ON THE RESTRICTION OF CHARACTERS OF STEINBERG-TITS TRIALITY GROUP ${ }^{3} D_{4}(q)$ ON UNIPOTENT CLASSES

VAHID DABBAGHIAN
The IRMACS Centre, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada e-mail: vdabbagh@sfu.ca

(Received 29 May 2008; revised 23 October 2008; accepted 17 December 2008)

Abstract

Let G be a finite Steinberg-Tits triality group ${ }^{3} D_{4}(q)$, and let H be a maximal unipotent subgroup of G. In this paper we classify irreducible characters χ of G such that χ_{H} has a linear constituent with multiplicity one.

2000 Mathematics Subject Classification. Primary 20C15; secondary 20C33.

1. Introduction. R. Steinberg [13, Theorem 49] asserts that for any finite Chevalley group G, the Gelfand-Graev representation of G is multiplicity-free. By Frobenius reciprocity, this means that the non-degenerate linear characters of a maximal unipotent subgroup of G appear with multiplicity at most 1 in the restriction of every irreducible character of G. This general result follows an earlier work by I. M. Gelfand and M. I. Graev [7] on groups $\operatorname{SL}(n, q)$ for arbitrary n with a particular attention to the case $n=3$.

Subsequently, A. V. Zelevinsky [15] proved that if χ is an irreducible complex character of the general linear group $G=\operatorname{GL}(n, q)$, then χ_{H} contains a linear constituent of a maximal unipotent subgroup H of G with multiplicity 1 . Zelevinsky's work was extended by Z. Ohmori in [11] to a family of irreducible characters of the general unitary group $\operatorname{GU}(n, q)$. Recently in the case that G is a symplectic group $\operatorname{Sp}(4, q)$, a Chevalley group $\mathrm{G}_{2}(q)$, a Suzuki group $\operatorname{Sz}(q)$ or a Ree group $\operatorname{Re}(q)$ of characteristic 3, the author has classified all irreducible characters of G which their restriction on a maximal unipotent subgroup of G contain a linear constituent with multiplicity one (see [2]).

The classification of such irreducible characters is of interest for several reasons such as computing primitive idempotent elements [9], calculating Clifford classes [14] and computing matrix representations of finite groups [5, pp. 105-112].

In this paper we classify irreducible characters of another class of finite groups of Lie type, namely Steinberg-Tits triality groups $G={ }^{3} D_{4}(q)$. In fact we prove the following theorem:

Theorem 1. Let G be a Steinberg-Tits triality group ${ }^{3} D_{4}(q)$. Let H be a maximal unipotent subgroup and χ be an irreducible character of G. Then χ_{H} has a linear constituent with multiplicity one if and only if χ does not belong to the following charaters:

$$
{ }^{3} D_{4}[-1],{ }^{3} D_{4}[1], \chi_{3,1}, \chi_{4, q s}, \chi_{5,1}, \chi_{9, q s^{\prime}} .
$$

