
London Mathematical Society ISSN 1461–1570

THE SOLVABLE PRIMITIVE PERMUTATION GROUPS
OF DEGREE AT MOST 6560

B. EICK and B. HÖFLING

Abstract

The authors present an algorithm to construct conjugacy class rep-
resentatives of the solvable primitive subgroups ofSd for a given
degreed. Using this method, they determine the solvable primitive
permutation groups of degree at most 6560 (that is, 38 − 1), up to
conjugacy.

1. Introduction

Primitive permutation groups play a role in various areas of group theory. For example, the
maximal subgroups of a finite group correspond to its primitive permutation actions. Further,
the primitive permutation groups can be considered as the building blocks of all permutation
groups. Consequently, primitive permutation groups have received a considerable amount
of attention.

The primitive permutation groups are classified by the O’Nan–Scott Theorem [14]. They
divide naturally into two types: those with solvable socle, called the affine groups, and those
with insolvable socle. The primitive permutation groups with insolvable socle and degree
at most 1000 have been determined up to conjugacy by Dixon and Mortimer [2].

If the socle of a primitive permutation groupG is solvable, then the degree ofG is a
prime power, saypn, andS = Soc(G)is elementary abelian of orderpn. Further,G splits
overS and the action ofG/S onS induces an embedding ofG/S into GL(n, p). This yields
a well-known one-to-one correspondence between the conjugacy classes of affine primitive
subgroups ofSpn and the conjugacy classes of irreducible subgroups of GL(n, p).

The irreducible subgroups of GL(n, p) divide naturally into two kinds: the solvable and
the insolvable ones. There are many results known on the insolvable irreducible subgroups
of GL(n, p). Systematic attempts to determine them up to conjugacy forpn 6 1000 are
due to Theißen [24] and Roney-Dougal and Unger [17].

The conjugacy classes of solvable irreducible subgroups of GL(n, p) for pn 6 255
have been determined by Short [18], using a variety of theoretical results together with
algorithmic approaches for this purpose. Recently, Hulpke observed that two conjugacy
classes of groups are missing in Short’s library of groups. This has prompted us to consider
new approaches for an algorithmic determination of these groups.

As a result, we present an effective algorithm to construct the solvable irreducible sub-
groups of GL(n, pl) up to conjugacy. As noted above, forl = 1 these groups correspond
to the conjugacy classes of solvable primitive subgroups ofSpn . Using our algorithm, we
have determined them forpn 6 6560. Thus we have obtained a corrected version of Short’s
group library, and have significantly extended the previously known classifications.
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The solvable primitive permutation groups of degree at most6560

(1) Determine a listM of solvable irreducible subgroups of GL(n, q) such that
M contains a conjugate of each maximal solvable irreducible subgroup of GL(n, q).

(2) InitializeS = ∅.

(3) For eachM in M do:

(a) initializeT = {M};
(b) whileT 6= ∅ do:

(i) chooseG ∈ T and deleteG from T ;

(ii) check if G is conjugate to a group inS under GL(n, p);

(iii) if this is not the case, then:

• addG to S;

• compute the maximal subgroupsU in G up to conjugacy inNM(G);

• delete the reducible subgroups fromU;

• append the remaining subgroups inU to T .

(4) Return the resulting listS.

Algorithm 1: SolvableIrreducibleGroups(n, q)

2. Construction of solvable irreducible matrix groups

In this section we describe the basic outline of the approach that we have used to construct
– up to conjugacy – the solvable irreducible subgroups of GL(n, q) for q = pl a prime
power. We first give a top-level outline of this method in Algorithm 1, and then we discuss
details of the method below.

Our method for Step (1) is based on Aschbacher’s classification of the maximal subgroups
of GL(n, q). Section4 contains an outline of this method. Step (3)(b)(ii) is facilitated by
an effective conjugacy test for solvable irreducible subgroups in GL(n, q). Our algorithm
for this purpose is introduced in Section3. The remaining steps in the above algorithm are
obtained by standard techniques in algorithmic group theory. We include a brief description
of them in the remainder of this section, and we refer to Section5 for further references and
background material on these methods.

