Flow (2023), 3 E26
doi:10.1017/f10.2023.22 ﬂ.w CAMBRIDGE

UNIVERSITY PRESS

RESEARCH ARTICLE

Benefits of controlled inclination for contactless transport
by squeeze-film levitation

Sankaran Ramanarayanan'-* © and Antonio L. Sdnchez'

I Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411, USA
*Corresponding author. E-mail: sramanar@ucsd.edu

Received: 31 March 2023; Revised: 13 June 2023; Accepted: 11 July 2023

Keywords: Squeeze-film levitation; Lubrication theory; General fluid mechanics; Propulsion systems; Locomotion

Abstract

Developed in this paper is a theoretical description of the fluid flow involved in contactless transport systems that
operate using squeeze-film levitation. Regular perturbation methods are employed to solve the appropriate Reynolds
equation that governs the viscous, compressible flow of air in the slender film separating the oscillator and the
levitated object. The resulting reduced formulation allows efficient computation of the time-averaged levitation
force and moment induced by fluid pressure, as well as the accompanying quasistatic thrust force that accounts
additionally for shear stresses. Investigated, in particular, is the possibility of combining two distinct methods of
thrust generation that have been experimentally demonstrated in previous studies — (i) inclination of the levitated
body and (ii) generation of asymmetrical flexural deformations, such as travelling waves, on the oscillator surface
— the latter of which is shown to allow a transition from the typically repulsive levitation force to one that is
attractive. Computations reveal that systematic control of the inclination angle can provide significant performance
benefits for squeeze-film transport systems. In the case of attractive levitation, the amount of improvement that can
be obtained appears to correlate closely with the degree of lateral asymmetry exhibited by the flexural oscillations.

Impact Statement

Contactless transportation using squeeze-film levitation is of rapidly growing interest in applications such as
the assembly line manufacturing of touch-sensitive objects and soft-robotic locomotion over complex terrain.
Achieving lateral mobility in levitation systems has typically required incorporation of multiple oscillation
sources, which consume substantial energy while generating thrust forces and transport speeds that are
inadequate for large-scale, practical application. The results of the present analysis demonstrate that much
greater thrust can be generated by controlling systematically the inclination angle of an object levitated by
repulsive or attractive pressure forces, for instance, through active control of the centre of mass of a self-
levitating robot. The generality and computational efficiency of this mathematical formulation make it a
versatile tool for guiding the design, optimization and closed-loop control of next-generation squeeze-film
transport systems.

1. Introduction

A typical squeeze-film levitation (SFL) system, as cartooned in figure 1(a), consists of two rigid objects
with parallel surfaces that are separated by a slender layer of air, the ‘squeeze film’. High-frequency
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Figure 1. (a) A conventional squeeze-film levitation system can be modified to generate thrust by
(b) excitation of propagating-wave surface deformations or (c) inclination of the oscillator surface.
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Figure 2. Proposed applications of squeeze-film transport: (a) contactless assembly line conveyance
using both repulsion (red) and attraction (blue), and (b) soft-robotic locomotion over complex terrain.

oscillation of either object along an axis perpendicular to the surfaces generates pulsating airflow in the
film that yields a strong, steady, repulsive pressure force between the two objects. This phenomenon
has been exploited to design gas-lubricated bearings (Salbu, 1964; Shi, Feng, Hu, Zhu, & Cui, 2019)
and levitation devices that exhibit large load capacities, as demonstrated, for example, by Zhao (2010),
who developed an ultrasonic oscillator with a small surface diameter of 5 cm that generated 115 N
(=11.7 kgf) of repulsion.

Squeeze-film levitation systems are typically operated at a frequency that corresponds to one of the
resonant bending modes of the oscillating assembly. Active feedback control of the excitation signal has
been implemented to account for slight, unpredictable drifts of the natural frequency (Ilssar, Bucher,
& Flashner, 2017). The drastic increase in the amplitude of oscillations near resonance magnifies
substantially the repulsive levitation force (Li, Liu, & Ding, 2014; Matsuo, Koike, Nakamura, Ueha,
& Hashimoto, 2000). The effective flexural amplitude can be improved by reducing the stiffness of the
oscillator through careful selection of material(s) (Shi, An, Feng, Guo, & Liu, 2018; Wang & Au, 2013)
and geometry (Stolarski, Gawarkiewicz, & Tesch, 2015).

Under a limited range of operating conditions — namely, for surfaces with millimetric character-
istic dimensions or oscillation frequencies as low as several hundred hertz — this steady force has
been observed to transition from strong repulsion to weak suction of less than 1 gf (Andrade, Ramos,
Adamowski, & Marzo, 2020; Sadayuki, 2002; Takasaki, Terada, Kato, Ishino, & Mizuno, 2010; Yoshi-
moto, Shou, & Somaya, 2013). Recent experiments have shown that this minor attractive load capacity
is magnified a thousand fold when the stiffness of the oscillator is reduced substantially to provide pro-
nounced flexural deformations that may be subject to non-negligible fluid—structure coupling (Colasante,
2015; Weston-Dawkes et al., 2021). A preliminary theoretical analysis (Ramanarayanan & Sanchez,
2022) indicated that the range of operating conditions under which attraction occurs, as well as the
magnitude of the resulting force, grows substantially with the wavenumber of oscillation, i.e. with the
number of nodes in the associated standing wave, although effects of coupling remain to be understood.

Proposed applications of SFL include, primarily, assembly line manufacturing of touch-sensitive
items, such as surface-mount devices for circuit boards (Andrade et al., 2020) and glass substrates to
be installed in liquid-crystal displays (Hatanaka, Koike, Nakamura, Ueha, & Hashimoto, 1999), and
load-carrying ‘soft’ robots that can travel over multifarious terrains (Weston-Dawkes et al., 2021); see
figure 2 for a rudimentary visualization of each. Pursuant of these applications, a number of methods
have been proposed to modify the basic SFL configuration to produce also lateral forces, as reviewed in
the following paragraphs.
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The earliest of these is the excitation of travelling-wave deformations of the oscillator, as diagrammed
in figure 1(b), which generates steady, asymmetrical fluid shear on the bounding surfaces of the squeeze
film. This method has been applied to develop rail-transport systems that levitate repulsively objects
with masses of the order of 10-100 grams and displace them with speeds of the order of 10 cm s~!
(Ide, Friend, Nakamura, & Ueha, 2007; Sadayuki, 2002; Yin, 2008). Experimenters have also designed
self-levitating mobile robots with comparable masses that can produce thrust forces of the order of
10 mN (Feng, Liu, & Cheng, 2015; Koyama, Nakamura, & Ueha, 2007). The wave-generation methods
employed in these experiments involve two spatially separated oscillators attached to a platform (Syuhri,
2022). Of great concern has been the purity of the travelling wave generated on the finite platform —
which is limited practically by reflection at free boundaries and points of attachment, since the resulting
interference may critically reduce the thrust force (Feng et al., 2015). Ameliorative solutions include
‘impedance matching’, where one of the oscillators acts as a passive absorber through piezoelectric
energy dissipation (Hariri, Bernard, & Razek, 2013; Sadayuki, 2002), and ‘two-mode excitation’, where
the two oscillators operate out of phase at a critical frequency that results in a favourable superposition
of two consecutive resonant modes of the platform (Loh & Ro, 2000; Tomikawa, Adachi, Hirata, Suzuki,
& Takano, 1990). Active feedback control using the latter method has been claimed to provide nearly
perfect travelling waves (Ghenna, Giraud, Giraud-Audine, Amberg, & Lemaire-Semail, 2015; Giraud,
Giraud-Audine, Amberg, & Lemaire-Semail, 2014).