Table 1. Linear combinations of restricted characters of ${ }^{3} D_{4}(q)$ on H

Characters	q Odd	q Even
$\mathrm{St}_{H}=$	$g+4 e+2 c+b+a-2 d-\mathbf{1}$	$g+2 f+2 e+b+a-\mathbf{1}$
$\left(\chi_{3,1}\right)_{H}=$	$d+c+a+\mathbf{1}$	$d+c+a+\mathbf{1}$
$\left(\chi_{3, \mathrm{St}}\right)_{H}=$	$g+4 e+3 c+2 b+a-d-1$	$g+2 f+2 e+d+c+2 b+a-\mathbf{1}$
$\left(\chi_{4,1}\right)_{H}=$	$e+2 c-a-d+\mathbf{1}$	$f+c-a+\mathbf{1}$
$\left(\chi_{4, q s}\right)_{H}=$	$2 d+b+a-c-e$	$d+b+a-f$
$\left(\chi_{4, \mathrm{St}}\right)_{H}=$	$g+5 e+4 c+a-3 d-\mathbf{1}$	$g+3 f+2 e+c+a-\mathbf{1}$
$\left(\chi_{5,1}\right)_{H}=$	$d+c+b+\mathbf{1}$	$d+c+b+\mathbf{1}$
$\left(\chi_{5, \mathrm{St}}\right)_{H}=$	$g+4 e+3 c+b+2 a-d-1$	$g+2 f+2 e+d+c+b+2 a-\mathbf{1}$
$\left(\chi_{6}\right)_{H}=$	$g+4 e+4 c+2 b+2 a$	$g+2 f+2 e+2 d+2 c+2 b+2 a$
$\left(\chi_{7,1}\right)_{H}=$	$2 e+c+a-d-\mathbf{1}$	$f+e+a-\mathbf{1}$
$\left(\chi_{7, \mathrm{St}}\right)_{H}=$	$g+2 e+c+a-d-1$	$g+f+e+a-\mathbf{1}$
$\left(\chi_{8}\right)_{H}=$	$g+4 e+2 c+2 a-2 d-2 \cdot \mathbf{1}$	$g+2 f+2 e+2 a-2 \cdot \mathbf{1}$
$\left(\chi_{9,1}\right)_{H}=$	$e+d-a-\mathbf{1}$	$e+d-a-\mathbf{1}$
$\left(\chi_{9, q s^{\prime}}\right)_{H}=$	$e+c+b+a-2 d$	$f+b+a-d$
$\left(\chi_{9, \mathrm{St}}\right)_{H}=$	$g+3 e+2 c+2 b+a-3 d-\mathbf{1}$	$g+2 f+e+2 b+a-d-\mathbf{1}$
$\left(\chi_{10,1}\right)_{H}=$	$2 e+c+b-d-\mathbf{1}$	$f+e+b-\mathbf{1}$
$\left(\chi_{10, \mathrm{St}}\right)_{H}=$	$g+2 e+c+b-d-1$	$g+f+e+b-\mathbf{1}$
$\left(\chi_{11}\right)_{H}=$	$g+4 e+2 c+2 b-2 d-2 \cdot \mathbf{1}$	$g+2 f+2 e+2 b-2 \cdot \mathbf{1}$
$\left(\chi_{12}\right)_{H}=$	$g+7 e+7 c-a-b-6 d$	$g+5 f+2 e+2 c-a-b-d$
$\left(\chi_{13}\right)_{H}=$	$g+3 e+3 c+3 b+3 a-6 d$	$g+3 f+3 b+3 a-3 d$
$\left(\chi_{14}\right)_{H}=$	$g+5 e+c+b+a-2 d$	$g+2 f+3 e+b+a-c$
${ }^{3} D_{4}[1]_{H}=$	$e+c-d$	
$\left(\chi_{2,1}\right)_{H}=$	$d-e+1$	
$\left(\chi_{2, \mathrm{St}}\right)_{H}=$	$e+c+a$	
$\left(\chi_{2, \mathrm{St}^{\prime}}\right)_{H}=$	$e+c+b$	
$\left(\chi_{\left.2, \mathrm{St}, \mathrm{St}^{\prime}\right)_{H}=}\right.$	$g+3 e+2 c+b+a-d-\mathbf{1}$	

Notation. For a group H and a character $\theta, \operatorname{Lin}(H)$ and $\operatorname{Lin}(\theta)$ denote the set of all linear characters of H and the set of all non-principal linear constituents of θ, respectively.
2. Restriction of characters. Suppose that G is a Steinberg-Tits triality group ${ }^{3} D_{4}(q)$ of characteristic p with n conjugacy classes. Let t of the conjugacy classes of G be unipotent classes. Then $t=7$ and 8 when q is odd and even, respectively. Consider the $n \times n$ matrix X constructed from the character table of G and the $n \times t$ submatrix P whose columns correspond to the unipotent classes. Since X is invertible, the columns of P are linearly independent, and so P is rank t. Thus there exist t irreducible characters $\theta_{1}, \ldots, \theta_{t}$, say, of G such that for every irreducible character χ of G the restriction χ_{H} is a linear combination of the restrictions $\left(\theta_{1}\right)_{H}, \ldots,\left(\theta_{t}\right)_{H}$. What we shall see below (Table 1) that we can choose the characters $\theta_{1}, \ldots, \theta_{t}$ in such a way that every χ_{H} is an integral linear combination of $\left(\theta_{1}\right)_{H}, \ldots,\left(\theta_{t}\right)_{H}$. This is analogous to the theory of π-partial characters of solvable groups developed by I. M. Isaacs, where π is a set of prime divisors of the order of group (see [8]). In fact he proves that if G is a solvable group and H is a π-subgroup, where π is a set of prime divisors of $|G|$, then there is a set $\left\{\left(\theta_{1}\right)_{H}, \ldots,\left(\theta_{t}\right)_{H}\right\}$ of class functions of H such that $\theta_{1}, \ldots, \theta_{t}$ are irreducible characters of G and

