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THE SOLVABLE PRIMITIVE PERMUTATION GROUPS
OF DEGREE AT MOST 6560

B. EICK anDp B. HOFLING

Abstract

The authors present an algorithm to construct conjugacy class rep-
resentatives of the solvable primitive subgroupsSgffor a given
degreed. Using this method, they determine the solvable primitive
permutation groups of degree at most 6560 (that8s-3), up to
conjugacy.

1. Introduction

Primitive permutation groups play a role in various areas of group theory. For example, tt
maximal subgroups of a finite group correspond to its primitive permutation actions. Furthe
the primitive permutation groups can be considered as the building blocks of all permutatic
groups. Consequently, primitive permutation groups have received a considerable amo
of attention.

The primitive permutation groups are classified by the O’Nan—Scott Thed#mhey
divide naturally into two types: those with solvable socle, called the affine groups, and tho
with insolvable socle. The primitive permutation groups with insolvable socle and degre
at most 1000 have been determined up to conjugacy by Dixon and Morther [

If the socle of a primitive permutation grou is solvable, then the degree 6fis a
prime power, say”, andS = Soc(G)is elementary abelian of ordef'. Further,G splits
overS and the action of; /S on S induces an embedding 6f/S into GL(n, p). This yields
a well-known one-to-one correspondence between the conjugacy classes of affine primit
subgroups of,» and the conjugacy classes of irreducible subgroups anGp).

The irreducible subgroups of Gk, p) divide naturally into two kinds: the solvable and
the insolvable ones. There are many results known on the insolvable irreducible subgrot
of GL(n, p). Systematic attempts to determine them up to conjugacy’fox 1000 are
due to Thei3en [24] and Roney-Dougal and Undgéf |

The conjugacy classes of solvable irreducible subgroups aiGbh) for p" < 255
have been determined by ShoiB], using a variety of theoretical results together with
algorithmic approaches for this purpose. Recently, Hulpke observed that two conjuga
classes of groups are missing in Short’s library of groups. This has prompted us to consi
new approaches for an algorithmic determination of these groups.

As a result, we present an effective algorithm to construct the solvable irreducible su
groups of Gl(n, p') up to conjugacy. As noted above, for= 1 these groups correspond
to the conjugacy classes of solvable primitive subgroup$,of Using our algorithm, we
have determined them fgf* < 6560. Thus we have obtained a corrected version of Short’s
group library, and have significantly extended the previously known classifications.
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The solvable primitive permutation groups of degree at 6660

(1) Determine a listM of solvable irreducible subgroups of Gi, ¢) such that
M contains a conjugate of each maximal solvable irreducible subgroup @f, G\
(2) Initialize 8 = @.
(3) ForeachM in M do:
(a) initializeT = {M};
(b) while T # ¢ do:
(i) chooseG € 7 and deletes from T;
(iiy check if G is conjugate to a group i under GlL(n, p);
(iii) if this is not the case, then:
e addG to 4;
e compute the maximal subgroufsin G up to conjugacy iV (G);
o delete the reducible subgroups fram
e append the remaining subgroupslinto 7 .

(4) Return the resulting lisf.

Algorithm 1: SolvablelrreducibleGroups(n) ¢

2. Construction of solvable irreducible matrix groups

Inthis section we describe the basic outline of the approach that we have used to constt
— up to conjugacy — the solvable irreducible subgroups ofGl) for ¢ = p' a prime
power. We first give a top-level outline of this method in Algorithm 1, and then we discus
details of the method below.

Ourmethod for Step (1) is based on Aschbacher’s classification of the maximal subgrou
of GL(n, ¢). Section4 contains an outline of this method. Step (3)(b)(ii) is facilitated by
an effective conjugacy test for solvable irreducible subgroups itnGG). Our algorithm
for this purpose is introduced in SectiBnThe remaining steps in the above algorithm are
obtained by standard techniques in algorithmic group theory. We include a brief descriptic
of them in the remainder of this section, and we refer to Seé&fonfurther references and
background material on these methods.

