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Necessary and Sufficient Conditions for the
Central Norm to Equal 2

h in the Simple

Continued Fraction Expansion of
√

2h
c for

Any Odd c > 1

R. A. Mollin

Abstract. We look at the simple continued fraction expansion of
√

D for any D = 2hc where c > 1 is

odd with a goal of determining necessary and sufficient conditions for the central norm (as determined

by the infrastructure of the underlying real quadratic order therein) to be 2h. At the end of the paper,

we also address the case where D = c is odd and the central norm of
√

D is equal to 2.

1 Introduction

In [8] we gave necessary and sufficient conditions for the parity of the period length

of the simple continued fraction expansion of
√

D for any nonsquare D > 1 in terms
of solvability of the Diophantine equations ax2 − by2

= ±1,±2. A consequence of
this is the simple fact that the central norm is equal to 2 in such expansions if and only
if there is a solution to the Diophantine equation x2 −Dy2

= ±2. However, this does

not tell us the specifics pertaining to those D for which this holds. In this article, we
explicitly identify those D for which this holds in terms of congruence conditions on
the prime divisors of D, and parity conditions on certain numerators of convergents
as well as the period length itself. This allows a complete description of those D =

2hc (c > 1 odd and possibly a perfect square when h is odd) with central norm
equal to 2h, heretofore only subsets of which were known—and we achieve the known
results as immediate corollaries. This work was inspired by correspondence with
Irving Kaplansky who sent this author a letter, dated October 29, 1998, containing

conjectures for when the central norm is 2 when D = 2pq for distinct primes p and q.
As a consequence of the results in this paper, we achieve proofs of these conjectures
as well. (See [7] for the proofs of other conjectures concerning simple continued
fraction expansions inspired by correspondence with Professor Kaplansky.)
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122 R. A. Mollin

2 Notation and Preliminaries

Herein, we will be concerned with the simple continued fraction expansions of
√

D,
D ∈ N (the natural numbers), D is not a perfect square. We denote this expansion by

√
D = 〈 q0; q1, q2, . . . , qℓ−1, 2q0 〉,

where ℓ = ℓ(
√

D) is the period length, q0 = ⌊
√

D⌋ (the floor of
√

D), and q1q2 · · · qℓ−1

is a palindrome.
The jth convergent of

√
D for j ≥ 0 is given by,

(1)
A j

B j

= 〈q0; q1, q2, . . . , q j〉 =

q jA j−1 + A j−2

q jB j−1 + B j−2

.

The complete quotients are given by, (P j +
√

D)/Q j , where P0 = 0, Q0 = 1, and for
j ≥ 1,

(2) P j+1 = q jQ j − P j ,

(3) q j =

⌊

P j +
√

D

Q j

⌋

,

and

(4) D = P2

j+1
+ Q jQ j+1.

We will also need the following facts (which can be found in most introductory
texts on number theory, such as [6], or see [5] for a more advanced exposition).

(5) A jB j−1 − A j−1B j = (−1) j−1.

Also,

(6) A j−1 = P jB j−1 + Q jB j−2,

and

(7) A2

j−1
− B2

j−1
D = (−1) jQ j .

In particular,

(8) A2

ℓ−1
− B2

ℓ−1
D = (−1)ℓ.

When ℓ is even, Pℓ/2 = Pℓ/2+1, so by Equation (2),

(9) Qℓ/2

∣

∣ 2Pℓ/2,
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where Qℓ/2 is called the central norm, (via Equation (7) ), and

(10) qℓ/2 = 2Pℓ/2/Qℓ/2.

For
√

D, Aℓ−1 + Bℓ−1

√
D is the fundamental solution of the Pell equation (8). By

“fundamental solution” X + Y
√

D, to a norm-form equation X2 − DY 2
= c, we

mean that X,Y have the least positive values possible. When c 6= ±1,±4 this may
involve several “classes” of such solutions, so in that case, we mean the fundamental

solution in its class (see [6, pp. 298–301] for instance). In general, a positive solution
is one for which both X and Y are positive values. Similarly, for equations of the
form aX2 − bY 2

= c, there are classes of solutions. However, it is easy to show that
if X

√
a + Y

√
b and W

√
a + Z

√
b are both positive solutions of the latter, then the

following are equivalent: (1) X < W , (2) Y < Z, (3) X
√

a + Y
√

b < W
√

a + Z
√

b.
Hence, there is a solution with X and Y of least positive value. We will call this the
fundamental solution of the equation. Furthermore, the norm of α = X

√
a + Y

√
b is

given by N(α) = aX2 − bY 2. This corresponds to the usual norm for elements of the

form β = x + y
√

D, namely, N(β) = x2 − Dy2.
In [8], we proved the following results that we will need in the next section (see

also [9]).