$$
\chi_{H}=\sum_{i=1}^{t} m_{i}\left(\theta_{i}\right)_{H}
$$

with non-negative integer coefficients m_{i}, for each irreducible character χ of G.

This property has already been investigated by the author in [1]-[3] for some classes of finite groups of Lie type in the case that $\pi=\{p\}$ is the defining characteristic and m_{i} are integers. These classes are special linear groups $\operatorname{SL}(l, q)$ for $l=2$ and 3 , special unitary groups $\mathrm{SU}(3, q)$, symplectic groups $\mathrm{Sp}(4, q)$, Chevalley groups $\mathrm{G}_{2}(q)$, Suzuki groups $\operatorname{Sz}(q)$ and Ree groups $\operatorname{Re}(q)$ of characteristic 3. These outcomes and the result obtained in this paper support the following conjecture, which is related to a conjecture by N. Kawanaka [10, 3.3.1, pp. 175-206].

Conjecture 2. Let G be a finite group of Lie type, and let H be a maximal unipotent subgroup of G. Let t be the number of conjugacy classes of unipotent elements of G. Then there exist irreducible characters $\theta_{1}, \ldots, \theta_{t}$ of G such that χ_{H} is an integral linear combination of $\left(\theta_{1}\right)_{H}, \ldots,\left(\theta_{t}\right)_{H}$ for each irreducible character χ of G.
3. Proof of the theorem. Let $G={ }^{3} D_{4}(q)$ be a Steinberg-Tits triality group in which q is a power of a prime p. Then G is a simple group of order $q^{12}\left(q^{8}+q^{4}+\right.$ 1) $\left(q^{6}-1\right)\left(q^{2}-1\right)$. Values of eight unipotent irreducible characters of G have been computed in [12]. This work is continued by computing the values of non-unipotent irreducible characters of G as a linear combination of Deligne-Lusztig characters in [4]. Throughout this paper all notations concerning conjugacy classes and irreducible characters are referred from [12] and [4].

Let $a=\left[\varepsilon_{1}\right]_{H}, b=\left[\varepsilon_{2}\right]_{H}, c=\left(\rho_{1}\right)_{H}, d=\left(\rho_{2}\right)_{H}, e={ }^{3} D_{4}[-1]_{H}, g=\left(\chi_{15}\right)_{H}$, and let 1 be the principal character of H. Let $f={ }^{3} D_{4}[1]_{H}$ for q even. Then using the CHEVIE computer algebra system [6] we compute χ_{H} as an integral linear combination of a, b, c, d, e, f, g and $\mathbf{1}$ for each irreducible character χ of G. These linear combinations are listed in Table 1.

Since G has the Steinberg character $S t$ whose restriction to a maximal unipotent subgroup H is the regular character ρ on H; thus we can write ρ as an integral linear combination of a, b, c, d, e, f, g and $\mathbf{1}$. In the next two lemmas, using the fact that $\langle\rho, \varphi\rangle=1$ for each $\varphi \in \operatorname{Lin}(H)$, we obtain information about the multiplicities of the linear constituents of each of these characters. Then we use this and ad hoc arguments to determine which of the χ_{H} have linear constituents of multiplicity one.

One observation is frequently used. The degrees of the irreducible characters of H are all powers of p. Therefore, for each χ, the sum of the multiplicities of the linear constituents of χ_{H} must be congruent to $\chi(1)(\bmod p)$.