Each groupM € M considered in the above algorithm is finite and solvable. Thus
there exists an isomorphisgn, : M — M from the matrix groupV to a polycyclically
presented group/, which we compute using the methods described in [19] for a faithful
permutation representation &#f on a suitable subset of the underlying vector space. It is
well known that polycyclic presentations facilitate effective computations with the group:
they define; see, for exampld,J] and R0]. We determine an isomorphispy, for eachM
within the construction oM as outlined in Sectiod.

To compute the maximal subgroups@?* = G < M up to conjugacy inV7(G), we
use a variation of the methods describedlif][for an effective iterated computation of
conjugacy classes of subgroups and their normalizers. For each computed subgtaGp
we determine its preimagé underg,,. Using the MeatAxe algorithm (se8][and [12]),
we can then check whethér acts reducibly.

In summary, these approaches yield effective realizations of the steps in (3)(b)(iii) of tr
algorithm SolvablelrreducibleGroups (Algoritht). Further details on their implementa-
tion and their performance are given in Section
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(1) We compute a set of invariants f6r; and G2 which are preserved by conjugacy in
GL(n, q).
If these invariants differ irlG1 and G2, then the groups cannot be conjugate.

(2) We check whether a conjugating element in(lg) exists forG1 andGo.
If so, then we determine such an element explicitly.

Algorithm 2: ConjugacyMatrixGroup&{y, G2)

3. Testing the conjugacy of solvable irreducible matrix groups

We present a method to check whether two irreducible subgiGupsdG2 of GL(n, q)
are conjugate in Glu, ¢). While our method can be applied to irreducible subgroups in
general, it will be particularly effective if the groups being considered are solvable, and
embeddings into polycyclically presented groups are available for them.

We give a top-level outline of our approach in AlgorittZrand we discuss details of this
algorithm below. We note that this general approach is valid for all subgroups @f, @)

The irreducibility will be used in an effective method for Step (2) of the algorithm.

The invariants used in Step (1) are based on the conjugacy classes of elements of
groups under consideration: we determine these conjugacy classes, and for each clas:
use its length as well as the order and the characteristic polynomial of a representative
this class for the invariants. If the groups are solvable, and embeddings into polycyclical
presented groups are given, then the determination of the conjugacy classes of elements
be performed effectively in the polycyclically presented image; see [15].

Next, we consider Step (2) in Algorithéh(ConjugacyMatrixGroups). Clearly, if a con-
jugating element folG; and G, exists, thenG1 and G2 are isomorphic. Conversely, we
call an isomorphism frond;1 to G linear if it is induced by conjugation with an element
from GL(n, ¢). We use the following lemma to check the linearity of a given isomorphism
between two irreducible subgroups andGo.

LeEMMA 3.1. ConsiderGi, G2 < GL(n, ¢) with an isomorphisnx : G1 —> G». Let
G1=(g1,...,8a), and write f; = g for 1 <i < d. Denote
C={ceMm,q)|gic—cfi =0, forl<i <dj},
whereM (n, ¢) is the full matrix ring.
(a) «islinear if and only if there exists an invertible element C \ {0}.
(b) If G1isirreducible, then either all or none of the element€of {0} are invertible.

Proof. (a) If « is linear, then it induces a conjugating elemert C with ¢ # 0. Clearly,
c is invertible. The converse is also obvious.

(b) Suppose that there exists an invertible elemeatC \ {0}. ThenC = Ec, where
E={eecMn,q)| gie—egi =0forl<i < d}isthe endomorphism ring @ ;. Since
G1 is irreducible, its endomorphism ring is a finite skew-field, and thus a field. Hence a
elements of” \ {0} are invertible. O

Lemma3.lyields an effective method of testing whether a given isomorphigninear.
First, we determine asmall generatingsgt . ., g; for G1and itsimagegi, ..., fqs. Next,
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(1) Compute an explicit isomorphisph: G1 —> Go.
If no such isomorphism exists, th&m and G, cannot be conjugate, and we return
fail’.
(2) Compute a small generating g8t ..., g4 for G1.
(3) Compute AutG1).
(4) Enumerate a transvers@lfor Lin(G1) \ Aut(G1):
(a) check for eacly € T whetheryg is linear;
(b) if so, then return its corresponding conjugating elenaent

(5) G1andG; are not conjugate, and thus we return ‘fail’.

