UNIQUE CONTINUATION FOR NON-NEGATIVE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS

PIETRO ZAMBONI

Dedicated to Filippo Chiarenza

The aim of this note is to prove the unique continuation property for non-negative solutions of the quasilinear elliptic equation

(*) \(\text{div} A(x, u, \nabla u) = B(x, u, \nabla u). \)

We allow the coefficients to belong to a generalised Kato class.

1. INTRODUCTION

In his paper on Schrödinger semigroups [12] Simon formulated the following conjecture

Let \(\Omega \) be a bounded subset of \(\mathbb{R}^n \) and \(V \) a function defined in \(\Omega \) whose extension with zero values outside \(\Omega \) belongs to the Stummel-Kato class \(S(\mathbb{R}^n) \) (see Definition 2.2). Then the Schrödinger operator \(H = -\Delta + V \) has the unique continuation property,

that is, if \(u \in H^1(\Omega) \) is a solution of equation \(Hu = 0 \) which vanishes of infinite order at one point \(x_0 \in \Omega \) (see Definition 4.2), then \(u \) must be identically zero in \(\Omega \).

A positive answer to Simon’s conjecture was given by Fabes, Garofalo and Lin in [5] for radial potentials \(V \).

At the same time Chanillo and Sawyer in [1] proved the unique continuation property for solutions of the inequality \(|\Delta u| \leq |V||u| \), assuming \(V \) in the Morrey space \(L^{r,n-2r}(\mathbb{R}^n) \) with \(r > (n - 1)/2 \) (see Definition 2.1).

In this note, following an idea of Chiarenza and Garofalo (see [3]), we extend both the above results to the non-negative solutions of a quasilinear elliptic equation of the form

(1.1) \(\text{div} A(x, u, \nabla u) = B(x, u, \nabla u). \)

Received 16th November, 2000
The author wish to express his gratitude to Professor Richard Wheeden and Professor Nicola Garofalo for some useful talks and suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 $A2.00+0.00.
Precisely we show that a non-negative solution \(u, u \neq 0 \), of (1.1) cannot have a zero of infinite order, assuming that suitable powers of the coefficients of (1.1) belong to the Morrey space \(L^{r,n-\rho r}(\mathbb{R}^n) \), with \(r \in (1, n/p) \), or to the function space \(\widetilde{M}_p(\mathbb{R}^n) \) (see Theorem 5.1). We denote by \(\widetilde{M}_p(\mathbb{R}^n) \) a generalisation of the Stummel-Kato class (see and Remark 2.5).

We point out that a crucial role in the proof of the Theorem 5.1 is played by Fefferman’s inequality

\[
\int_{\mathbb{R}^n} |u(x)|^p |V(x)| \, dx \leq c \int_{\mathbb{R}^n} |\nabla u(x)|^p \, dx \quad \forall u \in C_0^\infty(\mathbb{R}^n),
\]

where \(c \) is a positive constant depending on some norm of \(V \). In Section 3 we give a new proof of (1.2) assuming \(V \in \widetilde{M}_p \).

2 Some function spaces

We begin this section giving some definitions.

Definition 2.1: (Morrey spaces) Let \(q \geq 1, \lambda \in (0, n) \). We say that \(f \in L^q_{\text{loc}}(\mathbb{R}^n) \) belongs to \(L^{q,\lambda}(\mathbb{R}^n) \) if

\[
\sup_{x \in \mathbb{R}^n, \rho > 0} \frac{1}{\rho^\lambda} \int_{B(x, \rho)} |f(y)|^q \, dy \equiv \|f\|^q_{q,\lambda} < +\infty.
\]

Here and in the following, we denote by \(B(x, \rho) \) the ball centred at \(x \) with radius \(\rho \). Whenever \(x \) is not relevant we shall write \(B_\rho \).

Definition 2.2: (Stummel-Kato class) Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). For any \(r > 0 \) we set

\[
\eta(r) \equiv \sup_{x \in \mathbb{R}^n} \int_{B(x, r)} \frac{|f(y)|}{|x - y|^{n-2}} \, dy.
\]

We say that \(f \) belongs to \(S(\mathbb{R}^n) \) if

\[
\lim_{r \to 0} \eta(r) = 0.
\]

Definition 2.3: Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). For \(p \in (1, n) \) and \(r > 0 \) we set

\[
\phi(r) \equiv \sup_{x \in \mathbb{R}^n} \left(\int_{|z-y| < r} \frac{1}{|x-y|^{n-1}} \left(\int_{|z-z'| < r} \frac{|f(z)|^p}{|z-y|^{n-1}} \, dz \right)^{1/(p-1)} \, dy \right)^{(p-1)}.
\]

We say that \(f \) belongs to the function space \(\widetilde{M}_p(\mathbb{R}^n) \) if

\[
\phi(r) < +\infty, \quad \forall r > 0.
\]
DEFINITION 2.4: We say that $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ belongs to the function space $M_p(\mathbb{R}^n)$ if
\[
\lim_{r \to 0} \phi(r) = 0,
\]
where $\phi(r)$ is defined as in Definition 2.3.