Theorem 1 Let D > 2, not a perfect square. Then ℓ = ℓ(
√

D) is even if and only if

one of the following holds.

(1) There exists a factorization D = ab with 1 < a < b such that the Diophantine

equation

(11) aX2 − bY 2
= ±1

has a solution.

(2) There exists a factorization D = ab with 1 ≤ a < b such that the Diophantine

equation

(12) ax2 − by2
= ±2

has a solution where xy is odd.

Note that the following, proved by Lagarias [2, Lemma A-1, p. 504], is immediate
from Theorem 1 (by contrapositive).

Corollary 1 If D > 1 is squarefree and f > 1 with ℓ(
√

f 2D) odd, then ℓ(
√

f 2kD) is

odd for all k ∈ N.

Theorem 2 Let D > 1, not a perfect square, and suppose that D = ab with 1 < a <
b. Then if T + U

√
ab is the fundamental solution of Diophantine equation

(13) x2 − Dy2
= 1,

and if r
√

a+s
√

b is the fundamental solution of Equation (11), then each of the following

holds.
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(a) ℓ = ℓ(
√

D) is even.

(b) Qℓ/2 = a in the simple continued fraction expansion of
√

D.

(c) Aℓ/2−1 = ra and Bℓ/2−1 = s.

(d) T + U
√

ab = Aℓ−1 + Bℓ−1

√
ab =

(

r
√

a + s
√

b
) 2

.

(e) r2a − s2b = (−1)ℓ/2
=

( Aℓ/2−1

a

) 2

a −
(

Bℓ/2−1

)2

b.

(f) For any odd j ∈ N,

(

r
√

a + s
√

b
) 2 j

= A jℓ−1 + B jℓ−1

√
ab =

( A jℓ/2−1

a

√
a + B jℓ/2−1

√
b
) 2

.

Theorem 3 Let D = ab > 2, not a perfect square, with 1 ≤ a < b. Suppose that

(14) ax2 − by2
= ±2

has a solution (x, y) = (r, s) ∈ N
2 where xy is odd. Then each of the following holds.

(1) ℓ = ℓ(
√

D) is even.

(2) If r
√

a + s
√

b is the fundamental solution of Equation (14), then for any odd integer

j ≥ 1,

(r
√

a + s
√

b)2 j

2 j
= A jℓ−1 + B jℓ−1

√
D.

(3) Aℓ/2−1 = ar, Bℓ/2−1 = s, and Qℓ/2 = 2a.

(4) r2a − s2b = 2(−1)ℓ/2.

The following is immediate from the above.

Corollary 2 Suppose that D > 2 is an integer that is not a perfect square and ℓ =

ℓ(
√

D) is even. Then Qℓ/2 = 2 if and only if there does not exist a factorization D = ab

with a > 2, b > 2, such that ax2 − by2
= ±1; and there does not exist a factorization

D = ab with a 6= 1 6= b such that ax2 − by2
= ±2 with xy odd.

Theorem 4 Suppose that D = ab, not a perfect square, where 1 < a < b with

a = 2t a1 and b = 2ub1 for t, u ≥ 0. If |r2a − s2b| = 1 has a solution r, s ∈ N, then the

following Jacobi symbol equalities hold, where ℓ = ℓ(
√

ab) is even,

( b

a1

)

=

( −1

a1

) ℓ/2+1

and
( a

b1

)

=

( −1

b1

) ℓ/2

.

The reader may also consult the excellent paper [10] for more information on the
Diophantine equation ax2 − by2

= ±1, which goes back to Gauss (see [1, Article

187]). There is also the seminal work of Ljunggren [3, 4].