Three prominent alternative methods of transport have been proposed in recent years. The first relies
on the steady shear force caused by the asymmetrical fluid streaming that occurs when a levitated
object is misaligned with a finite parallel surface (Yano, Aoyagi, Tamura, & Takano, 2011). This so-
called ‘restoring force’ is exploited by assembling an array of oscillators and controlling carefully the
amplitude of each such that fluid shear conveys a levitated object along the array. Notable limitations
of this method include the need for multiple oscillators, whose number and/or size must grow with the
desired transport distance, and the apparent inapplicability to robotic locomotion.

Chen, Gao, Pan, and Guo (2016) proposed a remarkable method more amenable to robotic appli-
cations — simultaneous generation of linear and rotational oscillations of a platform using a pair of
independently excited piezoelectric elements, the resonant frequencies of the two oscillation modes
matched using computer-aided design. In principle, if the modes are driven exactly out of phase, the
oscillations should resemble a travelling wave with very large wavelength. The authors report an optimal
phase shift of ~ 25°, which allowed a roughly 20 g robot to travel at 2.25 cm s~! and generate 30 mN
of static thrust.

The third and most recent alternative, proposed by Wei, Shaham, and Bucher (2018), involves
inclination of the levitated object, as exemplified in figure 1(c), which would tilt the levitation force
vector to provide a relatively small lateral component. This method seems particularly attractive for
implementation on mobile robots, simply through active control of the on-board mass distribution.
Although the robustness and stability of steady-state transport are yet to be investigated rigorously for
this method, Wei et al. (2018) claim that it may yield substantial advantages in versatility, load capacity
and controllability.

A unifying factor among the literature cited above is the focus on repulsive levitation. To the best of
our knowledge, controlled transport using attraction is yet to be studied. Explored in this paper is the
prospect of combining the distinct thrust-generation mechanisms of (i) travelling-wave deformations
and (ii) controlled surface inclination. Results of a rigorous fluid-flow analysis indicate that both
the thrust and the levitation force generated by an asymmetrical SFL system, whether the latter be
repulsive or attractive, can be improved substantially through methodical adjustment of the tilting
angle.

The remainder of this paper is organized as follows. Outlined in §2 is the proposed fluid-
dynamic problem that represents a generic squeeze-film system involving arbitrary flexural oscillations
and a variable tilt angle. The reduced conservation equations governing fluid flow in the slender
air layer are presented, followed by the introduction of appropriately rescaled dimensionless vari-
ables. An asymptotic solution is derived in § 3 and integral expressions are provided for the steady
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Figure 3. A generic squeeze-film transport system: a levitated plate undergoing flexural oscillation is
tilted at an angle 0 with respect to a nearby wall and propelled to the right by fluid stresses beneath.

thrust force, the levitation force and the associated centre of pressure. These levitation metrics are
visualized in §4 for a variety of relevant transport configurations. The paper concludes with a dis-
cussion of possible applications of the developed formulation in system design, optimization and
control.

2. Problem definition
2.1. Preliminary considerations

Consider, as a relevant canonical configuration, the planar SFL system represented in figure 3, where
a plate of undeformed length 2a levitates and translates above an infinitely long horizontal wall. In its
undeformed state, the plate is tilted at an angle 8 with respect to the wall, and its centre is separated
from the wall by a time-averaged distance /,. The plate undergoes time-harmonic, flexural oscillations
that are described by the equation y* = b Re{W(x*/a) e}, where (x*, y*) specifies the depicted rotated
coordinate system attached to the plate centre, b and w denote, respectively, the characteristic amplitude
and angular frequency of oscillation, and W is a dimensionless function that defines the waveform. For
instance, the cases W = cos(2mx*/a) and W = exp(—2inx*/a) represent, respectively, standing waves
and forward-travelling waves of wavelength a.

The local pressure, temperature, density and viscosity of the oscillating gas inside the film
are denoted, respectively, by p,T,p and u. The corresponding values of those properties in the
unperturbed surroundings are denoted with the subscript ‘a’; for instance, p, denotes the ambient
pressure.

For typical SFL systems (Matsuo et al., 2000; Yoshimoto et al., 2013; Zhao, 2010),

(i) the squeeze film is slender, i, < a, whereby the tilt angle is small, § ~ h,/a < 1;
(ii) the characteristic wavelength of the flexural oscillations is comparable to a, whereby
(iii) any lateral displacement Ax™ of points on the deforming plate surface is negligible; and
(iv) the transport speed u, is negligibly small (Ide et al., 2007) compared with the characteristic speed
u, of steady gaseous streaming in the film: u, < u; ~ (b/h,)?wa (Ramanarayanan, Coenen,
& Sanchez, 2022).

Assumptions (i) and (ii) allow application of the slender-flow approximation (Ramanarayanan et al.,
2022) to model gas flow in the film. Due to (iii) and (iv), the only non-trivial boundary condition to be
imposed for the flow velocity stems from the transverse motion of the plate surface, which can now be
expressed with use of the simplified equation

y=h(x, 1) = hy — x0 + bRe{W(x/a) '} for —a <x<a, 2.1

where (x,y) denotes a coordinate system whose origin travels along the wall (see figure 3), with
x coincident to the wall and y denoting the distance to the plate centre. The assumption of small
angles # < 1 introduces relative errors of order 6 for the terms representing steady tilt and unsteady
flexure.
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The levitation force, defined as the vertical component of the time-averaged aerodynamic force acting
on the plate (per unit length perpendicular to the plane of motion), can then be expressed as

(1) = / (b - pa) dx, (22)

and the associated thrust force — the horizontal component — can be expressed as
a
1) = [ (0= pa)o = (uoujon))n dx. @3

both with relative errors of order (h,/a)> ~ 6. The angled brackets in the definitions above denote the

. . . . o 2
time average of a time-dependent quantity over one period of oscillation, (x) = (w/2m) f e

In addition, the levitation moment about the plate centre and the associated centre of steady pressure
can be expressed as

M)

T (2.4a,b)

M) = / (p=payxdx and xep =
with the same level of accuracy. Note that, due to the simplifications employed, the quasistatic transport
problem defined above also describes, in principle, systems such as those depicted in figure 2(a), where
a rigid object with a flat surface (of length 2a) is transported over a flexurally oscillating rail.