Some comments are now in order.

REMARK 2.5. We have

(i) $M_p(\mathbb{R}^n) \subset \tilde{M}_p(\mathbb{R}^n);$

(ii) $M_2(\mathbb{R}^n) \equiv S(\mathbb{R}^n).$

(i) is trivial. Concerning (ii), Fubini’s theorem implies
\[
\int_{|z-y|<r} \frac{1}{|x-y|^n|z-y|^{n-1}} \left(\int_{|z-x|<r} \frac{|f(z)|}{|z-y|^{n-1}} \, dz \right) \, dy
= \int_{|z-x|<r} |f(z)| \int_{|z-y|<r} \frac{1}{|x-y|^n|z-y|^{n-1}} \, dy \, dz.
\]
Since
\[
\int_{|z-y|<r} \frac{1}{|x-y|^n|z-y|^{n-1}} \, dy \sim \frac{1}{|z-y|^{n-2}},
\]
we get the conclusion.

Therefore both the function spaces $M_p(\mathbb{R}^n)$ and $\tilde{M}_p(\mathbb{R}^n)$ are generalisations of $S(\mathbb{R}^n).$

3. ON FEFFERMAN’S INEQUALITY

In this section we recall some known results concerning Fefferman’s inequality
\[
(3.1) \quad \int_{\mathbb{R}^n} |u(x)|^p |f(x)| \, dx \leq c \int_{\mathbb{R}^n} |\nabla u(x)|^p \, dx \quad \forall u \in C_0^\infty(\mathbb{R}^n),
\]
and give a new proof assuming $f \in \tilde{M}_p(\mathbb{R}^n).$

In [7] Fefferman proved (3.1), in the case $p = 2,$ assuming $f \in L^{r,n-2r}(\mathbb{R}^n),$ with $1 < r \leq n/2.$

Later in [10] Schechter showed the same result taking f in the Stummel-Kato class $S(\mathbb{R}^n).$

We stress that it is not possible to compare the assumptions $f \in L^{r,n-2r}(\mathbb{R}^n)$ and $f \in S(\mathbb{R}^n).$

Chiarenza and Frasca [2] generalised Fefferman’s result proving (3.1) under the assumption $V \in L^{r,n-p^*}(\mathbb{R}^n)$ with $r \in (1,n/p)$ and $p \in (1,n).$ Namely they proved the following...
THEOREM 3.1. (See [2, p.407].) Assume $1 < p < n$, $1 < r \leq n/p$, $f \in L^{r,n-pr}(\mathbb{R}^n)$. Then there exists a constant c depending on n and p such that

$$\int_{\mathbb{R}^n} |u^p(x)| |f(x)| \, dx \leq c \|f\|_{r,n-pr} \int_{\mathbb{R}^n} |\nabla u(x)|^p \, dx, \quad \forall u \in C_0^\infty(\mathbb{R}^n).$$

In the following theorem we provide a generalisation of Schecter’s result, proving (3.1) under the assumption $f \in \widetilde{M}_p(\mathbb{R}^n)$, $p \in (1, n)$.

THEOREM 3.2. Assume $f \in \widetilde{M}_p(\mathbb{R}^n)$. Then for any $r > 0$ there exists a positive constant $c(n, p)$ such that

$$\int_{\mathbb{R}^n} |f(x)| |u(x)|^p \, dx \leq c(n, p) \phi(2r) \int_{\mathbb{R}^n} |\nabla u(x)|^p \, dx$$

for any $u \in C_0^\infty(\mathbb{R}^n)$ supported in $B(x_0, r)$.

PROOF: For any $u \in C_0^\infty(\mathbb{R}^n)$ supported in $B(x_0, r)$, using the well known inequality

$$(3.2) \quad |u(x)| \leq c(n, p) \int_{B(x_0, r)} \frac{|\nabla u(y)|}{|x - y|^{n-1}} \, dy$$