3 Central Norms

First we look at the case where the radicand is even and divisible by an even power
of 2. The criterion below tells us that we can find the fundamental unit of the odd
part of the radicand from halfway along the continued fraction expansion of the full
radicand.
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Theorem 5 Suppose that D = 4dc, where c is not a perfect square, c, d ∈ N, c odd,

ℓ = ℓ(
√

D) and ℓ ′ = ℓ(
√

c). If ℓ is even, then Qℓ/2 = 4d if and only if

(15)
Aℓ/2−1

2d
+ Bℓ/2−1

√
c = Aℓ ′−1 + Bℓ ′−1

√
c

in the simple continued fraction expansions of
√

D, respectively
√

c. Moreover, when this

occurs, ℓ ′ ≡ ℓ/2 (mod 2).

Proof Suppose that Qℓ/2 = 4d, and part 1 of Theorem 1 holds. Set D1 = 4c and

ℓ1 = ℓ(
√

D1). Then, by a trivial induction argument,

Aℓ−1 + Bℓ−1

√
D = Aℓ−1 + 2d−1Bℓ−1

√
D1 = Aℓ1−1 + Bℓ1−1

√
D1.

However, by Theorem 2,

Aℓ1−1 + Bℓ1−1

√
D1 =

( Aℓ1/2−1

2
+ Bℓ1/2−1

√
c
) 2

,

and
Aℓ1/2−1

2
+ Bℓ1/2−1

√
c =

(

Aℓ ′−1 + Bℓ ′−1

√
c
)k

,

for some k ∈ N. Since Aℓ1−1 + Bℓ1−1

√
D1 is the smallest solution of

X2 − 4cY 2
= 1

and is also the smallest solution of x2 − cy2
= 1 with y even, then k = 1. Hence, by

Theorem 2,

( Aℓ/2−1

2d
+ Bℓ/2−1

√
c
) 2

= Aℓ−1 + Bℓ−1

√
D = Aℓ1−1 + Bℓ1−1

√
D1

=

(

Aℓ ′−1 + Bℓ ′−1

√
c
)2

,

and the result follows. If case 2 of Theorem 1 holds, then the result follows by a
similar argument. Conversely, if Equation (15) holds, then

(2dAℓ ′−1)2 − (2dBℓ ′−1)2c = (−1)ℓ/2Qℓ/2,

so

(−1)ℓ ′
= A2

ℓ ′−1
− B2

ℓ ′−1
c = (−1)ℓ/2Qℓ/2/(22d).

Thus, Qℓ/2 = 4d and ℓ ′ ≡ ℓ/2 (mod 2).
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Example 1 This illustrates Theorem 5 in the case where part 1 of Theorem 1 holds.
Let D = 4 · 3 · 7 · 11. Then ℓ = 8, Qℓ/2 = 4, Aℓ/2−1 = 152, Bℓ/2−1 = 5, ℓ ′ = 2,

Aℓ ′−1 = 76, and Bℓ ′−1 = 5. Thus,

( Aℓ/2−1

a

√
a + Bℓ/2−1

√
c
) 2

= (76 + 5
√

3 · 7 · 11)2
= 11551 + 380

√
D

= Aℓ−1 + Bℓ−1

√
D,

and
Aℓ/2−1

2d
+ Bℓ/2−1

√
c = 76 + 5

√
3 · 7 · 11 = Aℓ ′−1 + Bℓ ′−1

√
c.

Example 2 This illustrates Theorem 5 in the case where part 2 of Theorem 1 holds.

Let D = 42 · 11 = 4d · c. Then ℓ = 4, Qℓ/2 = 16, Aℓ/2−1 = 40, Bℓ/2−1 = 3, ℓ ′ = 2,
Aℓ ′−1 = 10, and Bℓ ′−1 = 3. Hence,

1

2

( Aℓ/2−1

√
a

a
+ Bℓ/2−1

√
2c

) 2

=

1

2
(10

√
2 + 3

√
22)2

= Aℓ−1 + Bℓ−1

√
D

= 199 + 15
√

D,

and
Aℓ/2−1

2d
+ Bℓ/2−1

√
c = 10 + 3

√
11 = Aℓ ′−1 + Bℓ ′−1

√
c.

Now we look at the case where D is divisible by an odd power of 2.

Theorem 6 Suppose that D = 22d−1c, where d ∈ N, c is odd, and ℓ = ℓ(
√

D) is even.

Then Qℓ/2 = 22d−1 if and only if ℓ1 = ℓ(
√

2c) is even with Qℓ1/2 = 2, and

(16) Aℓ/2−1 = 2d−1Aℓ1/2−1 and Bℓ/2−1 = Bℓ1/2−1.