Using [12], if B is a Borel subgroup of G, then

$$
\mathbf{1}_{B}^{G}=\mathbf{1}_{G}+\left[\varepsilon_{1}\right]+\left[\varepsilon_{2}\right]+2\left[\rho_{1}\right]+2\left[\rho_{2}\right]+S t .
$$

Now by considering the fact that $\left\langle\chi_{H}, \mathbf{1}\right\rangle=\left\langle\chi, \mathbf{1}^{G}\right\rangle=\left\langle\chi, \mathbf{1}_{B}^{G}\right\rangle$ we have

$$
\langle a, \mathbf{1}\rangle=\langle b, \mathbf{1}\rangle=1 \text { and }\langle c, \mathbf{1}\rangle=\langle d, \mathbf{1}\rangle=2 .
$$

Lemma 3. Let q be odd:

1. $\langle e, \varphi\rangle=0$ for all $\varphi \in \operatorname{Lin}(H)$;
2. $\langle c, \varphi\rangle=\langle d, \varphi\rangle$ for all $\mathbf{1} \neq \varphi \in \operatorname{Lin}(H)$;
3. $\langle a+b+g, \varphi\rangle=2$ if $\varphi=1$ and 1 otherwise.

Proof. Considering Table 1 we have $S t_{H}=g+4 e+2 c+b+a-2 d-1$. Since $S t_{H}$ is the regular character of $H,\left\langle S t_{H}, \mathbf{1}\right\rangle=1$. Now using $\langle a, \mathbf{1}\rangle=\langle b, \mathbf{1}\rangle=1$ and
$\langle c, \mathbf{1}\rangle=\langle d, \mathbf{1}\rangle=2$ we have $\langle e, \mathbf{1}\rangle=\langle g, \mathbf{1}\rangle=0$. Suppose $\langle e, \varphi\rangle=m$ and $\langle g+2 c+b+$ $a, \varphi\rangle=l$ for $\mathbf{1} \neq \varphi \in \operatorname{Lin}(H)$. Since $\left\langle\operatorname{St}_{H}, \varphi\right\rangle=1$ we have $4 m+l-2\langle d, \varphi\rangle=1$. Thus $\langle d, \varphi\rangle=2 m+(l-1) / 2$. On the other hand $\langle g+3 c+3 b+3 a, \varphi\rangle \leqslant 3\langle g+c+b+$ $a, \varphi\rangle \leqslant 3\langle g+2 c+b+a, \varphi\rangle=3 l$; so $0 \leqslant\left\langle\left(\chi_{13}\right)_{H}, \varphi\right\rangle \leqslant-9 m+3$, and we get $m=0$. This proves $\langle e, \varphi\rangle=0$ for all $\varphi \in \operatorname{Lin}(H)$.

Using ${ }^{3} D_{4}[1]_{H}$ and the fact that $S t_{H}$ is the regular character of H we have

$$
\langle d, \varphi\rangle=\langle c, \varphi\rangle \text { for all } \mathbf{1} \neq \varphi \in \operatorname{Lin}(H) .
$$

Furthermore it is easy to see that $\langle a+b+g, \varphi\rangle=1$ and φ is a constituent of one and only one of g, b and a for each $\mathbf{1} \neq \varphi \in \operatorname{Lin}(H)$.

Now we prove a similar lemma for q even.

Lemma 4. Let q be even:

1. $\langle e, \varphi\rangle=\langle f, \varphi\rangle=0$ for all $\varphi \in \operatorname{Lin}(H)$;
2. $\langle a+b+g, \varphi\rangle=2$ if $\varphi=1$ and 1 otherwise.

Proof. Since $S t_{H}=g+2 f+2 e+b+a-\mathbf{1}$ is the regular character of $H,\langle e, \varphi\rangle=$ $\langle f, \varphi\rangle=0$ for all $\mathbf{1} \neq \varphi \in \operatorname{Lin}(H)$. Also $\langle e, \mathbf{1}\rangle=\langle f, \mathbf{1}\rangle=0$, since $2 \mid e(1)$ and $2 \mid f(1)$; $\left\langle S t_{H}, \mathbf{1}\right\rangle=1$ proves part (2).

Proof of Theorem 1. Case I. q odd: Since $\langle a, \mathbf{1}\rangle=\langle b, \mathbf{1}\rangle=1,\langle g, \mathbf{1}\rangle=0$ and $p|a(1), p|$ $b(1), p \nmid g(1)$ there exist non-principal characters $\varphi_{1}, \varphi_{2}, \varphi_{3} \in \operatorname{Lin}(H)$ such that $\left\langle a, \varphi_{1}\right\rangle=$ $\left\langle b, \varphi_{2}\right\rangle=\left\langle g, \varphi_{3}\right\rangle=1$ and $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$.