Algorithm 3: ConjugacylrreducibleMatrixGroups{, G2)

itis straightforward to comput€ as the set of solutions to the linear equatigrs-cf; = 0
for 1 <i < d.OnceC is given, it remains to choose an arbitrary elemenrt C \ {0}, if
possible, and to check whetheis invertible.

A connection between the automorphismgifand the isomorphism&, — Ga is
summarized in the following obvious lemma.

LEMMA 3.2. LetG1, G2 < GL(n, g), and letB : G1 —> G2 be an isomorphism.
(&) Eachisomorphism : G1 —> G is of the formx = y8 for somey € Aut(G1).
(b) Letas anday be two isomorphisms betweén and G, such thatw; = y; 8 and
y1 = 8y» for some linear automorphiste Aut(G1). Thenas is linear if and only ifas is
linear.

As described in Lemma.2(a), we compute the set of all isomorphisms betw@eand
Gy as{af | @ € Aut(G1)} for a fixed isomorphisng : G; —> G». We denote

Lin(G1) = {a € Aut(G1) | a is linear},

and we consider a transvers@lfor Lin(G1) \ Aut(G1). Then, by Lemma3.2(b), it is
sufficient to search the s& to find a linear isomorphism betweéh andG».

Note that a transversdl can be enumerated via the orbit of AGY) acting by right
multiplication on the cosets for Liig/1) \ Aut(G1). The linearity check of Lemma&.1
facilitates an efficient method for testing whether two elements of @it are contained
in the same coset of L{it71).

A summary of our resulting method of computing a conjugating element between tw
irreducible subgroup&1, G2 < GL(n, ¢) is given in Algorithm3

If G1 andG3 are both solvable, and if embeddings into polycyclically presented group:
are available for them, then constructive isomorphism tests have been describ@cimd,
in the p-group case, in]6]. The former is based upon ideas frodj &nd [7]. Generators
for Aut(G1) can be obtained using a polycyclically presented imag&0és described in
[21] and [4].

Finally, we note that a brute-force backtracking search for a conjugating element |
GL(n, q) is usually less effective than the method proposed in this section.
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4. Maximal solvable irreducible matrix groups

Aschbacher [1] introduced a classification for the subgroups ofuz}). Using the
notation of [9], Aschbacher’s classification sorts these subgroups into nine classes;
include a brief overview of these classes below.

THEOREM 4.1 (ASCHBACHER). Letg = p!, and letV = Iy ConsiderG < GL(n, ¢), and
denoteZ = Z(GL(n, q)). Then one of the following holds.

(1) G acts reducibly orv.

(2) G acts imprimitively onv.

(3) G preserves a tensor decompositioniaf

(4) G preserves a symmetric tensor power decompositidn. of

(5) A conjugate of; embeds intd"L(n/m, ¢g™), the group of semilinear maps.
(6) A conjugate of5 embeds int@L(n, p¢)Z withe | I.

(7) G normalizes an irreducible extraspecial or symplectic-type group.

(8) H' < G < HZ for aclassical groupH.

(9) G/(Gn Z)is almost non-abelian simple.

Our aim is to determine a list of solvable irreducible subgroups afG4) that contains
at least one conjugate of each maximal solvable irreducible subgroup. This is a trivial ta
if GL (n, q) is itself solvable.

REMARK 4.2. Thegroup Gl(n, g)issolvableifandonlyifi = 1or(n, q) € {(2, 2), (2, 3)}.