Each groupM ∈ M considered in the above algorithm is finite and solvable. Thus
there exists an isomorphismφM : M −→ M from the matrix groupM to a polycyclically
presented groupM, which we compute using the methods described in [19] for a faithful
permutation representation ofM on a suitable subset of the underlying vector space. It is
well known that polycyclic presentations facilitate effective computations with the groups
they define; see, for example, [13] and [20]. We determine an isomorphismφM for eachM
within the construction ofM as outlined in Section4.

To compute the maximal subgroups ofGφM = G 6 M up to conjugacy inNM(G), we
use a variation of the methods described in [11] for an effective iterated computation of
conjugacy classes of subgroups and their normalizers. For each computed subgroupU 6 G,
we determine its preimageU underφM . Using the MeatAxe algorithm (see [8] and [12]),
we can then check whetherU acts reducibly.

In summary, these approaches yield effective realizations of the steps in (3)(b)(iii) of the
algorithm SolvableIrreducibleGroups (Algorithm1). Further details on their implementa-
tion and their performance are given in Section5.
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The solvable primitive permutation groups of degree at most6560

(1) We compute a set of invariants forG1 andG2 which are preserved by conjugacy in
GL(n, q).
If these invariants differ inG1 andG2, then the groups cannot be conjugate.

(2) We check whether a conjugating element in GL(n, q) exists forG1 andG2.
If so, then we determine such an element explicitly.

Algorithm 2: ConjugacyMatrixGroups(G1, G2)

3. Testing the conjugacy of solvable irreducible matrix groups

We present a method to check whether two irreducible subgroupsG1 andG2 of GL(n, q)

are conjugate in GL(n, q). While our method can be applied to irreducible subgroups in
general, it will be particularly effective if the groups being considered are solvable, and if
embeddings into polycyclically presented groups are available for them.

We give a top-level outline of our approach in Algorithm2, and we discuss details of this
algorithm below. We note that this general approach is valid for all subgroups of GL(n, p).
The irreducibility will be used in an effective method for Step (2) of the algorithm.

The invariants used in Step (1) are based on the conjugacy classes of elements of the
groups under consideration: we determine these conjugacy classes, and for each class we
use its length as well as the order and the characteristic polynomial of a representative of
this class for the invariants. If the groups are solvable, and embeddings into polycyclically
presented groups are given, then the determination of the conjugacy classes of elements can
be performed effectively in the polycyclically presented image; see [15].

Next, we consider Step (2) in Algorithm2 (ConjugacyMatrixGroups). Clearly, if a con-
jugating element forG1 andG2 exists, thenG1 andG2 are isomorphic. Conversely, we
call an isomorphism fromG1 to G2 linear if it is induced by conjugation with an element
from GL(n, q). We use the following lemma to check the linearity of a given isomorphism
between two irreducible subgroupsG1 andG2.

Lemma 3.1. ConsiderG1, G2 6 GL(n, q) with an isomorphismα : G1 −→ G2. Let
G1 = 〈g1, . . . , gd〉, and writefi = gα

i for 1 6 i 6 d. Denote

C = {c ∈ M(n, q) | gic − cfi = 0, for 1 6 i 6 d},
whereM(n, q) is the full matrix ring.

(a) α is linear if and only if there exists an invertible elementc ∈ C \ {0}.
(b) If G1 is irreducible, then either all or none of the elements ofC \ {0} are invertible.

Proof. (a) If α is linear, then it induces a conjugating elementc ∈ C with c 6= 0. Clearly,
c is invertible. The converse is also obvious.

(b) Suppose that there exists an invertible elementc ∈ C \ {0}. ThenC = Ec, where
E = {e ∈ M(n, q) | gie − egi = 0 for 1 6 i 6 d} is the endomorphism ring ofG1. Since
G1 is irreducible, its endomorphism ring is a finite skew-field, and thus a field. Hence all
elements ofC \ {0} are invertible.

Lemma3.1yields an effective method of testing whether a given isomorphismα is linear.
First, we determine a small generating setg1, . . . , gd for G1 and its imagesf1, . . . , fd . Next,
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(1) Compute an explicit isomorphismβ : G1 −→ G2.
If no such isomorphism exists, thenG1 andG2 cannot be conjugate, and we return
‘fail’.