2.2. The lubrication approximation

As shown by Melikhov, Chivilikhin, Amosov, and Jeanson (2016) and Ramanarayanan et al. (2022),
the flow dynamics in the thin air layer of a squeeze-film system is characterized by three principal time
scales — that of the driving oscillations #, = w™!, viscous diffusion across the film ¢, = h?/(u,/p.) and

acoustic pressure equilibration along the film ¢, = a/+/p,/p. — which enter in the theoretical description
through two non-dimensional parameters, the relevant Stokes number S = ¢, /¢, (or, equivalently, the
associated Womersley number S'/2) and a compressibility number C = 1,/t,. As shown by Taylor
and Saffman (1957), the description simplifies in configurations for which #, < t,, whereby inertial
forces are negligibly weak compared with viscous shear. In the associated lubrication limit S < 1, the
three time scales are found to enter through a single governing fluidic parameter

12¢? 122 12 2
o= 1267 _ 12 DRpewa 2.5)
S toty pah2

where the factor of 12 is included for consistency with the classical definition. Often referred to as the
‘squeeze number’, o effectively represents the combined effects of gaseous compressibility and viscous
shear within the film. Solution for the case of parallel walls (6 = 0) with uniform oscillation amplitude
(W = 1) has revealed that the air near the centre of the film is entrapped due to viscous resistance, and its
nonlinear response to time-harmonic compression and expansion provides the steady repulsive pressure
force (F) (Langlois, 1962; Salbu, 1964). The extent of this central region and, hence, the magnitude
of the force, grows monotonically with increasing values of o. On the other hand, as o — 0 and the
system becomes weakly nonlinear, the force vanishes, proportional to o> (Ramanarayanan et al., 2022).

While quantifying the effects of local and convective fluid acceleration affords higher accuracy in the
computation of the levitation force for a wider range of operating parameters (Li, Cao, Liu, & Ding, 2010;
Melikhov et al., 2016; Minikes & Bucher, 2006), the lubrication limit has been shown to provide excellent
agreement with experimental measurements for systems with small mean distances h, < \/u,/(p.w),
those that satisfy 7, < t,, for which the strongest forces — both repulsive and attractive — are expected to
occur (Ramanarayanan & Sanchez, 2022; Salbu, 1964; Zhao, 2010). Therefore, in the following analysis,
the classical compressible lubrication approximation (t,/t, ~ 12/t < 1) will be employed to describe
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rigorously the family of transport systems schematized in figure 3. The mathematical formulation derived
below may be readily extended in the future to address the general viscoacoustic limit (¢,/z, ~ t,/t, ~ 1)
by following the methods of Ramanarayanan et al. (2022), although quantification of inertial effects
would severely limit the degree of analytical development possible.

The fluid flow in asymmetrical SFL systems has been studied previously for two limiting cases that
correspond to the canonical transport mechanisms drawn in figures 1(b) and 1(c). For the latter, where
W =1 and 8 # 0, DiPrima (1968) outlined an asymptotic computation of the time-dependent film
pressure under the assumption of a known, non-negligible transport speed. A verified numerical model,
developed by Wei et al. (2018) using the ANSYS CFX software, provided preliminary insights into the
correlation between the tilt angle and the thrust force contributed by fluid shear. For the former, where
0 = 0 and W = W(¢), Minikes, Bucher, and Haber (2004) computed analytically the quasistatic thrust
force in the case of pure travelling-wave oscillations with variable wavenumber. Feng et al. (2015)
presented a numerical investigation of the problem for imperfect travelling waves, demonstrating the
adverse effect of impurity on the thrust force. The utilized model accounted rigorously for effects of
local fluid acceleration and estimated the additional drag force induced by fluid shear on the exposed
plate surface.

Two notable treatments of the generic problem depicted in figure 3 must be mentioned here. Minikes
and Bucher (2003) presented a formulation similar to that of Feng et al. (2015) but computed additionally
the contribution of steady overpressure to the thrust in the presence of inclination, quantifying the
adverse effect of the impurity of travelling waves on the terminal transport velocity. Li, Liu, and Zhang
(2017) addressed the stability of transport systems to disturbances in the tilt angle 8, using a model that
accounts for fluid inertia but neglects the fundamental role of gaseous compressibility. They discovered a
steady restoring moment that increases in magnitude with the inclination angle. However, (i) systematic
modulation of thrust by controlling the inclination and (ii) achievement of transport with attractive
levitation were beyond the scopes of these studies, and are explored below.

2.3. Conservation equations governing airflow in the squeeze film
Under the limit 7, < 1, the Navier—Stokes equations (continuity and conservation of momentum in the

lateral and transverse directions) and the thermal equation of state for an ideal gas reduce, respectively, to

dp  d(pu)  9(pv) u_dp  dp P _p
—_— + + = R a = = -—, —_— = O d —_—= —
ot Ox dy H 0y:  ox’ 9y an Pa  Pa

, (2.6a—d)

with relative errors of order (h,/a)?. In deriving the above equations, it has been assumed for simplicity
that both the plate and wall surfaces are held at the ambient temperature T,, whereby the conservation of
energy implies that 7 = T, everywhere in the film. As a result, the dynamic viscosity can be considered
uniform as well, u(7) = u, (Chapman & Cowling, 1990). Detailed discussions of these equations,
which comprise the isothermal compressible lubrication limit, are presented by Taylor and Saffman
(1957), Langlois (1962) and Ramanarayanan et al. (2022).