In the discussion that follows, we assume thandg are chosen such that Gk, g)
is insolvable. Then we consider each of the Aschbacher classes in turn, and we constt
up to conjugacy the maximal solvable irreducible subgrawms this class. Obviously, we
want to avoid Class (1), and Class (9) cannot yield a solvable group. The other classes
considered here. We denate= Z(GL(n, ¢)), and we note that C G.

Class(2). Let G be imprimitive, and letV = V1 & ... @& V, be a minimal system of
imprimitivity. Thenn = rm, and the subspacés, ..., V, are permuted transitively by.
ThusG is a wreath producH : K, whereH is a maximal solvable primitive subgroup of
GL(m, g) andK is a maximal solvable transitive subgroup$f

Class(3). Suppose thafr preserves a tensor decomposition, andlet V1 ® ... ® V,

be a minimalG-invariant tensor decomposition. Then= mj - - - m, for m; = dim(V;)
and G/Z is a direct produciG; x ... x G, for r maximal solvable primitive tensor-
indecomposable subgroups < PGL(m;, g); also,G can be constructed using iterated
Kronecker products.

Class(4). Suppose thaf preserves a symmetric tensor power, andlet V1 ®...Q V,
be a minimalG-invariant symmetric tensor power. Then= m", and G permutes the
componentsVy, ..., V.. ThusG/Z is a wreath product : K, where H is a maximal
solvable primitive tensor-indecomposable subgroup of P&ly) and K is a maximal
solvable transitive subgroup 6f.
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Class(5). Suppose thatr embeds intd"L(n/m, ¢"). ThenG contains a maximal solv-
able irreducible subgrouff of GL(n/m, ¢™) as a normal subgroup. Sind&s| (,,q)(H) =
H, we obtainG = Nrrw/m,gmy(H).

Class(6). Suppose thaG embeds into Glu, p¢)Z with e | [. ThenG = HZ for a
maximal solvable irreducible subgroup of GL(n, p®).

Class(7). Assume tha&G normalizes an irreducible extraspecial or symplectic-type group
E. Thenn = r™ for a primer, andr dividesq — 1. The groupE is an extraspecial-group

of orderr2"+1 orr = 2, andE is a symplectic type-2 group of orde#’2"2. For each such

E, there exists a unique embedding ofas subgroup in Glu, ¢) up to conjugacy; see
Remark4.3 below. We obtainCgy(,.4)(E) = Z, and we determin& = NgL(,,¢)(E) as
extension ofZ by the group of linear automorphisms I(i) of Section3. ThenG/E is a
maximal solvable subgroup @f /E. These can be computed using the subgroup lattice of
N/E if N/E isinsolvable.

Class(8). The classical subgroups of GL, ¢q) are investigated inZ3]. For most such
subgroupsd, the derived subgroufl’ is insolvable. The exceptions are (if the trivial cases
n=1orn=2andg € {2, 3} are excluded):

e unitary groupsi/ (2, 22), U(2, 3%) andU (3, 22);

e orthogonal groups®*(2, ¢), 0(3,2), 0(3,3),07(4,2) andO* (4, 3).
In each of these cases we find that the groups under consideration arise in one of the of
Aschbacher cases:

e U(2, 22) is imprimitive;

e U(2, 3% andU(3,2%) normalize a symplectic group of order 16 or an extraspecial

group of order 27;

e 07 (2,q) is dihedral and imprimitive an®~ (2, ¢) is semilinear;

e 0(3,2)isreducible, and (3, 3) is imprimitive;

e 07 (4,2)isimprimitive, andO T (4, 3) normalizes an extraspecial group of order 32.
In summary, we can ignore Class (8) for our purposes.

For Class (7) we add the following remark.

REMARK 4.3. Letn = ™ for a primer, and letg = p' a prime power withr | ¢ — 1.

(@) LetE be an extraspecial-group of orderr2"+1, Then there exists exactly one
conjugacy class of subgroups of Gi, ¢) isomorphic toE. More preciselyE hasr — 1
modules of dimension overlF, as described in [3, B, Theorems 9.16 and 9.17]. These leac
to conjugate subgroups bg,[A, Theorem 20.8].