(2) Compute a small generating setg1, . . . , gd for G1.

(3) Compute Aut(G1).

(4) Enumerate a transversalT for Lin(G1) \ Aut(G1):

(a) check for eachγ ∈ T whetherγβ is linear;
(b) if so, then return its corresponding conjugating elementc.

(5) G1 andG2 are not conjugate, and thus we return ‘fail’.

Algorithm 3: ConjugacyIrreducibleMatrixGroups(G1, G2)

it is straightforward to computeC as the set of solutions to the linear equationsgic−cfi = 0
for 1 6 i 6 d. OnceC is given, it remains to choose an arbitrary elementc ∈ C \ {0}, if
possible, and to check whetherc is invertible.

A connection between the automorphisms ofG1 and the isomorphismsG1 −→ G2 is
summarized in the following obvious lemma.

Lemma 3.2. LetG1, G2 6 GL(n, q), and letβ : G1 −→ G2 be an isomorphism.
(a) Each isomorphismα : G1 −→ G2 is of the formα = γβ for someγ ∈ Aut(G1).
(b) Let α1 andα2 be two isomorphisms betweenG1 andG2 such thatαi = γiβ and

γ1 = δγ2 for some linear automorphismδ ∈ Aut(G1). Thenα1 is linear if and only ifα2 is
linear.

As described in Lemma3.2(a), we compute the set of all isomorphisms betweenG1 and
G2 as{αβ | α ∈ Aut(G1)} for a fixed isomorphismβ : G1 −→ G2. We denote

Lin(G1) = {α ∈ Aut(G1) | α is linear},
and we consider a transversalT for Lin(G1) \ Aut(G1). Then, by Lemma3.2(b), it is
sufficient to search the setTβ to find a linear isomorphism betweenG1 andG2.

Note that a transversalT can be enumerated via the orbit of Aut(G1) acting by right
multiplication on the cosets for Lin(G1) \ Aut(G1). The linearity check of Lemma3.1
facilitates an efficient method for testing whether two elements of Aut(G1) are contained
in the same coset of Lin(G1).

A summary of our resulting method of computing a conjugating element between two
irreducible subgroupsG1, G2 6 GL(n, q) is given in Algorithm3

If G1 andG2 are both solvable, and if embeddings into polycyclically presented groups
are available for them, then constructive isomorphism tests have been described in [10] and,
in thep-group case, in [16]. The former is based upon ideas from [5] and [7]. Generators
for Aut(G1) can be obtained using a polycyclically presented image ofG1 as described in
[21] and [4].

Finally, we note that a brute-force backtracking search for a conjugating element in
GL(n, q) is usually less effective than the method proposed in this section.
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4. Maximal solvable irreducible matrix groups

Aschbacher [1] introduced a classification for the subgroups of GL(n, q). Using the
notation of [9], Aschbacher’s classification sorts these subgroups into nine classes; we
include a brief overview of these classes below.

Theorem 4.1 (Aschbacher). Letq = pl , and letV = F
n
q . ConsiderG 6 GL(n, q), and

denoteZ = Z(GL(n, q)). Then one of the following holds.

(1) G acts reducibly onV .

(2) G acts imprimitively onV .

(3) G preserves a tensor decomposition ofV .

(4) G preserves a symmetric tensor power decomposition ofV .

(5) A conjugate ofG embeds into0L(n/m, qm), the group of semilinear maps.

(6) A conjugate ofG embeds intoGL(n, pe)Z with e | l.

(7) G normalizes an irreducible extraspecial or symplectic-type group.

(8) H ′ 6 G 6 HZ for a classical groupH .

(9) G/(G ∩ Z) is almost non-abelian simple.

Our aim is to determine a list of solvable irreducible subgroups of GL(n, q) that contains
at least one conjugate of each maximal solvable irreducible subgroup. This is a trivial task
if GL (n, q) is itself solvable.