In pursuit of a reduced dimensionless formulation of the problem, we introduce the appropri-
ately rescaled flow variables ¢ = x/a, Y = y/h,, T = wt, U = u/(ewa), V = v/(ewh,) and
P=(p—pa)/(eop,/12) = (p — pa)/(eopa/12), where the quantity o is defined in (2.5). Note that
the characteristic scales for the variations of pressure and density follow from straightforward order-
of-magnitude analyses of the lateral momentum equation and the equation of state, respectively. Upon
defining additionally a rescaled inclination angle ¢ = 8/(h,/a), the plate position (2.1) can be rewritten
as

hﬁ =H(,1)=1-@pé+eRe{W (&)™}, where <1-g, 2.7

0

_ 0
‘p_h,,/a

with relative errors of order 6> and £6° stemming, respectively, from the terms describing tilt and flexure.
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Substituting these definitions into the lateral momentum and continuity equations provides

+_

0*U  OP o 0P 8
9% g I8 [(
aY?r ¢ 1201 0&

o 0 o
L+eZP)U|+ o | (146 5P) V] =0, 2.8a,b
+£12 U+6Y +812 (2.8a,b)
respectively, where P = P(&,7) due to the transverse momentum equation. The above system of
equations is subject to non-slip and non-penetration conditions on the bounding walls,

U=V=0 atY=0 and U=V-&'0H/dt=0 atY=H, (2.9a,b)

expressed here with errors of order 6°.
Upon integrating the momentum equation twice in the Y direction and applying the conditions
U(Y =0) = U(Y = H) =0, we obtain the quasisteady Poiseuille velocity profile

16P
U, Y, 1) = Ea—fY(Y—H), (2.10)

involving the time-varying lateral pressure gradient P/d&. Substituting this result into the continuity
equation, integrating across the film, applying the conditions V(Y = 0) = V(Y = H)—Re{W(&¢)iei"} =0
and simplifying with use of the Leibniz integral rule yields the relevant Reynolds equation

I(PH) _ 0 | o p\ 9P
ot ag[H(”glzP)ag

Two boundary conditions for P(&, T) are required to close the problem defined by (2.7), (2.10) and (2.11).

Previous studies have shown that the pressure in the squeeze film relaxes to its ambient value across
small, non-slender peripheral regions that extend distances |Ax| of order &, < a beyond the edges
¢ = 1 (Ramanarayanan et al., 2022; Yoshimoto et al., 2013). Due to the associated disparity of scales,
the characteristic variations of pressure across these peripheries are smaller than those along the film
— where Ax ~ a — by order h,/a. For arbitrary order-unity values of the relative amplitude ¢ < 1,
(2.11) can therefore be readily solved using numerical methods when supplemented by the simple
boundary conditions P(¢ = 1) = 0, which introduce small relative errors of O(h,/a < 1). Finite-
difference solutions of the strongly nonlinear Reynolds equation have displayed excellent agreement with
experimental results for operating conditions that fall under the lubrication limit #, < ¢, (Salbu, 1964;
Zhao, 2010). In the present study, numerical integration of (2.11) was performed using a straightforward
central-space, forward-Euler scheme for the purpose of verifying the asymptotic solution derived below.
Instructions for implementing the algorithm, as well as discussions regarding its stability, accuracy and
computational efficiency, are provided by Michael (1963).

+ 12Re{W(&)ieiT} = 0. (2.11)

3. Asymptotic solution

To allow efficient analytical reduction of the problem at hand, it will be assumed that the oscillation
amplitude Ay* = b is small relative to the mean thickness of the air layer, i.e. b < h,, which allows
asymptotic solution using the relative amplitude

b
g= . <1, 3.1)
as the small perturbation parameter. Despite operating near resonance, typical SFL systems exhibit
diminutive amplitudes of the order of b = 10 pwm (Andrade et al., 2020; Ide et al., 2007; Zhao, 2010),
whereby an asymptotic solution can provide reasonable accuracy as long as the film thickness #, is
relatively large (Ramanarayanan & Sdnchez, 2022). On the other hand, the strongly repulsive forces
that are generated at close range (h, ~ b) are best quantified using a numerical solution of the Reynolds
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equation (Zhao, 2010), as described in § 2.3, or a direct numerical simulation using the full Navier—Stokes
equations (Andrade et al., 2020; Yoshimoto et al., 2013).

Under the limit of small relative amplitudes € < 1, the required boundary conditions for the fluid
pressure at the film edges must be developed carefully. We begin by introducing perturbation expansions
for the pressure and lateral flow velocity component,

P=P0+eP1+---,} 32)

U=Up+eUy+---.

As shall be shown in § 3, substitution of this expansion into (2.11) leads to an equation that is linear
at leading order. Thus, the first term in each expansion varies harmonically with time and yields no
contribution to the time-averaged levitation forces and moment, whose evaluation consequently requires
the computation of first-order corrections. Due to the disparity of spatial scales between the slender
film and the small non-slender regions surrounding its edges, discussed below (2.11), the leading-order
pressure accepts simple relaxation conditions: Py(¢ = £1) = 0. However, determining the corresponding
conditions for P requires, in principle, establishing a formal asymptotic relationship between the two
small parameters € and A, /a, and systematically matching (Lagerstrom, 1988) with the local asymptotic
expansions for the pressure in the two non-slender peripheries (Ramanarayanan et al., 2022). Fortunately,
for € < 1, the reduced conservation equations that govern the peripheries under the lubrication limit
are linear in the first approximation (Ramanarayanan et al., 2022). The peripheral pressure variations
correspondingly exhibit a zero time average, whereby relaxation conditions can be imposed for the
time-averaged first-order pressure, (P;)(¢ = +1) = 0. While these conditions do not allow computation
of the time dependence of P; (&, 7), they are sufficient to solve for the desired steady levitation metrics
(2.2)-(2.4a,b).

Substituting the expression for H(&, 7) given in (2.7) along with the first two terms of the pressure
expansion (3.2) into the Reynolds equation (2.11) yields

o-%[(PO +eP)(1 — @& +eRe{We™})] + 12Re{Wie'"}

P , P
-5 (1 & + s Re{WelT})3 1+s%(P0+8P1) a—f(P0+aP1) =0, (3.3)

which is to be solved to determine P (¢, T) with small errors of O(g?) and O(h2/a*> ~ 6?).
The horizontal velocity distribution U (&, Y, T) can, in turn, be found with the same level of accuracy
using the expanded form of (2.10),

0

Uy +eU, = %ag (Po+&P))Y[Y — (1 — p& + e Re{We'™})]. (3.4)

3.1. Leading-order solution

Collecting terms of order unity in (3.3) leads to the linear equation

oP 0 opP
o(1-g6)—= ~ = [(1 5

3 +12Re{W(&)ie™} =0, (3.5)

which can be solved using the method of separation of variables. Upon substituting the ansatz

Py = Re{I1(¢)e'™}, (3.6)
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(3.5) reduces to the equidimensional ordinary differential equation

d217_ 3¢ d_H_ oi =121 W(¢)
de2  1-gfdé (1-9d)? 7 (1-gf)

Solution by the method of variation of parameters gives the reduced pressure distribution

(1L +@)/(1 - g (1 —¢§) 1 ]
T+ o)/ (=) L)

a=4|1+2, 3.9
@Y

“WE( - d) dé
[ i(— so«? S (1—p)® / G 1
@&) (1-gé)or

where £ is a dummy integration variable. The reduced pressure gradient /7’ = dI7/d¢ is given by

a—(1+a)[(1+¢)/(1_‘10§)]2a(1_%:)& 1} »
- [(1+e)/-g)Pe =y LD @I

with I7(¢ = 1) = 0. 3.7)

11(§) = —[ (é) - (3.8)

¥§)

expressed in terms of the parameter

and the integral operator

L) =

(3.10)

6i
ap(l — pé)?

involving the additional integral operator

(€)= [i(f) L

& = w 1 a— ld
L(f)—(l—a)(l—wf)“/1 %dg (1+ )/— (i( sp;;i) £ G

Finally, collecting terms of order unity in (3.4) gives the leading-order horizontal velocity distribution

_ PO Y(Y — 1 +¢¢)

9E — s (3.13)

0

expressed here in terms of the gradient of the known leading-order pressure Py, given in (3.6).
Since P, varies harmonically with time and, thus, exhibits a zero time average, i.e. (Py) = O,
evaluation of the steady levitation metrics (2.2)—(2.4a,b) requires computation of first-order corrections.