Suppose $\langle g, \psi\rangle=1$ for a non-principal character $\psi \in \operatorname{Lin}(H)$; then using $\left(\chi_{13}\right)_{H}$ we have $\langle c, \psi\rangle=0$ (and so $\langle d, \psi\rangle=0$). This proves the theorem for

$$
\chi \in\left\{S t, \chi_{2, S t, S t^{\prime}}, \chi_{3, S t}, \chi_{4, S t}, \chi_{5, S t}, \chi_{6}, \chi_{7, S t}, \chi_{8}, \chi_{9, S t}, \chi_{10, S t}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}\right\} .
$$

Since $\langle c, \varphi\rangle=\langle d, \varphi\rangle$ and $\langle e, \varphi\rangle=0$ for all $\varphi \in \operatorname{Lin}(H)$ the theorem holds for $\chi \in$ $\left\{\chi_{7,1}, \chi_{10,1}\right\}$. Suppose $\langle a, \varphi\rangle=1$ for a non-principal character $\varphi \in \operatorname{Lin}(H)$; then by $\left(\chi_{4,1}\right)_{H}$ we have $\langle c, \varphi\rangle \neq 0$ (and so $\langle d, \varphi\rangle \neq 0$). Also using $\left(\chi_{9, S t}\right)_{H}$ we get $\langle d, \varphi\rangle=$ $\langle c, \varphi\rangle=1$. This holds the theorem for $\chi \in\left\{\rho_{1}, \rho_{2}, \chi_{2,1}\right\}$.

Using $\left(\chi_{12}\right)_{H},\left(\chi_{9, q s^{\prime}}\right)_{H}$ and the fact that $\langle c, \varphi\rangle=\langle d, \varphi\rangle$ for all $\varphi \in \operatorname{Lin}(H)$ we have $\langle c, \varphi\rangle=1$ if and only if either $\langle a, \varphi\rangle=1$ and $\langle b, \varphi\rangle=0$ or $\langle a, \varphi\rangle=0$ and $\langle b, \varphi\rangle=1$. This proves the theorem for $\chi \in\left\{\chi_{2, S t}, \chi_{2, S t^{\prime}}, \chi_{4,1}, \chi_{9,1}\right\}$. Furthermore it shows that χ_{H} has no linear constituents of multiplicity one for $\chi \in$ $\left\{{ }^{3} D_{4}[-1],{ }^{3} D_{4}[1], \chi_{3,1}, \chi_{4, q s}, \chi_{5,1}, \chi_{9, q s^{\prime}}\right\}$.
Case II. q even: Considering $S t_{H},\langle a, \mathbf{1}\rangle=\langle b, \mathbf{1}\rangle=1,\langle g, \mathbf{1}\rangle=0$ and the fact that $2 \mid$ $a(1), 2 \mid b(1)$ and $2 \nmid g(1)$, there exist non-principal characters $\varphi_{1}, \varphi_{2}, \varphi_{3} \in \operatorname{Lin}(H)$ such that $\left\langle a, \varphi_{1}\right\rangle=\left\langle b, \varphi_{2}\right\rangle=\left\langle g, \varphi_{3}\right\rangle=1$ and $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$. This shows that the theorem holds for $\chi \in\left\{\chi_{7,1}, \chi_{10,1}\right\}$.

The character $\left(\chi_{14}\right)_{H}$ shows all non-principal linear constituents of c have multiplicity one. On the other hand $\left(\chi_{4,1}\right)_{H}$ implies if $\langle a, \varphi\rangle=1$, then $\langle c, \varphi\rangle=1$ for all $\mathbf{1} \neq \varphi \in \operatorname{Lin}(H)$. Similar arguments hold for the character d by considering the characters $\left(\chi_{9,1}\right)_{H}$ and $\left(\chi_{9, q s^{\prime}}\right)_{H}$. Since $\langle d, \mathbf{1}\rangle=2$ and $2|d(1),|\operatorname{Lin}(d)|$ is even. On the other hand $\langle a, \mathbf{1}\rangle=1$ and $2 \mid a(1)$; so $|\operatorname{Lin}(a)|$ is odd. This shows that there exists $\mathbf{1} \neq \psi \in \operatorname{Lin}(H)$ such that $\langle d, \psi\rangle=1$ and $\langle a, \psi\rangle=0$. Thus the theorem holds for $\chi_{9,1}$.