Remark 4.2. The group GL(n, q) is solvable if and only ifn = 1 or (n, q)∈ {(2, 2), (2, 3)}.
In the discussion that follows, we assume thatn andq are chosen such that GL(n, q)

is insolvable. Then we consider each of the Aschbacher classes in turn, and we construct
up to conjugacy the maximal solvable irreducible subgroupsG in this class. Obviously, we
want to avoid Class (1), and Class (9) cannot yield a solvable group. The other classes are
considered here. We denoteZ = Z(GL(n, q)), and we note thatZ ⊆ G.

Class(2). Let G be imprimitive, and letV = V1 ⊕ . . . ⊕ Vr be a minimal system of
imprimitivity. Thenn = rm, and the subspacesV1, . . . , Vr are permuted transitively byG.
ThusG is a wreath productH o K, whereH is a maximal solvable primitive subgroup of
GL(m, q) andK is a maximal solvable transitive subgroup ofSr .

Class(3). Suppose thatG preserves a tensor decomposition, and letV = V1 ⊗ . . . ⊗ Vr

be a minimalG-invariant tensor decomposition. Thenn = m1 · · ·mr for mi = dim(Vi)

and G/Z is a direct productG1 × . . . × Gr for r maximal solvable primitive tensor-
indecomposable subgroupsGi 6 PGL(mi, q); also,G can be constructed using iterated
Kronecker products.

Class(4). Suppose thatG preserves a symmetric tensor power, and letV = V1⊗ . . .⊗Vr

be a minimalG-invariant symmetric tensor power. Thenn = mr , andG permutes the
componentsV1, . . . , Vr . ThusG/Z is a wreath productH o K, whereH is a maximal
solvable primitive tensor-indecomposable subgroup of PGL(m, q) and K is a maximal
solvable transitive subgroup ofSr .
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Class(5). Suppose thatG embeds into0L(n/m, qm). ThenG contains a maximal solv-
able irreducible subgroupH of GL(n/m, qm) as a normal subgroup. SinceNGL(n,q)(H) =
H , we obtainG = N0L(n/m,qm)(H).

Class(6). Suppose thatG embeds into GL(n, pe)Z with e | l. ThenG = HZ for a
maximal solvable irreducible subgroupH of GL(n, pe).

Class(7). Assume thatG normalizes an irreducible extraspecial or symplectic-type group
E. Thenn = rm for a primer, andr dividesq − 1. The groupE is an extraspecialr-group
of orderr2m+1 or r = 2, andE is a symplectic type-2 group of order 22m+2. For each such
E, there exists a unique embedding ofE as subgroup in GL(n, q) up to conjugacy; see
Remark4.3 below. We obtainCGL(n,q)(E) = Z, and we determineN = NGL(n,q)(E) as
extension ofZ by the group of linear automorphisms Lin(E) of Section3. ThenG/E is a
maximal solvable subgroup ofN/E. These can be computed using the subgroup lattice of
N/E if N/E is insolvable.

Class(8). The classical subgroups of GL(n, q) are investigated in [23]. For most such
subgroupsH , the derived subgroupH ′ is insolvable. The exceptions are (if the trivial cases
n = 1 or n= 2 andq ∈ {2, 3} are excluded):

• unitary groups:U(2, 22), U(2, 32) andU(3,22);

• orthogonal groups:O±(2, q), O(3,2), O(3,3), O+(4, 2) andO+(4, 3).

In each of these cases we find that the groups under consideration arise in one of the other
Aschbacher cases:

• U(2, 22) is imprimitive;

• U(2, 32) andU(3,22) normalize a symplectic group of order 16 or an extraspecial
group of order 27;

• O+(2, q) is dihedral and imprimitive andO−(2, q) is semilinear;

• O(3,2) is reducible, andO(3,3) is imprimitive;

• O+(4, 2) is imprimitive, andO+(4, 3) normalizes an extraspecial group of order 32.

In summary, we can ignore Class (8) for our purposes.

For Class (7) we add the following remark.