3.2. First-order corrections

Collecting terms of order € in (3.3) and taking the time average gives

3(1 - $)2<Re{We”}aP°> (0 - g8y <Po%>+( - §)3<661;1> 0, (3.14)
which can be integrated subject to the boundary conditions (P;)(£ = +1) = 0 to give
Pye) = U ‘”)2 (f:’;‘;)qu [:G(f)df—ffc(é)dé, (3.15)
where
G(g)—<‘2};°( 3 Re{WeiT}+f——2Po)>. (3.16)
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Upon substituting the definition of the leading-order pressure (3.6) and applying the identity

Re{A*B}

(Re{A£) "} Re{B(§) €'"}) = ———, (3.17)

where A and B are complex functions and the asterisk denotes a complex conjugate, the function G

can be rewritten as
1 3w o
G(&) = =Re{ Il —IT;, 3.18
2 28{ (1—¢§+12 )} G189

in terms of the reduced leading-order pressure /7 and its gradient /7', given respectively in (3.8) and
(3.11). Straightforward differentiation of (3.15) yields

Py _ (1- g

0 2(1 - ¢¢)?

for the time-averaged pressure gradient. Finally, collecting terms of order € in (3.4) and taking the time
average gives the steady horizontal velocity

1
[1 G(&) ds - G(&) (3.19)

IPYY(Y—1+gf) Y

(Uy) = 5 > JRAIT W), (3.20)

where the identity (3.17) has been employed to simplify the second term.

3.3. Non-dimensionalized levitation metrics

Once Py, (P1) and (U,) are determined, the time-averaged aerodynamic forces and moment can be
expressed in the following rescaled forms, each with small asymptotic errors of O(g, h,/a ~ ). Using
integration by parts, one can rewrite the steady levitation force (2.2) as

(Fyy = 1201 / (Pyydé = - / fa<P1>d§ (3.21)

g2op.a

and the steady moment about the plate centre (2.4a,b) as

(M) = 12M) /§<P1>d§———/ 626<P1> (3.22)

E20paa?

in terms of the steady pressure gradient. Substituting the definition of the latter, given in (3.19), one
may rewrite these expressions as

1 1
(FL) = / G de—p / Gl (3.23)

and

lG ! 12G d 3.24
[ c@ass [ fo@e 62

_ o2\ _
(M) = L-Hl L=¢7) n(1ze
2¢? ® 2¢ 1+¢

in terms of the known function G (3.18), with the associated dimensionless centre of pressure given by

a (FL)
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The thrust force (2.3) can be expressed in the normalized form

120n) _ (Fr)p+ (Fr)s, (3.26)

Fr) = =
(Fr) pEp——

as the sum of the distinct contributions of pressure and shear stress,

1 ' aqu)
(Fryp =/ o(P1)dé = o(FL) and (Fr)s= —/ — dé, (3.27a,b)
-1 SE2 g
respectively. Substituting the definition of (U, ), given in (3.20), provides
¢ 1 !
(Fr)s = —5(FL) - ;Re { / 11 ’*Wdf} , (3.28)
-1
where (3.21) has been used in rewriting the first term, which leads to
¢ 1 !
(Fr)=2(F1) - ZRe{ / n’*de} (3.29)
-1

for the thrust, upon addition to the first equation in (3.27a,b). Note that, while the sign of (Fr)p is
determined strictly by the direction of levitation, effects of tilt and flexure compete to determine the
sign of (Fr)s and, thus, also that of (F7).

3.4. Limiting cases of interest

For SFL systems with non-parallel surfaces undergoing arbitrary flexural oscillations, the integrals
required to compute the steady pressure distribution (3.15), levitation force (3.23), moment (3.24)
and thrust force (3.29) must be solved numerically. Results for this general problem are presented later,
obtained using vectorized global adaptive quadrature (Shampine, 2008) by way of the ‘integral’ function
built into the MATLAB software (MathWorks, 2023).

Discussed below are three special cases that allow analytical determination of the levitation metrics,
namely, systems that involve (i) parallel rigid surfaces, (ii) parallel surfaces undergoing a specific class
of flexural oscillations and (iii) non-parallel rigid surfaces. Note that these three cases correspond to the
simplified levitation systems represented in figures 1(a), 1(b) and 1(c), respectively.

34.1. Casel: ¢ =0, W=1
For an SFL system with parallel surfaces that undergo no elastic deformation, i.e. H(t) = 1 + g cos 7,
the reduced leading-order pressure is given by

_ 121 | cosh(B¢) 3 1+i
I¢) = 7 [ cosh 1|, where=+o A (3.30)
The steady pressure distribution and levitation force are given, respectively, by
3 cosh(B¢) 2 cosh(B¢) 30 tanh 8
P = — —|———=| —4R e Fr)=—|[1-R
(P1)(€) - [5 cosh 3 “1 cosh and (Fp) - ‘175 )
(3.31a,b)

the latter of which is demonstrably identical to the solution found by Minikes et al. (2004).
Due to the lateral symmetry of H (about & = 0), the thrust and levitation moment vanish, and the
centre of steady pressure is correspondingly located at the plate centre, i.e. (Fr) = (M) = &, = 0.
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3.4.2. Casell: ¢ =0, W(&) =Y, Cié" e™i€ {Ciymj € C, n; € Zso}
For systems with parallel surfaces undergoing flexural oscillation, where H(&,7) = 1+& Re{W (&) e'"},

_ 61 sinh[B(1 + &)] _ =L+
11 (¢) = B [L(f) - WL(D] ., where 8 = Vo A (3.32)
and the integral function L is defined as
& _ 3 .
L(¢) =P / W(E)ePe dé —ePé / W(€)ePe dé. (3.33)
-1 -1

The steady pressure distribution is then given by

(P))(&) = 1%5 [ 11 G(&)dé - [ f G(&)dé, where G = %Re {H'* (3W+ %n)} (3.34)

and the levitation force and moment are defined, respectively, by the simplified integrals

1

1 1 5 1 1
(FL) = [1 £G(§)ds and (M) = 5[1 §7G(E)de - o 1 G(§) dé. (3.35a.,b)

First-order corrections to the pressure give no contribution to the thrust force due to the absence of tilt
(¢ = 0), whereby (Fr)p = 0 and (Fr)s = (Fr) = =(1/4) Re{ [, 1" (©)W(¢) d¢}.