and Fubini’s theorem, we have

$$(3.3) \quad \int_{\mathbb{R}^n} |f(x)| |u(x)|^p \, dx$$

$$\begin{align*}
&= \int_{B(x_0, r)} |f(x)| |u(x)|^p \, dx \\
&\leq c(n, p) \int_{B(x_0, r)} |f(x)| |u(x)|^{p-1} \left(\int_{B(x_0, r)} \frac{|\nabla u(y)|}{|x - y|^{n-1}} \, dy \right) \, dx \\
&\leq c(n, p) \int_{B(x_0, r)} |\nabla u(y)| \left(\int_{B(x_0, r)} |f(x)| |u(x)|^{p-1} \frac{1}{|x - y|^{n-1}} \, dx \right) \, dy \\
&\leq c(n, p) \left(\int_{B(x_0, r)} |\nabla u(y)|^p \, dy \right)^{1/p} \\
&\cdot \left[\int_{B(x_0, r)} \left(\int_{B(x_0, r)} |f(x)| |u(x)|^{p-1} \frac{1}{|x - y|^{n-1}} \, dx \right)^{p/(p-1)} \, dy \right]^{(p-1)/p}.
\end{align*}$$
We also have

(3.4)
\[
\int_{B(x_0,r)} \left(\int_{B(x_0,r)} |f(x)||u(x)|^{p-1} \frac{1}{|x-y|^{n-1}} \, dx \right)^{p/(p-1)} \, dy
\]
\[
\leq \int_{B(x_0,r)} \left(\int_{B(x_0,r)} \frac{|f(z)|}{|z-y|^{n-1}} \, dx \right)^{1/(p-1)} \int_{B(x_0,r)} \frac{|f(z)||u(z)|^p}{|x-y|^{n-1}} \, dx \, dy
\]
\[
= \int_{B(x_0,r)} |f(x)||u(x)|^p \int_{B(x_0,r)} \frac{1}{|x-y|^{n-1}} \left(\int_{B(x_0,r)} \frac{|f(z)|}{|z-y|^{n-1}} \, dz \right)^{1/(p-1)} \, dy \, dx
\]
\[
\leq \phi^{1/(p-1)}(2r) \int_{B(x_0,r)} |f(x)||u(x)|^p \, dx.
\]

By (3.3) and (3.4) we obtain the desired conclusion.

REMARK 3.3. We note that proceeding as in Theorem 3.2 using the representation formula (see, for example [6])

instead of (3.2), it is possible to obtain a Poincaré type inequality. Namely

THEOREM 3.4. Suppose \(u \) is a Lipschitz continuous function on \(\overline{B}_R \), the closure of \(B_R \), and \(f \) is a function defined on \(B_R \) whose extension with zero values outside \(B_R \) belongs to \(M_p(\mathbb{R}^n) \). Then there exists a positive constant \(c \) such that

\[
\int_{B_R} |f(x)||u(x) - u_{B_R}|^p \, dx \leq c \phi(2R) \int_{B_R} |\nabla u(x)|^p \, dx
\]

where \(u_{B_R} \) is the average \((1/|B_R|) \int_{B_R} u(x) \, dx\) where \(|B_R|\) is the Lebesgue measure of \(B_R \).

4. ASSUMPTIONS AND PRELIMINARY RESULTS

Let \(\Omega \) be a bounded open set in \(\mathbb{R}^n \). The equation we consider is of the form

(4.1) \[\text{div} \, A(x, u, \nabla u) = B(x, u, \nabla u), \]

where

\[A(x, u, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \]

and

\[B(x, u, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \]
are two continuous functions satisfying the following conditions

\[
\begin{aligned}
&\quad |A(x, u, \xi)| \leq a|\xi|^{p-1} + b(x)|u|^{p-1} \\
&\quad |B(x, u, \xi)| \leq c(x)|\xi|^{p-1} + d(x)|u|^{p-1} \\
&\quad \xi A(x, u, \xi) \geq |\xi|^p - d(x)|u|^p
\end{aligned}
\]

for almost all, \(x \in \Omega, \forall u \in \mathbb{R}, \forall \xi \in \mathbb{R}^n \). We assume that \(p \) is a fixed number in \((1, n)\), \(a \) is a positive constant and \(b, c \) and \(d \) are measurable functions in \(\Omega \) whose extension with zero values outside \(\Omega \) are such that

\[
\frac{b^p}{(p-1)} c^p, d \in M_p(\mathbb{R}^n),
\]
or

\[
\frac{b^p}{(p-1)} c^p, d \in L_r^{r, n-p} (\mathbb{R}^n) \quad r \in (1, n/p).
\]

Definition 4.1: We say that a function \(u \in H^1_{loc}(\Omega) \) is a local weak solution of (4.1) in \(\Omega \) if

\[
\int_{\Omega} \left\{ A(x, u(x), \nabla u(x)) \nabla \phi(x) + B(x, u(x), \nabla u(x)) \phi(x) \right\} dx = 0
\]

for every \(\phi \in C_0^\infty(\Omega) \).

We remark that Definition 4.1 is meaningful by Theorem 3.1 or Theorem 3.2. To state our result we need one more definition.