Moreover, when this holds, ℓ ≡ ℓ1 (mod 4).

Proof If Qℓ1/2 = 2 and conditions (16) hold, then

A2

ℓ/2−1
− B2

ℓ/2−1
D = (−1)ℓ/2Qℓ/2 = 22d−2A2

ℓ1/2−1
− B2

ℓ1/2−1
22d−1c

= 22d−2Qℓ1/2(−1)ℓ1/2
= 22d−1(−1)ℓ1/2.

Thus, ℓ1 ≡ ℓ (mod 4) and Qℓ/2 = 22d−1.

Conversely, suppose that Qℓ/2 = 22d−1. If part 1 of Theorem 1 holds, then

Aℓ/2−1 = 22d−1r, and Bℓ/2−1 = s where 22d−1r2 − s2c = (−1)ℓ/2. Hence,

22 j−1(r2d− j)2 − s2c = (−1)ℓ/2,

for any j = 1, . . . , d. Therefore, if ℓ j = ℓ(
√

D j) with D j = 22 j−1c, then

Qℓ j/2 = 22 j−1, Aℓ j/2−1 = 2d+ j−1r = Aℓ/2−1/2d− j .
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In particular, if j = 1, we have our result. The argument is similar for the case where
part 2 of Theorem 1 holds. In either case, ℓ ≡ ℓ1 (mod 4).

The following illustrates Theorem 6.

Example 3 If D = 27 · 129, then Aℓ/2−1 = A0 = 128 = Qℓ/2 = 27
= 22d−1, where

r = 1 in this case. Also, c = 129, Aℓ1/2−1 = A0 = 16 = 24
= 2d, and Qℓ1/2 = 2.

Note that Theorem 6 also covers the case where c is a perfect square.

Example 4 If D = 23 · 32
= 22d−1 · c, then Aℓ/2−1 = A0 = 8 = Qℓ/2, and r = 1 in

this case as well. Also, c = 9, Aℓ1/2−1 = A0 = 4 = 22
= 2d, and Qℓ1/2 = 2.

Also note that when Qℓ1/2 = 2 in the absence of the satisfaction of conditions (16)

in Theorem 6, then not only do we not have Qℓ/2 = 22d−1, but also Qℓ/2 may not be

even. For instance, if D = 23 · 7, then ℓ1 = ℓ(
√

14) = 4 and Qℓ1/2 = 2. However,

ℓ = ℓ(
√

56) = 2 and Qℓ/2 = 7.

Note as well that Theorem 6 says nothing about the case where d = 1 and thus it
is predicated upon the solution of that problem which is given in the following more
detailed result, where we cover all cases except when c is divisible only by primes
congruent to 1 modulo 4. (See Remark 1 below for comments on that case.)

Theorem 7 Let D = 2c, and ℓ = ℓ(
√

D), where c > 1 is odd (possibly a perfect

square). Then ℓ is even and we have criteria for Qℓ/2 = 2 in each of the following.

(a) If c ≡ 1 (mod 8) and c is divisible by a prime congruent to 7 modulo 8, then

Qℓ/2 = 2 if and only if each of the following holds.

(1) ℓ/2 is even,

(2) Aℓ/2−1 ≡ 2 (mod 4), and

(3) There does not exist a factorization c = ab with a 6= 1, b 6= 1, such that

a ≡ 1 ≡ b (mod 8) and 2ax2 − by2
= ±1 for any integers x, y.

(b) If c ≡ 1 (mod 8) and c is divisible by a prime congruent to 3 modulo 8, then

Qℓ/2 = 2 if and only if each of the following holds.

(1) ℓ/2 is odd.

(2) Aℓ/2−1 ≡ 0 (mod 4).

(3) There does not exist a factorization c = ab with a 6= 1, b 6= 1, such that

a ≡ 1 ≡ b (mod 8) and 2ax2 − by2
= ±1 for any integers x, y.

(c) If c ≡ 3 (mod 8), then Qℓ/2 = 2 if and only if each of the following holds.

(1) ℓ/2 is odd.

(2) Aℓ/2−1 ≡ 2 (mod 4).