In their asymptotic study, Minikes et al. (2004) computed (F7) analytically for the case of pure
travelling-wave oscillations, and utilized finite-difference methods for computing first-order pressure
corrections. The generalized formulation above allows integral expression of the thrust, as well as the
accompanying levitation force and moment, for arbitrary waveforms W (¢). Fully analytical computation
is possible for waves of the type W(&) = Y, Ci&™ ™%, where each C; and m; are complex numbers
and each n; is a whole number, which allow explicit integration in (3.33)—(3.35a,b). Such waves can be
found, for instance, as solutions to the Euler—Bernoulli equation, which governs the dynamic bending
of beams (Geist & McLaughlin, 1994; Yang, 2005).

3.4.3. Caselll: ¢ #0, W =1
For rigid-body systems with non-parallel surfaces, where W = 1 and H(¢,7) = 1 — ¢ + ecos T, the
reduced leading-order pressure assumes the form

12i 1 [(1=¢)7(1 - &)+ (1 - &)

1) = T (l+@+(_g7

-1], (3.36)

with « defined in (3.9). Analytical expressions for the steady levitation metrics can be found through
tedious but straightforward algebra. Most notably, the contribution of shear stress to the thrust force
is opposite in direction and half in magnitude to that of film pressure. This can be shown simply by
substituting W = 1 into (3.28), which gives (Fr)s = —p(FL)/2 = —(F7)p/2.

Of practical interest is the behaviour of the solution when the film thickness is severely reduced
and, thus, the greatest repulsive levitation forces are expected to occur (Zhao, 2010). In the associated
limit o — oo, the steady overpressure distribution simplifies to (P;)(¢) = 15/[c (1 — ¢&)?], not
accounting for the rapid relaxation of (P;) to zero at the edges of the film & = =1 (DiPrima, 1968). The
corresponding levitation force and moment assume the simplified forms

30 15 |- 2
lim (Fz) = ———— and lim (M) = — |In|[—2 )+ =¥ _|. (3.37a,b)
o—00 o(l- (’02) o—00 0-(’02 L+¢ 1-— 4,02
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Figure 4. Sample profiles of the normalized time-averaged film pressure for SFL systems with (a) zero
flexure and zero tilt, (b) pure travelling-wave flexure and (c) non-zero tilt. Asymptotic results (continuous
and dotted curves) are verified with numerical solutions of (2.11) for € = 0.01 (dots and circles). Results
are shown for (a) W =1, =0, (b) W = exp(-2int&¢), o =0and (c) W=1,¢ =0.2.

4. Discussion of results
4.1. Time-averaged squeeze-film pressure

Exemplified in figure 4 are normalized distributions of the time-averaged first-order pressure (P;)(&)
for the three limiting cases discussed above and represented in figure 1(a—c): (a) rigid bodies with
parallel surfaces, (b) parallel surfaces with travelling-wave oscillations W = exp(-2in¢) and (c) rigid
bodies with a surface tilt ratio of ¢ = 6/(h,/a) = 0.2. For all three cases displayed, (P1)(£) depends
strongly on the squeeze number o = 12u,wa®/( p,h%). In particular, when o > 1 and effects of
gaseous compressibility are correspondingly augmented, as discussed below (2.5), the overpressure
varies gradually within the film and relaxes sharply near its edges, in agreement with prior results
(DiPrima, 1968; Ramanarayanan et al., 2022; Salbu, 1964).

For a flexible plate undergoing travelling-wave deformations, the steady overpressure distribution
becomes largely negative for critically small values of o, in agreement with prior results that demonstrate
a strong correlation between flexural oscillations and the emergence of suction forces in SFL systems
(Ramanarayanan & Sanchez, 2022). It is of interest to understand the behaviours of such systems because
of their potential to provide controlled transport with attractive levitation, a phenomenon that is yet to
be demonstrated with rigorous experimentation.

For a rigid plate with a positive inclination angle, the steady pressure distribution is skewed such that
(Py) assumes larger values near the lowered leading edge ¢ = 1. Correspondingly, while the steady film
pressure yields a positive contribution ¢(F) to the thrust, the steady shear force caused by first-order
streaming acts in the opposite direction, reducing (Fr) by a factor of two, as noted below (3.36).

4.2. Visualization of levitation metrics

In pursuit of a practical understanding of the generic SFL transport system outlined in figure 3, it is
of interest to delineate clearly — i.e. in a manner amenable to physical interpretation — the parametric
dependences of the steady levitation metrics on the tilt ratio ¢ = 68/(h,/a), flexural waveform W (¢) and
squeeze number o = 12u,wa*/( p,h?).

Although these three governing parameters are considered to be ‘independent’ under the present
formulation, variations in ¢ can, in practice, affect W. In particular, since SFL oscillators typically
operate near resonance (Ilssar et al., 2017), altering their excitation frequency w or length 2a may
disturb substantially the amplitude » and wavelength of their flexural deformations. Therefore, it seems
most appropriate to interpret the variation with o of the levitation forces and moment as a variation with
the levitation height 4,. The latter is typically a ‘dependent’ variable that responds freely to changes in
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Figure 5. Variation with the normalized levitation height h, (4.2) of the dimensionless (a) levitation and
(D) thrust forces (4.1a,b) and (c) the centre of steady pressure (3.25), for a travelling-wave-driven system
with varying wavenumber K. Curves labelled ‘impure’ are computed for a wave purity of P = 0.5 (4.3).

107! 10-172 1

the load (), for instance, the change in apparent weight of a mobile robot as it travels along a curved
path as in figure 2(b) (Weston-Dawkes et al., 2021). (Note that, for oscillators with sufficiently low mass
or flexural rigidity, b and W may be affected significantly by variations in %, and the tilt angle 6 (Ilssar
& Bucher, 2017; Weston-Dawkes et al., 2021); such coupled interactions are not considered below.)

Correspondingly, in representing the present asymptotic results, it is convenient to renormalize the
steady levitation and thrust forces according to

2 3/2
L= (i) (F,) = zfi and T = (1) (Fp) = %/fL (4.1a,b)
12 b*pa/ (Hawa) 12 b2p,'” [ (arlaw)
where multiplication by an appropriate power of o has eliminated /,. Upon introducing also a normalized
height
- 1 h
hyp= —= ——"2—— 4.2)

*NT 2a\Buwipa

the dimensionless functions L(/,) and T(h,) can be interpreted to represent the variations of the
levitation and thrust forces with the mean levitation height, for a given tilt ratio and flexural mode.