Remark 4.3. Let n = rm for a primer, and letq = pl a prime power withr | q − 1.
(a) Let E be an extraspecialr-group of orderr2m+1. Then there exists exactly one

conjugacy class of subgroups of GL(n, q) isomorphic toE. More precisely,E hasr − 1
modules of dimensionn overFq as described in [3, B, Theorems 9.16 and 9.17]. These lead
to conjugate subgroups by [3, A, Theorem 20.8].

(b) Let E be a symplectic type 2-group of order 22m+2. ThenE is a central product of
an extraspecial 2-groupF of order 22m+1 and a cyclic groupC of order 4. IfE 6 GL(n, q),
then, by Schur’s lemma,C 6 Z andF is irreducible. Thus we find that there exists exactly
one conjugacy class of subgroups of GL(n, q) isomorphic toE, by (a).

The above constructions make use of the solvable irreducible subgroups of GL(m, pe) for
a smaller dimensionm or a smaller fieldpe. We assume that these are known by induction.
Further, we need the maximal solvable transitive subgroups ofSd for small degreesd. These
can be constructed as wreath productsP o T , whereP is a maximal solvable primitive
subgroup ofSrk for a primer, andT is a maximal solvable transitive subgroup ofSd/rk .
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Remark 4.4. (a) The Aschbacher classes of subgroups of GL(n, q) are not necessarily
disjoint. Thus we may obtain conjugate subgroups in two different classes, or we may
encounter solvable irreducible subgroups that are non-maximal, with this property. Note
that this does not affect our requirements.

(b) In each case we determine the relevant groups as subgroups of GL(n, q). In later
applications, we also need a polycyclic presentation for these groups. In most cases, this can
readily be obtained from the construction of the group; for example, it is straightforward to
construct polycyclic presentations for direct products (Class (3)), wreath products (Classes
(2) and (4)), and extensions (Class (5)). The only case that is not obvious in this respect is
Class (7). Since the groups arising in this case are generally of small order, we can construct
polycyclic presentations for them by brute force.

Short [18] and Suprunenko [22] include a further structural analysis of the maximal
solvable primitive subgroups of GL(n, q).

5. Implementation and results

We have implemented the above algorithms in the computer algebra systemGAP [6]. Us-
ing our implementation, we have determined the solvable irreducible subgroups of GL(n, p)

for pn 6 6560. Our method clearly extends to other values ofp andn as well. However,
the casepn = 38 = 6561 seems to be too hard for our implementation. In general, the com-
putation of abstract isomorphisms in Algorithm3 (ConjugacyIrreducibleMatrixGroups) of
Section3 is the main bottleneck in our method. Also, the method used for the computa-
tion of conjugacy classes of subgroups reaches its limits for some large maximal solvable
subgroups of GL(n, p).

The resulting group library is intended for publication inGAP. In the following sections
we include a report on this group library and its determination. We also outline further
applications of our method, and we give some indications of its limits. Finally, we comment
on the reliability of the computed data.

5.1. The solvable irreducible groups forpn 6 6560

Table1 contains the numbers of conjugacy classes of the solvable irreducible subgroups
of GL(n, p) for pn 6 6560. If n = 1, then GL(1, p) ∼= Cp−1, and each subgroup of
GL(1, p) is solvable irreducible. Hence this case is trivial, and we consider only the case
n > 1. Note that the numbers of groups that arise depend significantly on the prime divisors
of n andp − 1.

It takes twelve minutes to determine the groups of Table1 for pn 6 255, eighteen
hours forpn 6 4095, and four days forpn = 212 = 4096 using a Pentium III PC under
Linux. Most of the CPU time is spent on computing abstract isomorphisms in Algorithm3
(ConjugacyIrreducibleMatrixGroups) of Section3. We note that the invariant computation
of Step (1) of Algorithm2(ConjugacyMatrixGroups) identifies all the non-conjugate groups
for almost all values ofn andp in the range under consideration.