(b) LetE be a symplectic type 2-group of orde?”22. ThenE is a central product of
an extraspecial 2-group of order 2 +1 and a cyclic groug of order 4. IfE < GL(n, q),
then, by Schur’s lemma; < Z andF is irreducible. Thus we find that there exists exactly
one conjugacy class of subgroups of GLg) isomorphic toE, by (a).

The above constructions make use of the solvable irreducible subgroupgef G1) for
a smaller dimensiom or a smaller fielgp¢. We assume that these are known by induction.
Further, we need the maximal solvable transitive subgroufg fofr small degrees. These
can be constructed as wreath prodults T, where P is a maximal solvable primitive
subgroup ofS,.« for a primer, and7 is a maximal solvable transitive subgroup$f,,«.
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REMARK 4.4. (a) The Aschbacher classes of subgroups offGl) are not necessarily
disjoint. Thus we may obtain conjugate subgroups in two different classes, or we mg
encounter solvable irreducible subgroups that are non-maximal, with this property. No
that this does not affect our requirements.

(b) In each case we determine the relevant groups as subgroups(ef43LIn later
applications, we also need a polycyclic presentation for these groups. In most cases, this
readily be obtained from the construction of the group; for example, it is straightforward t
construct polycyclic presentations for direct products (Class (3)), wreath products (Class
(2) and (4)), and extensions (Class (5)). The only case that is not obvious in this respec
Class (7). Since the groups arising in this case are generally of small order, we can constt
polycyclic presentations for them by brute force.

Short [18] and Suprunenk@®?] include a further structural analysis of the maximal
solvable primitive subgroups of GL, ¢).

5. Implementation and results

We have implemented the above algorithms in the computer algebra systeff]. Us-
ing ourimplementation, we have determined the solvable irreducible subgroupsmaf BL
for p" < 6560. Our method clearly extends to other valuep aihdn as well. However,
the cas@” = 3% = 6561 seems to be too hard for our implementation. In general, the corr
putation of abstract isomorphisms in Algoritt{ConjugacylrreducibleMatrixGroups) of
Section3 is the main bottleneck in our method. Also, the method used for the compute
tion of conjugacy classes of subgroups reaches its limits for some large maximal solvat
subgroups of Glu, p).

The resulting group library is intended for publicatiordAP. In the following sections
we include a report on this group library and its determination. We also outline furthe
applications of our method, and we give some indications of its limits. Finally, we commer
on the reliability of the computed data.

5.1. The solvable irreducible groups for* < 6560

Tablel contains the numbers of conjugacy classes of the solvable irreducible subgrou
of GL(n, p) for p" < 6560. Ifn = 1, then Gl(1, p) = C,_1, and each subgroup of
GL(1, p) is solvable irreducible. Hence this case is trivial, and we consider only the cas
n > 1. Note that the numbers of groups that arise depend significantly on the prime diviso
ofnandp — 1.

It takes twelve minutes to determine the groups of Tabfer p" < 255, eighteen
hours forp” < 4095, and four days fop” = 212 = 4096 using a Pentium Il PC under
Linux. Most of the CPU time is spent on computing abstract isomorphisms in Algo&8thm
(ConjugacylrreducibleMatrixGroups) of Secti8nWe note that the invariant computation
of Step (1) of Algorithn2 (ConjugacyMatrixGroups) identifies all the non-conjugate groups
for almost all values of and p in the range under consideration.