(3) There does not exist a factorization c = ab with a 6= 1, b 6= 1 such that a ≡ 1

(mod 8), b ≡ 3 (mod 8), and 2ax2 − by2
= −1 for any integers x, y.
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(d) If c ≡ 7 (mod 8), then Qℓ/2 = 2 if and only if each of the following holds.

(1) ℓ/2 is even.

(2) Aℓ/2−1 ≡ 0 (mod 4).

(3) There does not exist a factorization c = ab with a 6= 1, b 6= 1 such that a ≡ 1
(mod 8), b ≡ 7 (mod 8), and 2ax2 − by2

= 1 for any integers x, y.

Proof In all parts, (a)–(d), D is divisible by a prime congruent to 3 modulo 4, so

x2−Dy2
= −1 cannot hold from which Equation (8) tells us that ℓ is even. Moreover,

for all parts (a)–(d), part 2 of Theorem 1 cannot hold (given that XY cannot be odd
in that case when D is even), so part 1 of Theorem 1 must hold.

For part (a), if Qℓ/2 = 2, then by Theorems 1–2, we must have

2r2 − cs2
= (−1)ℓ/2

for some natural numbers r, s, and Aℓ/2−1 = 2r. If ℓ/2 is odd, then given any prime

p
∣

∣ c, with p ≡ 7 (mod 8),

−1 =

( −1

p

)

=

( 2r2 − cs2

p

)

=

( 2

p

)

= 1,

a contradiction, so ℓ/2 is even. Therefore, 1 = 2r2 − cs2 ≡ 2r2 − 1 (mod 8), so r is
odd. Hence, Aℓ/2−1 ≡ 2 (mod 4). If there were a factorization c = ab with a 6= 1,
b 6= 1 and 2ax2 − by2

= ±1 then by Theorem 2, Aℓ/2−1 = 2ax, forcing a = 1, a
contradiction; or Aℓ/2−1 = by = 2r, also a contradiction since by is odd. Conversely,

suppose that (1)–(3) hold. If there exist a 6= 1, b 6= 1 such that 2ar2 − bs2
= ±1

for some r, s ∈ N, then by (3), a ≡ 3 (mod 8), so ±1 ≡ 6r2 − 3 ≡ ±3 (mod 8), a
contradiction. Therefore, a = 1, so Qℓ/2 = 2. The cases a ≡ b ≡ 5 (mod 8) and
a ≡ b ≡ 7 (mod 8) are similar. Also, in (b)–(d) we only cover one case since the

others are similar.

For part (b), if Qℓ/2 = 2, then as above, 2r2 − cs2
= (−1)ℓ/2, and Aℓ/2−1 = 2r. If

ℓ/2 is even, then for any prime p
∣

∣ c, with p ≡ 3 (mod 8),

−1 =

( 2

p

)

=

( 2r2 − cs2

p

)

=

( 1

p

)

= 1,

a contradiction, so ℓ/2 is odd. Therefore,−1 = 2r2−cs2 ≡ 2r2−1 (mod 8), forcing

r to be even, namely Aℓ/2−1 ≡ 0 (mod 4). We have shown that (1) and (2) hold, and
(3) holds by the same reasoning as in the proof for (a). Conversely, suppose that (1)–
(3) hold. If there exist integers r, s and a factorization c = ab with 1 ≤ a < 2b such
that ar2 − 2bs2

= (−1)ℓ/2
= −1, then by Theorem 2, Aℓ/2−1 = ar ≡ 0 (mod 4), a

contradiction since ar is clearly odd. Hence, there exists a factorization c = ab with
1 ≤ 2a < b such that 2ar2 − bs2

= −1 and Aℓ/2−1 = 2ar ≡ 0 (mod 4), so r is even.
If a > 1, then −1 ≡ −b (mod 8), forcing a ≡ b ≡ 1 (mod 8). This contradicts (3)
unless a = 1, so Qℓ/2 = 2.
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For part (c), suppose that Qℓ/2 = 2. Then as above, there are r, s ∈ N with

2r2 − cs2
= (−1)ℓ/2 and Aℓ/2−1 = 2r. If ℓ/2 is even, 1 ≡ 2r2 − 3 (mod 8), so r2 ≡ 2