Definition 4.2. Assume \(w \in L^1_{loc}(\Omega), w \geq 0 \) almost everywhere in \(\Omega \). We say that \(w \) has a zero of infinite order at \(x_0 \in \Omega \) if

\[
\lim_{\rho \to 0} \frac{\int_{B(x_0, \rho)} w(x) \, dx}{|B(x_0, \rho)|^k} = 0 \quad \forall k > 0.
\]

The following two lemmas are known.

Lemma 4.3. (See [9].) Assume \(w \in L^1_{loc}(\Omega), w \geq 0 \) almost everywhere in \(\Omega \), \(w \neq 0 \). If

\[
\exists C > 0 : \int_{B(x_0, 2\rho)} w(x) \, dx \leq C \int_{B(x_0, \rho)} w(x) \, dx \quad \forall \rho > 0,
\]

then \(w(x) \) has no zero of infinite order in \(\Omega \).

Lemma 4.4. (See [4] and [8].) Let \(B_r \subset \mathbb{R}^n \), \(u \in H^1(B_r) \) be and assume that for all \(B_r \subset B_{\rho} \) there exists a constant \(K \) such that

\[
\left(\int_{B_r} |\nabla u(x)|^p \, dx \right)^{1/p} \leq K r^{(n-p)/p}.
\]

Then there exist two positive constants \(\delta \) and \(C \), depending on \(K, p, n \), such that

\[
\left(\int_{B_{\rho}} e^{\delta u(x)} \, dx \right) \left(\int_{B_{\rho}} e^{-\delta u(x)} \, dx \right) \leq C |B_{\rho}|^2.
\]
5. UNIQUE CONTINUATION

In this section we state and prove our result, namely

Theorem 5.1. Let \(u \in H^1(\Omega) \), \(u \geq 0 \), \(u \not\equiv 0 \), be a solution of (4.1) satisfying (4.2) and (4.3) or (4.2) and (4.3)'

Then \(u \) has no zero of infinite order in \(\Omega \).

Proof: Let \(x_0 \in \Omega \), let \(B(x_0, R) \) be a ball such that \(B(x_0, 2R) \) is contained in \(\Omega \). Consider any \(B_h \) contained in \(B(x_0, R) \). Let \(\eta \) be a non negative smooth function with support in \(B_{2h} \). Using \(\phi = \eta^p u^{1-p} \) as test function in (4.4) we get (see [11])

\[
(5.1) \quad \int_{\Omega} \left| \nabla \log u(x) \right|^p \eta^p(x) \, dx \leq C_1(p, a) \left\{ \int_{\Omega} \left| \nabla \eta(x) \right|^p \, dx + \int_{\Omega} V(x) \eta^p(x) \, dx \right\},
\]

where \(V \) is defined by

\[
V = C_3(p, a, \text{diam } \Omega) + C_3(p, a, \text{diam } \Omega) + C_3(p, a, \text{diam } \Omega).
\]

By Theorem 3.1 or Theorem 3.2, we have

\[
\int_{\Omega} V(x) \eta^p(x) \, dx \leq C_2(\text{spt } \eta) \int_{\Omega} \left| \nabla \eta(x) \right|^p \, dx.
\]

Inserting this inequality in (5.1), we obtain

\[
(5.2) \quad \int_{\Omega} \eta^p(x) \left| \nabla \log u(x) \right|^p \, dx \leq C_3(p, a, \text{diam } \Omega) \int_{\Omega} \left| \nabla \eta(x) \right|^p \, dx.
\]

Choosing \(\eta \) so that \(\eta = 1 \) in \(B_h \) and \(|\nabla \eta| \leq 3/h \), by (5.2) we have

\[
(5.3) \quad \int_{B_h} \left| \nabla \log u(x) \right|^p \, dx \leq C_4(p, a, \text{diam } \Omega) h^{n-p}.
\]

Therefore, by Lemma 4.4, we have

\[
\int_{B_h} u^\delta(x) \, dx \int_{B_h} u^{-\delta}(x) \, dx \leq C |B_h|^2,
\]

that is, \(u^\delta \) belongs to the Muckenhoupt class \(A_2 \) for some \(\delta > 0 \) (see [3] and [6]). Now it is well known that \(A_2 \) implies the doubling property for \(u_\delta \), that is, the assumption of Lemma 4.3. So the conclusion follows for \(u^\delta \) and hence also for \(u \). \(\square \)
REFERENCES

Universitá di Catania
Dipartimento di Matematica
viale Andrea Doria 6
95125 Catania
Italy
e-mail: zamboni@dipmat.unict.it

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 03 Nov 2018 at 00:01:39, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700019766