5.2. The case whenis a prime

If the dimensiom is a prime, then the method of Sectidmeduces significantly, and
the maximal solvable irreducible subgroups of @Lg) can be readily determined. A
classification of these groups is given in [22, p. 167].
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Table 1: Numbers of the solvable irreducible subgroups ofiG) for p" < 6560.

n |2 3 4 5 6 7 8 9 10 11 12
p=2 2 2 10 2 40 2 129 21 50 6 934
p=3 7 9 108 16 324 18
p=5 | 19 22 509 48

p=7 | 29 62 894

p=11| 42 54

p=13| 62 136

p=17| 75 66

p=19| 77

p=23| 54

p =29 100

p=31]114

p =37 127

p =411 174

p =43 118

p=47| 66

p =53] 100

p=59| 82

p=61]| 212

p =67 118

p=711192

p =73 261

p =79 166

Table 2 gives an overview of their possible group orders and Aschbacher classes.
particular, there are at most six conjugacy classes of maximal solvable irreducible subgrot
of GL(n, ¢q) if n is prime, but not all of them occur in all the cases listed. More details are
givenin [22].

Table 2: The maximal solvable irreducible subgroups for primes

Order Necessary condition Aschbacher class
nn—1)(g—1) imprimitive  (2)
ng@" —1) semilinear (5)
2(n+1)n%(g —1) | ¢ =1 modn extraspecial  (7)
2(n — Dn?(g —1) | ¢ =1 modn extraspecial  (7)
24n%(qg — 1) g=1modnn=4+3mod8 extraspecial (7)
482(g — 1) g=1modn,n=+1mod8 extraspecial (7)
48n%(q — 1) g=1modn,n=+1mod8 extraspecial (7)

https://doi.org/10.1112/5146115700000036X Published online by Cagridge University Press


https://doi.org/10.1112/S146115700000036X

The solvable primitive permutation groups of degree at 6660

Table 3: Numbers of maximals and largest orders ir/GR)

n p" M| g maximals largest order
2 4 1 1 6
3 8 1 1 21
4 16 4 2 72
5 32 1 1 155
6 64 8 4 1296
7 128 1 1 889
8 256 16 3 31104
9 512 4 2 55 566
10| 1024 7 3 155520
11| 2048 1 1 22 517
12 | 4096 48 9 4 667 544
13| 8192 1 1 106 483
14 | 16384 ? ? 11 757 312
15| 32768 ? ? 81 682 020
16 | 65536 ? ? 1934917 632

In summary, the case whenis a prime is comparatively easy to handle. Using our

algorithm, we can determine the solvable irreducible subgroups @Gl forall p < 100
at least.

5.3. Thecase =2

In Table 3, we outline a list of orders of the number of maximal solvable irreducible
subgroups, and the order of the largest maximal solvable irreducible subgroup&inaaL
We also include the lengths of the lists of candidates for the maximal solvable irreducible
subgroups of Glu, p), as determined in Sectigh

We can readily determine the solvable irreducible subgroups ifl&R). In fact, this
is easier than the corresponding computation iI12_2). However, the algorithm that we

used to compute the subgroups ran out of memory while computing the irreducible solvat
subgroups of G[14, 2).

5.4. Maximal solvable irreducible subgroups in the remaining cases

Finally, we list the largest orders of the maximal solvable irreducible subgroups in th
remaining cases in Table We include the casg” = 3® to give an indication of why this
case is harder than the smaller cases that we have dealt with.

5.5. Comments on the reliability of the data

The library of solvable irreducible groups of degree at most 6560 has been comput
using ourGAP implementation, without user interaction. However, the risk remains tha
there are mistakes in our own implementation, or mistakes inGise methods used.

To minimize these risks, we have performed systematic cross-checks with existing de
libraries.
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Table 4: Largest orders of the maximal solvable irreducible subgroups 6f,Gl.

p n=3 n=4 n=5 n=6 n=7 n=28

p=3 78 4608 1210 663552 15302 127401984
p=5 384 18432 20480

p=7 | 1296 41472

p=11| 6000

p=13| 10368

p =17 | 24576

First, we have compared our results with the group library computed by Short [18
which is available irGAP. Except for the two known omissions in Short’s library, these two
libraries agree with each other.

Secondly, we have systematically determined all the faithful irreducible representatiol
of all the solvable groups of order at most 1000, except for 512 and 768. These groups
available in the small-groups library ®AP; the database presented in this paper will also
be added to theAP archive [6] in due course.
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