(mod 4), which is not possible, so ℓ/2 is odd. Thus,

−1 ≡ 2r2 − 3 (mod 8),

forcing r to be odd. Therefore, Aℓ/2−1 ≡ 2 (mod 4). This establishes (1) and (2).
Part (3) must also hold by Theorem 2 since any factorization c = ab with 1 < a < b

such that 2ax2−by2
= −1 would imply that Aℓ/2−1 = 2ax, which is impossible since

Aℓ/2−1 = 2r where gcd(r, c) = 1. Conversely, suppose parts (1)–(3) hold. As above,
there exists a factorization c = ab with a 6= 1, b 6= 1, and 2ar2 − bs2

= −1 for some
r, s ∈ N, where r is odd by part (2). If a > 1, then by part (3), a ≡ 3 (mod 8) and
b ≡ 1 (mod 8). Hence,

−1 ≡ 2ar2 − bs2 ≡ 6 − 1 ≡ 5 (mod 8),

a contradiction. Therefore, a = 1, so Qℓ/2 = 2.

For part (d), if Qℓ/2 = 2, then as above, there exist r, s ∈ N such that 2r2 − cs2
=

(−1)ℓ/2 and Aℓ/2−1 = 2r. If ℓ/2 is odd, then

−1 ≡ 2r2 − 7 ≡ −5,−7 (mod 8),

which is not possible. Thus, ℓ/2 is even. Therefore, 1 ≡ 2r2 − 7 (mod 8), which
implies that r is even. Hence, Aℓ/2−1 ≡ 0 (mod 4). This is (1) and (2). Part (3)
follows as above. Conversely, suppose that (1)–(3) hold. If there exist x, y ∈ N such
that 2ax2 − by2

= 1 for a > 1, then by (2) and (3)

2ax2 − by2
= 1 ≡ 6x2 − 1 ≡ −1 (mod 8),

which is not possible. Thus, a = 1 so Qℓ/2 = 2.
The following is immediate from the above and is partly motivated by the more

general study herein based upon correspondence with Irving Kaplansky, and proves
his conjectures in the aforementioned correspondence.

Corollary 3 If D = 2peq f where p and q are distinct odd primes, and e, f ∈ N are

odd, then ℓ = ℓ(
√

D) is even and each of the following holds.

(1) If p ≡ 7 ≡ q (mod 8), then Qℓ/2 = 2 if and only if ℓ/2 is even and Aℓ/2−1 ≡ 2
(mod 4).

(2) If p ≡ q ≡ 3 (mod 8), then Qℓ/2 = 2.

(3) If p ≡ 1 (mod 8) and q ≡ 3 (mod 8), with p > 2q, then Qℓ/2 = 2 if and only if

ℓ/2 is odd and Aℓ/2−1 ≡ 2 (mod 4).

(4) if p ≡ 1 (mod 8) and q ≡ 7 (mod 8) with p > 2q, then Qℓ/2 = 2 if and only if

ℓ/2 is even and Aℓ/2−1 ≡ 0 (mod 4).

The following illustrates the results above.
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Example 5 If D = 2·7·23 = 2·a·b, then ℓ = 4, a ≡ b ≡ 7 (mod 8) and Aℓ/2−1 = 6,
with Qℓ/2 = 2. This illustrates part (a) above. Although condition (3) is vacuous

when c is divisible by only two primes, it is necessary for more primes. For instance, if
D = 2·47·71·103·127, ℓ = 8, Aℓ/2−1 ≡ 2 (mod 4), but 2·47·71·72−103·127·52

= 1,
and Qℓ/2 = 6674 = 2 · 47 · 71 = Pℓ/2. However, if D = 2 · 7 · 23 · 31 · 47 = 2c,
Qℓ/2 = Q18 = 2, Aℓ/2−1 ≡ 2 (mod 4) and there does not exist such a factorization

of c = 234577. Unlike part (2) of Corollary 3, there are instances where Qℓ/2 6= 2
when c is divisible by only two primes. For instance, if D = 2 · 7 · 31, then ℓ = 4,
Qℓ/2 = 7, and Aℓ/2−1 is odd.

If D = 2 · 32, then ℓ/2 = 1, Qℓ/2 = 2, and Aℓ/2−1 = 4. This illustrates part (b).
Note that condition (3) is vacuous in part (b) if c is only divisible by two primes, but is

necessary for more primes. For instance, if D = 2·3·7·11·151, conditions (1) and (2)
are satisfied since ℓ/2 = 1, and Aℓ/2−1 = 264 ≡ 0 (mod 4), but Qℓ/2 = 66 = 2·3·11.
Here we have, 2 · 3 · 11 · 42 − 7 · 151 = −1. Moreover, part (2) of Corollary 3 tells
us that conditions (1) and (2) always hold when c is divisible by exactly two distinct

primes.