Displayed in figures 5 and 6 are the variations with &, of L, T and the centre of steady pressure
&.sp Tor the canonical transport systems pictured in figures 1(b) and 1(c), respectively. It may be readily
noted from both figures that the limiting behaviours of L for small and large values of , = 1/+/o are
consistent with prior knowledge concerning the role of gaseous compressibility in SFL systems, the
latter elucidated below (2.5). The behaviour of the solution for intermediate levitation heights hy ~ 1,
however, differs substantially between the two cases and will be discussed below.

4.3. Transport by travelling-wave oscillations

The solid curves in figure 5 represent the levitation metrics for systems with parallel surfaces (¢ = 0)
driven by pure travelling waves W = e K¢ where K is the relevant dimensionless wavenumber that has
been normalized with the inverse of the semi-length a.

As seen respectively in panels (a) and (), the levitation force is significantly reduced by flexure
within the displayed range of heights /,, and the thrust force exhibits a finite maximum at a critical
height that varies with K. Investigation of the limit h, — 0 (or, equivalently, o — o) reveals that
curves of L for all values of K eventually converge in the case of pure travelling waves, in agreement
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Figure 6. Variation with the normalized levitation height h, of the dimensionless (a) levitation and (b)
thrust forces and (c) the centre of steady pressure &cp for a rigid-body SFL system, for various values
of the tilt ratio ¢ (2.7). Limiting values of &, for h, — 0 (broken lines) are found using (3.25) and
(3.37a,b).

with the findings of Minikes et al. (2004), who noted that optimization of these systems for repulsive
operation warrants compromising between a levitation force that increases for decreasing values of A,
and a thrust force that varies non-monotonically.

Furthermore, as seen in figure 5(c), the centre of pressure varies strongly with /,, indicative of a non-
negligible sensitivity to levitation height that must be taken into account when designing and controlling
a mobile robot or a rail-transport system. Interestingly, &.,, exhibits a singularity at a critical height
that corresponds to a state of zero levitation. Beyond this critical height, L assumes negative values,
corresponding to attractive levitation (see the associated distribution of steady film pressure exemplified
in figure 4c). Both the attractive load capacity and the maximum thrust rise with increasing values of
the wavenumber K.

As noted previously, generation of pure travelling-wave deformations of a finite body is hindered by
the reflection of propagating waves at open boundaries and points of actuation. The resulting impure
travelling waves can be modelled approximately with use of the modified waveform

W = cos(K¢) —iP sin(K¢), with0 <P <1, (4.3)

where P constitutes a coefficient of purity. Namely, when # = 1, W parametrizes the classical travel-
ling wave e X¢, and when P = 0, a perfect standing wave of equal wavenumber and amplitude (Feng
et al., 2015; Minikes & Bucher, 2003). Note that the inverse of P is often referred to in literature as
the ‘standing-wave ratio’. As exemplified by the dotted curves in figures 5(a) and 5(b), introduction
of impurity in a travelling-wave-driven SFL system seems to improve the attractive load capacity, but
reduces drastically the maximum thrust force that can be produced.

4.4. Effects of surface inclination

Represented in figure 6 are the levitation metrics for a rigid-body system (W = 1) with various tilt ratios
¢ =80/(h,/a). Recall that ¢ is a dimensionless representation of the amount of tilt where, for any given
levitation height 4, ¢ = 0 denotes parallel surfaces and ¢ = +(1 — &) denotes maximum tilt in either
direction — i.e. the leading or trailing edge of the plate comes into contact with the wall during each
downward stroke of the oscillation cycle.

It is clear from figures 6(a) and 6(b) that tilting the plate about its centre substantially increases the
levitation and thrust forces at any given operating height %,. Both appear to increase unboundedly as

h, — 0, assuming substantially greater values than those produced by flexure-driven systems, for the
range of h, displayed. Indeed, in the associated limit of large o (3.37a,b), L becomes proportional to
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Figure 7. Variation with the normalized levitation height h, (4.2) of the rescaled (a) levitation force
(4.1a,b), (b) thrust and (d) centre of steady pressure (3.25), for a flexural system with wavenumber
K = 27. Curves are shown for various tilt ratios ¢ (2.7) and wave purities P (4.3); curves labelled
‘impure’ are computed for P = 0.5. Plotted in (c), and verified numerically for € = 0.01 (dots and
circles), are profiles of steady pressure for states where the system produces maximal attraction, marked
with triangles in (a) and (b).

the inverse square of the levitation height /2,2, well in agreement with prior research (Taylor & Saffman,
1957), and T o 4. Of course, both are physically limited since /, cannot decrease below the amplitude
b (Zhao, 2010). Finally, figure 6(c) demonstrates that the centre of steady pressure moves toward the
leading edge with increasing tilt and varies rather weakly with /,. The associated steady moment acts
to reduce the angle of inclination, in agreement with the findings of Li et al. (2017).

One may anticipate that these effects of surface inclination apply also to systems with non-uniform
oscillations, for which dW/d¢ # 0. Firstly, the sensitivity of &, to perturbations in levitation height can
be expected to increase with the onset of flexure near resonance, accompanying a possible transition to
attractive levitation forces (Ramanarayanan & Sanchez, 2022). For systems with lateral symmetry, where
W(=¢) = W(¢) for 0 < £ < 1, inclination in either direction is expected to (i) provide significant thrust
and (ii) increase substantially the existing repulsive levitation force. Systems undergoing asymmetrical
oscillations require further investigation.

Visualized using solid curves in figure 7, for example, are the levitation metrics of a system driven
by pure travelling waves, for various values of the tilt ratio ¢. As seen in panel (a), positive and negative
inclination increase substantially the repulsive and attractive load capacities, respectively. The aptly
rescaled steady pressure distributions that correspond to the state of maximal attraction are compared in
panel (c) for ¢ = 6/(h,/a) = 0 and —0.5. Panel () reveals that inclination in either direction increases
also the thrust force T for a wide range of levitation heights £, due to the combined contributions of
fluid shear (stemming from wave propagation) and pressure (from surface tilt). The dotted curves in
panels (a—c) indicate, however, that the degree of purity of the travelling wave significantly impacts the
extent to which these benefits may be realized practically. Panel (d), where only pure travelling waves are
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considered for purposes of visual clarity, confirms the high variability of the centre of steady pressure
that accompanies the transition from repulsion to attraction for flexural systems.