Similarly from $\langle c, \mathbf{1}\rangle=2$ and $2 \mid c(1)$ we obtain $|\operatorname{Lin}(c)|$ is even. Now since $|\operatorname{Lin}(H)-\{\mathbf{1}\}|$ is odd there exists a non-principal linear character φ of H such that
$\langle g, \varphi\rangle=1$ and $\langle c, \varphi\rangle=0$. A similar argument holds for the character d, using the character $\left(\chi_{13}\right)_{H}$. These show the theorem holds for $\chi \in\left\{S t, \chi_{3, S t}, \chi_{4, S t}, \chi_{5, S t}, \chi_{6}\right.$, $\left.\chi_{7, S t}, \chi_{8}, \chi_{9, S t}, \chi_{10, S t}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}\right\}$.

Using $\left(\chi_{12}\right)_{H}$ we get if $\langle a, \varphi\rangle=1$ or $\langle b, \varphi\rangle=1$ for some $\mathbf{1} \neq \varphi \in \operatorname{Lin}(H)$, then $\langle c, \varphi\rangle=1$. It means that the character c contains all the non-principal linear constituents of a and b. Since a and b can not have same non-principal linear constituents $\left(\chi_{4,1}\right)_{H}$ does not have any linear constituent of multiplicity one. A similar argument holds for the characters $\left\{\chi_{3,1}, \chi_{4, q s}, \chi_{5,1}, \chi_{9, q s^{\prime}}\right\}$. This completes the proof.

Remark. If q is even, then $t=8$ (the number of unipotent classes) and characters a, b, c, d, e, f, g and $\mathbf{1}$ are linearly independent, while for q odd we have $t=7$ and $f=e+c-d$. Now if in all the linear combinations in Table 1 for q odd, we substitute $e+c-d$ by f, then we obtain the linear combinations of the table for q even.

Acknowledgements. The author would like to thank the anonymous referees for the valuable comments and suggestions. He would also like to acknowledge the IRMACS centre.

REFERENCES

1. V. Dabbaghian-Abdoly, An algorithm to construct representations of finite groups, PhD thesis (School of Mathematics, Carleton University, 2003).
2. V. Dabbaghian-Abdoly, Characters of some finite groups of Lie type with a restriction containing a linear character once, J. Algebra 309 (2007), 543-558.
3. V. Dabbaghian-Abdoly, Constructing representations of the finite symplectic group Sp(4, q), J. Algebra 303 (2006), 618-625.
4. D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups ${ }^{3} D_{4}(q)$, Trans. Am. Math. Soc. 303(1) (1987), 39-70.
5. J. D. Dixon, Constructing representations of finite groups, Discrete Mathematics and Theoretical Computer Science 11 (American Mathematical Society, Providence, RI 1993).
6. M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE: A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Eng. Comm. Comput. 7 (1996), 175-210. Available at "http://www.math.rwth-aachen.de/~ CHEVIE".
7. I. M. Gelfand and M. I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk SSSR 147 (1962), 529-532.
8. I. M. Isaacs, Characters of π-separable groups, J. Algebra 86 (1984), 98-128.
9. G. J. Janusz, Primitive idempotents in group algebras, Proc. Am. Math. Soc. 17 (1966), 520-523.
10. N. Kawanaka, Generalized Gel'fand Graev representations and Ennola duality, Advanced Studies in Pure Mathematics 6 (North-Holland, Amsterdam, 1985).
11. Z. Ohmori, On a Zelevinsky theorem and the Schur indices of the finite unitary groups, J. Math. Sci. Univ. Tokyo 4 (1997), 417-433.
12. N. Spaltenstein, Caractres unipotents de ${ }^{3} D_{4}\left(F_{q}\right)$, Comment. Math. Helv. 57(4) (1982), 676-691.
13. R. Steinberg, Lectures on Chevalley groups (Yale University, New Haven, 1968).
14. A. Turull, Calculating Clifford classes for characters containing a linear character once, J. Algebra, 254 (2002), 264-278.
15. A. V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics 869 (Springer, New York, 1981).
