\langle a, \varphi \rangle = 0$ and $\langle b, \varphi \rangle = 1$. This proves the theorem for $\chi \in \{\chi_{2,St}, \chi_{2,St'}, \chi_{4,1}, \chi_{9,1}\}$. Furthermore it shows that χ_H has no linear constituents of multiplicity one for $\chi \in \{{}^{3}D_{4}[-1], {}^{3}D_{4}[1], \chi_{3,1}, \chi_{4,qs}, \chi_{5,1}, \chi_{9,qs'}\}$.

Case II. *q* even: Considering St_H , $\langle a, \mathbf{1} \rangle = \langle b, \mathbf{1} \rangle = 1$, $\langle g, \mathbf{1} \rangle = 0$ and the fact that $2 \mid a(1), 2 \mid b(1)$ and $2 \nmid g(1)$, there exist non-principal characters $\varphi_1, \varphi_2, \varphi_3 \in \text{Lin}(H)$ such that $\langle a, \varphi_1 \rangle = \langle b, \varphi_2 \rangle = \langle g, \varphi_3 \rangle = 1$ and $\varphi_i \neq \varphi_j$ for $i \neq j$. This shows that the theorem holds for $\chi \in \{\chi_{7,1}, \chi_{10,1}\}$.

The character $(\chi_{14})_H$ shows all non-principal linear constituents of *c* have multiplicity one. On the other hand $(\chi_{4,1})_H$ implies if $\langle a, \varphi \rangle = 1$, then $\langle c, \varphi \rangle = 1$ for all $1 \neq \varphi \in \text{Lin}(H)$. Similar arguments hold for the character *d* by considering the characters $(\chi_{9,1})_H$ and $(\chi_{9,qs'})_H$. Since $\langle d, 1 \rangle = 2$ and $2 \mid d(1), |\text{Lin}(d)|$ is even. On the other hand $\langle a, 1 \rangle = 1$ and $2 \mid a(1)$; so |Lin(a)| is odd. This shows that there exists $1 \neq \psi \in \text{Lin}(H)$ such that $\langle d, \psi \rangle = 1$ and $\langle a, \psi \rangle = 0$. Thus the theorem holds for $\chi_{9,1}$.

Similarly from $\langle c, \mathbf{1} \rangle = 2$ and 2 | c(1) we obtain |Lin(c)| is even. Now since $|\text{Lin}(H) - \{\mathbf{1}\}|$ is odd there exists a non-principal linear character φ of H such that

 $\langle g, \varphi \rangle = 1$ and $\langle c, \varphi \rangle = 0$. A similar argument holds for the character *d*, using the character $(\chi_{13})_H$. These show the theorem holds for $\chi \in \{St, \chi_{3,St}, \chi_{4,St}, \chi_{5,St}, \chi_{6}, \chi_{7,St}, \chi_{8}, \chi_{9,St}, \chi_{10,St}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}\}$.

Using $(\chi_{12})_H$ we get if $\langle a, \varphi \rangle = 1$ or $\langle b, \varphi \rangle = 1$ for some $\mathbf{1} \neq \varphi \in \text{Lin}(H)$, then $\langle c, \varphi \rangle = 1$. It means that the character *c* contains all the non-principal linear constituents of *a* and *b*. Since *a* and *b* can not have same non-principal linear constituents $(\chi_{4,1})_H$ does not have any linear constituent of multiplicity one. A similar argument holds for the characters $\{\chi_{3,1}, \chi_{4,qs}, \chi_{5,1}, \chi_{9,qs'}\}$. This completes the proof.

REMARK. If q is even, then t = 8 (the number of unipotent classes) and characters a, b, c, d, e, f, g and 1 are linearly independent, while for q odd we have t = 7 and f = e + c - d. Now if in all the linear combinations in Table 1 for q odd, we substitute e + c - d by f, then we obtain the linear combinations of the table for q even.

ACKNOWLEDGEMENTS. The author would like to thank the anonymous referees for the valuable comments and suggestions. He would also like to acknowledge the IRMACS centre.

REFERENCES

1. V. Dabbaghian-Abdoly, An algorithm to construct representations of finite groups, PhD thesis (School of Mathematics, Carleton University, 2003).

2. V. Dabbaghian-Abdoly, Characters of some finite groups of Lie type with a restriction containing a linear character once, *J. Algebra* **309** (2007), 543–558.

3. V. Dabbaghian-Abdoly, Constructing representations of the finite symplectic group Sp(4, q), J. Algebra **303** (2006), 618–625.

4. D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups ${}^{3}D_{4}(q)$, *Trans. Am. Math. Soc.* **303**(1) (1987), 39–70.

5. J. D. Dixon, *Constructing representations of finite groups*, Discrete Mathematics and Theoretical Computer Science **11** (American Mathematical Society, Providence, RI 1993).

6. M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE: A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, *Appl. Algebra Eng. Comm. Comput.* 7 (1996), 175–210. Available at "http://www.math.rwth-aachen.de/~CHEVIE".

7. I. M. Gelfand and M. I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, *Dokl. Akad. Nauk SSSR* 147 (1962), 529–532.

8. I. M. Isaacs, Characters of π -separable groups, J. Algebra 86 (1984), 98–128.

9. G. J. Janusz, Primitive idempotents in group algebras, Proc. Am. Math. Soc. 17 (1966), 520–523.

10. N. Kawanaka, *Generalized Gel'fand Graev representations and Ennola duality*, Advanced Studies in Pure Mathematics **6** (North-Holland, Amsterdam, 1985).

11. Z. Ohmori, On a Zelevinsky theorem and the Schur indices of the finite unitary groups, J. Math. Sci. Univ. Tokyo 4 (1997), 417–433.

12. N. Spaltenstein, Caractres unipotents de ${}^{3}D_{4}(F_{q})$, Comment. Math. Helv. 57(4) (1982), 676–691.

13. R. Steinberg, Lectures on Chevalley groups (Yale University, New Haven, 1968).

14. A. Turull, Calculating Clifford classes for characters containing a linear character once, J. Algebra, 254 (2002), 264–278.

15. A. V. Zelevinsky, *Representations of finite classical groups*, Lecture Notes in Mathematics 869 (Springer, New York, 1981).