4.5. Optimization of travelling-wave-driven systems with variable inclination

Based on the preliminary results above, it appears that incorporating the mechanism of controlled
inclination may improve the effectiveness of transport systems driven by impure travelling-wave oscilla-
tions for purposes of both repulsive and attractive SFL. To quantify precisely the extent of improvement
that may be gained, we conclude this paper with a rigorous investigation of the associated generalized
problem.

As discussed in § 1, the purity # of a travelling wave is limited by the effectiveness of the wave-
generation method, and the wavenumber K is typically determined by the chosen natural frequency
and geometric properties of the oscillator. Active feedback control is often employed to ensure that the
resulting waveform W remains constant during operation. In contrast, the levitation height 4, and tilt
ratio ¢ are free to respond to (i) perturbation by external forces and/or (ii) active adjustments to the mass
or centre of mass of the levitated object. In pursuit of quantifying the maximal capabilities of travel-
ling-wave-driven SFL systems that feature controllable inclination, we therefore explore the parametric
domain spanned by &, and ¢, for a fixed wavenumber K = 27 and select values of P.

Two important distinctions must be drawn at this point between the mobile robot depicted in figure 2(b)
and the rail-transport system schematized in figure 2(a). In the case of the former, the oscillator is
attached to the levitated object, such that the waveform W is invariant as the object travels. In contrast,
for rail-transport systems, the wave is subject to a phase shift that evolves as the object translates,
whereby stationary components in the wave can cause fluctuations in the levitation forces and moment.
The resulting operational instabilities may be especially pronounced for travelling waves with lower
purity # and relative wavenumber K (Hashimoto, Koike, & Ueha, 1996; Liang, Ling, & Zhang, 2010;
Sadayuki, 2002). Secondly, the mass distribution of a self-levitating mobile robot may be adjusted
actively to control the inclination ¢, but that of a levitated object in a rail-transport system is typically
fixed. Both of these distinctions must be considered carefully when interpreting and applying practically
the following results.

The performance objective(s) for an SFL system will vary with the desired transportation path,
for instance, translation (i) above a horizontal surface, (ii) below a horizontal surface, (iii) upward or
downward along a vertical surface or otherwise (see figure 2 for clarificatory illustrations).

For transport above a horizontal surface, possible objectives include maximizing the repulsive levita-
tion force L and/or the thrust 7. Based on the results outlined in figures 5-7, L and 7' may be maximized
by increasing the positive tilt angle and the wave purity, respectively, as much as physically possible.

For transport below a horizontal surface, it may be of interest to maximize the attractive levitation
force (—L) and/or the thrust 7. As seen, for example, in figures 5 and 7, L may exhibit a negative global
minimum for a critical levitation height /, = k. Plotted in figure 8 are the non-monotonic variations
with ¢ of this maximal attractive force L(k) and the corresponding thrust 7'(h}) for various values of
%, demonstrating that there is a critical range of tilt ratios for which the performance of such a system
is maximized. For instance, when £ = 0.5, an inclination of —0.4 < ¢ < —0.25 is most desirable. Note
that the benefits of controlled inclination are greater for purer travelling waves. Of practical concern is
the fact that systems operating at this critical height are unstable to positive perturbations in /4, — that s,
oL/ dh, > 0 for h, > }_z;j. For this reason, operating below the maximum capacity, at a height h, < fz:,
is recommended for avoiding catastrophic failure during attractive levitation.

Finally, for vertical transport along an upright surface, the thrust force must be maximized while the
levitation force L must be identically zero. As seen, for example, in figures 5 and 7, the function L(,)
may vanish at a critical height %/, corresponding to a transition from repulsive to attractive levitation.
A system that operates at this height is necessarily stable to positive and negative perturbations in
h, —ie. L/dh, < O for h, = }_z(’,. Plotted in figure 9 is the variation with the tilt ratio ¢ of the
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Figure 8. Variation with the tilt ratio ¢ of (a) the normalized critical levitation height at which a travel-
ling-wave-driven system with wavenumber K = 27 generates maximal attraction, and the corresponding
values of (b) the levitation force L and (c) the thrust T, for three values of the wave purity P (4.3). For
the case P = 0.5, L and T are verified with numerical solutions computed for € = 0.01 (circles).
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Figure 9. Variation with the tilt ratio ¢ of (a) the normalized critical levitation height at which a
travelling-wave-driven system with wavenumber K = 21 generates zero levitation force and (b) the
corresponding value of the thrust force T, for three values of the wave purity P (4.3). For the case
P = 0.5, asymptotic results for T are verified with numerical solutions computed for € = 0.01 (circles).

corresponding thrust force T(h/) for various values of the wave purity #. Once again, there appears to
be a desirable range of tilt ratios for which performance is maximized, with greater benefits obtained
for purer oscillations.

These analyses may be readily extended to address more complex design problems, those that
may require inclined transport paths and involve performance criteria that concern simultaneously the
levitation force (¥, ), thrust (¥r) and stability to perturbations in the tilt angle 6.

5. Conclusions

Developed in this paper is a theoretical description of the planar, viscous, compressible airflow in
contactless transport systems that operate using SFL. The reduced asymptotic formulation, which
accounts for non-uniform structural oscillations of non-parallel surfaces, provides fundamental insights
into the fluidic mechanisms that underlie thrust generation in squeeze-film systems, and enables rapid
computation of their performance characteristics using integral expressions.

Particular attention is dedicated to studying the influence of surface inclination on transport systems
that are driven by impure travelling waves (see figures 2 and 3). Results demonstrate that controlled
modulation of the tilting angle can improve substantially the maximum achievable thrust as well as the
load capacity for systems that operate using both repulsive and attractive levitation. In the case of the
latter, the amount of improvement that can be gained depends strongly on the purity of the travelling
wave, or more generally, presumably on the degree of lateral asymmetry in the flexural oscillations.

Sample computations are provided to display the potential of the present formulation in serving as an
efficient tool to supplement the design, optimization and active control of mobile robots. The accuracy

https://doi.org/10.1017/fl0.2023.22 Published online by Cambridge University Press


https://doi.org/10.1017/flo.2023.22

Flow E26-19

and versatility of this theoretical model must be improved in the future by modelling appropriately the
effects of non-negligible transport speeds (DiPrima, 1968), free vibrations of the levitated object (Ilssar
& Bucher, 2017; Yoshimoto, 1997), fluid—structure coupling by which the flexural waveform of the
oscillator may alter in response to changes in levitation height and tilt angle (Weston-Dawkes et al.,
2021), fluid inertia and the accompanying relaxation of steady pressure beyond the boundaries of the
squeeze film (Ramanarayanan et al., 2022) and surface roughness, which can substantially reduce the
levitation force and transport speed (Chen et al., 2016; Weston-Dawkes et al., 2021).
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