5.2. The case whenn is a prime

If the dimensionn is a prime, then the method of Section4 reduces significantly, and
the maximal solvable irreducible subgroups of GL(n, q) can be readily determined. A
classification of these groups is given in [22, p. 167].
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Table 1: Numbers of the solvable irreducible subgroups of GL(n, p) for pn 6 6560.

n 2 3 4 5 6 7 8 9 10 11 12

p = 2 2 2 10 2 40 2 129 21 50 6 934
p = 3 7 9 108 16 324 18
p = 5 19 22 509 48
p = 7 29 62 894
p = 11 42 54
p = 13 62 136
p = 17 75 66
p = 19 77
p = 23 54
p = 29 100
p = 31 114
p = 37 127
p = 41 174
p = 43 118
p = 47 66
p = 53 100
p = 59 82
p = 61 212
p = 67 118
p = 71 192
p = 73 261
p = 79 166

Table2 gives an overview of their possible group orders and Aschbacher classes. In
particular, there are at most six conjugacy classes of maximal solvable irreducible subgroups
of GL(n, q) if n is prime, but not all of them occur in all the cases listed. More details are
given in [22].

Table 2: The maximal solvable irreducible subgroups for primesn

Order Necessary condition Aschbacher class

n(n − 1)(q − 1)n imprimitive (2)
n(qn − 1) semilinear (5)
2(n + 1)n2(q − 1) q ≡ 1 modn extraspecial (7)
2(n − 1)n2(q − 1) q ≡ 1 modn extraspecial (7)
24n2(q − 1) q ≡ 1 modn n ≡ ±3 mod 8 extraspecial (7)
48n2(q − 1) q ≡ 1 modn, n ≡ ±1 mod 8 extraspecial (7)
48n2(q − 1) q ≡ 1 modn, n ≡ ±1 mod 8 extraspecial (7)
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Table 3: Numbers of maximals and largest orders in GL(n, 2)

n pn |M| ] maximals largest order

2 4 1 1 6
3 8 1 1 21
4 16 4 2 72
5 32 1 1 155
6 64 8 4 1 296
7 128 1 1 889
8 256 16 3 31 104
9 512 4 2 55 566

10 1024 7 3 155 520
11 2048 1 1 22 517
12 4096 48 9 4 667 544
13 8192 1 1 106 483
14 16384 ? ? 11 757 312
15 32768 ? ? 81 682 020
16 65536 ? ? 1 934 917 632

In summary, the case whenn is a prime is comparatively easy to handle. Using our
algorithm, we can determine the solvable irreducible subgroups of GL(2, p) for all p 6 100
at least.

5.3. The casep = 2

In Table3, we outline a list of orders of the number of maximal solvable irreducible
subgroups, and the order of the largest maximal solvable irreducible subgroups in GL(n, 2).
We also include the lengths of the listsM of candidates for the maximal solvable irreducible
subgroups of GL(n, p), as determined in Section4.

We can readily determine the solvable irreducible subgroups in GL(13,2). In fact, this
is easier than the corresponding computation in GL(12, 2). However, the algorithm that we
used to compute the subgroups ran out of memory while computing the irreducible solvable
subgroups of GL(14, 2).

5.4. Maximal solvable irreducible subgroups in the remaining cases

Finally, we list the largest orders of the maximal solvable irreducible subgroups in the
remaining cases in Table4. We include the casepn = 38 to give an indication of why this
case is harder than the smaller cases that we have dealt with.

5.5. Comments on the reliability of the data

The library of solvable irreducible groups of degree at most 6560 has been computed
using ourGAP implementation, without user interaction. However, the risk remains that
there are mistakes in our own implementation, or mistakes in theGAP methods used.
To minimize these risks, we have performed systematic cross-checks with existing data
libraries.
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Table 4: Largest orders of the maximal solvable irreducible subgroups of GL(n, p)

p n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

p = 3 78 4 608 1 210 663 552 15 302 127 401 984
p = 5 384 18 432 20 480
p = 7 1 296 41 472
p = 11 6 000
p = 13 10 368
p = 17 24 576

First, we have compared our results with the group library computed by Short [18],
which is available inGAP. Except for the two known omissions in Short’s library, these two
libraries agree with each other.

Secondly, we have systematically determined all the faithful irreducible representations
of all the solvable groups of order at most 1000, except for 512 and 768. These groups are
available in the small-groups library inGAP; the database presented in this paper will also
be added to theGAP archive [6] in due course.
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