If D = 2 · 3 · 17, then ℓ = 2, Aℓ/2−1 = 10 and Qℓ/2 = 2. This illustrates part (c).

Note that condition (3) cannot be eliminated even in the case where c is divisible by
only two primes. For instance, if D = 2 · 89 · 179, then ℓ = 2, Aℓ/2−1 = 178 ≡ 2
(mod 4), but Qℓ/2 = 178 = 2 · 89, and we have that 2 · 89 − 179 = −1. Also, as with
the previous case, we need conditions (1) and (2). For instance, if D = 2 · 3 · 73, then

ℓ = 4 and Qℓ/2 = 3.

If D = 2 · 17 · 23, then ℓ = 4, Qℓ/2 = 2, and Aℓ/2−1 = 28 ≡ 0 (mod 4).
This illustrates part (d). The following illustrates the necessity of condition (3) even
when c is divisible by only two primes. Let D = 2 · 17 · 103. Then ℓ = 24, Aℓ/2−1 =

477916 ≡ 0 (mod 4). However, Qℓ/2 = 34 = 2·17, and 2·17·131742−75692 ·103 =

1. Again, parts (1) and (2) are required when c is divisible by only two primes. For
instance, if D = 2 · 23 · 73, Qℓ/2 = Q7 = 23.

Remark 1 The case where c is divisible by only primes congruent to 1 modulo 8 is
special (in the notation of Theorem 7) in that there appears to be no necessary and

sufficient conditions for Qℓ/2 = 2 (when ℓ is even) beyond that given in Corollary 2,
namely that Qℓ/2 = 2 if and only if there is no factorization c = ab with a 6= 1 6= b

such that 2ax2 − by2
= ±1 for any x, y ∈ Z. It is perhaps worthy of note that if

Qℓ/2 = 2, then Aℓ/2−1 ≡ 1 + (−1)ℓ/2 (mod 4), which can be shown using the above

techniques. However, this is far from sufficient. For example, if D = 2 · 17 · 137, then
ℓ = 2, Aℓ/2−1 ≡ 0 (mod 4), but Qℓ/2 = 2 · 17.

The following provides cases where D ≡ 2 (mod 4) and Qℓ/2 6= 2 under any

hypothesis.

Theorem 8 Let D = 2c where c > 1 is odd (possibly a perfect square). Then in each
of the following cases, when ℓ = ℓ(

√
D) is even, Qℓ/2 6= 2.

(1) c is divisible by a prime p ≡ 5 (mod 8).
(2) c is divisible by primes p j ≡ 3 (mod 8), and pk ≡ 7 (mod 8).
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Proof As in the proof of Theorem 7, if ℓ is even, then part (2) of Theorem 1 must
hold. Thus, if Qℓ/2 = 2, then there exist r, s ∈ N such that

2r2 − cs2
= (−1)ℓ/2.

If part (1) holds, then

−1 =

( 2

p

)

=

( 2r2 − cs2

p

)

=

( ±1

p

)

= 1,

a contradiction.

If part (2) holds, then

(−1)ℓ/2
=

( (−1)ℓ/2

p j

)

=

( 2r2 − cs2

p j

)

=

( 2

p j

)

= −1.

However,

(−1)ℓ/2
=

( (−1)ℓ/2

pk

)

=

( 2r2 − cs2

pk

)

=

( 2

pk

)

= 1,

a contradiction.

We conclude with some comments in the case where D is odd. When D ≡ 1

(mod 4), it is not possible for Qℓ/2 = 2 when ℓ is even. The reason is that, when ℓ is
even, and D is odd, then part (2) of Theorem 1 must hold if Qℓ/2 = 2 (by Theorems

2–3). Hence, there exist odd X,Y ∈ N such that X2 − DY 2
= (−1)ℓ/22, so D ≡

1 + (−1)ℓ/2+1 (mod 8), whence D ≡ 3 (mod 4). When D ≡ 3 (mod 4), the only
criterion seems to be the one we found in [8], namely Corollary 2.
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