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WEAK CONVERGENCE LIMITS FOR CLOSED
CYCLIC NETWORKS OF QUEUES WITH
MULTIPLE BOTTLENECK NODES
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Abstract

We consider a sequence of cycles of exponential single-server nodes, where the number
of nodes is fixed and the number of customers grows unboundedly. We prove a central
limit theorem for the cycle time distribution. We investigate the idle time structure of the
bottleneck nodes and the joint sojourn time distribution that a test customer observes at
the nonbottleneck nodes during a cycle. Furthermore, we study the filling behaviour of
the bottleneck nodes, and show that the single bottleneck and multiple bottleneck cases
lead to different asymptotic behaviours.
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1. Introduction

In this paper we analyze the behaviour of cyclic single-server Gordon–Newell networks in
equilibrium as the number of customers in the system increases to ∞. There are two different
cases to consider.

Case (i): All nodes have the same service rate. In this case the customers are uniformly
distributed over the nodes.

Case (ii): Different service rates exist. In this case at least one bottleneck (the node with the
smallest service rate) exists. Then almost all the customers will be queued up at the
bottleneck nodes.

In this paper we focus on case (ii). We investigate a customer’s cycle time distribution for
which a central limit theorem will be proved. Furthermore, we characterize the differences in
the filling behaviour of nodes between the single bottleneck and the multiple bottleneck cases.
An important aspect of the networks’ behaviour is the mean idle time of the bottleneck nodes
during the cycle of a test customer.

The paper is organized as follows. In Section 2 the closed cyclic network of queues is
described and the properties needed in the sequel are referenced. In Section 3 we investigate
customers’ cycle time distribution and discuss its connection to the mean idle times of bottle-
necks. This connection stems from the description of cycle times from the viewpoint of a node.
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Weak convergence limits for closed cyclic networks 61

For a population size of N , the time between N successive departures from a specified node is
the cycle time of the first of the departing customers [3].

Starting with the limiting cycle time distribution, we prove a central limit theorem for
N → ∞, which generalizes the central limit theorem for the cycle time when all service rates
are distinct [10]. In Section 4 we analyze the differences in the filling behaviour of the network
between the single bottleneck and multiple bottleneck cases. There is a significant difference
with respect to the mean idle times between these two cases. Considering the admissible service
rate vectors of the cycles as parameter space, we observe a jump in the mean idle times, which
constitutes a phase transition, when reaching a certain boundary region of the parameter space.
Motivated by this, we analyze in detail the speed with which bottleneck nodes are filled up
and find a fundamental difference in the speed of convergence between the single and multiple
bottleneck cases.

In Section 5 we prove a weak convergence theorem for the joint steady-state queue length
distribution and the joint sojourn times of a test customer at the nonbottleneck nodes. Section 6
is devoted to the cycle time in homogeneous cycles, i.e. all nodes have the same service rate.
A central limit theorem is directly obtained. In Section 7 we discuss the problems arising with
multiple servers in the system.

2. Model specification and previous results

We consider a closed cycle consisting ofM nodesQ[1], . . . ,Q[M] andN indistinguishable
customers. Node Q[i], i = 1, . . . ,M , is a single server with infinite waiting room, under
the FCFS (first-come–first-served) regime. The dynamic of the system is as follows. If a
customer arrives at node Q[i], i = 1, . . . ,M , and finds an idle service channel, her service
begins immediately. Otherwise, she will join the tail of the queue. Service times at node Q[i]
are exp(µi) distributed. If the service of the customer at node Q[i] is complete, she moves
immediately to nodeQ[i+1] (withQ[M+1] := Q[1]). The other customers waiting in the line
(if there are any) move one position forward. All movements of customers happen without any
time lag. Service times at nodeQ[i] form a sequence of independent and identically distributed
(i.i.d.) random variables, independent of the service times at other nodes.

Denote by X(M,N)i (t) the queue length at node Q[i], i.e. the number of customers present
at node Q[i] (waiting or in service), at time t ≥ 0. Define

X(M,N)(t) := (X
(M,N)
1 (t), . . . , X

(M,N)
M (t))

to be the joint queue length vector at time t and X(M,N) := (X(M,N)(t), t ≥ 0) to be the joint
queue length process. The state space of X(M,N) is

Z(M,N) := {(n1, . . . , nM) ∈ N
M | n1 + · · · + nM = N}.

Proposition 2.1. ([11].) The joint queue length process X(M,N) = (X(M,N)(t), t ≥ 0) is a
strong Markov process, which is irreducible and positive recurrent. The limiting and stationary
distribution is

π(M,N)(n) = G(M,N)−1
M∏
i=1

(
1

µi

)ni
(2.1)

with n = (n1, . . . , nM) ∈ Z(M,N) and normalising constant

G(M,N) =
∑

n∈Z(M,N)

M∏
i=1

(
1

µi

)ni
.
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62 O. STENZEL AND H. DADUNA

In the following we assume that the joint queue length process is in equilibrium. We therefore
omit the time parameter t , i.e. we write X(M,N) instead of X(M,N)(t).

We investigate the individual behaviour of the customers in the cycle. Therefore, we fix on
one customer, which we call the test customer (TC). The random time between two entrances
of the TC into node Q[1] is called the cycle time. We obtain a sequence of cycle times (c(i)N ,
i ∈ N+), where c(i)N is the ith passage time through the cycle.

Theorem 2.1. (Limiting distribution of the cycle time and sojourn time vector [4].) The limiting
distribution of the TC’s cycle time is given by its Laplace–Stieltjes transform (LST)

ψ(M,N)(θ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)

M∏
j=1

(
µj

µj + θ

)nj+1

, θ ≥ 0, (2.2)

whereπ(M,N−1)(n1, . . . , nM) (defined in (2.1)) is the steady-state probability that at the arrival
instants of the TC at node Q[1], he observes n1 customers before him at node Q[1] and ni
customers present at node Q[i], i = 2, . . . ,M , without counting himself.

The limiting joint distribution of the TC’s successive sojourn times during a cycle is given
by its LST

φ(M,N)(θ1, . . . , θM) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)

×
M∏
j=1

(
µj

µj + θj

)nj+1

, θj ≥ 0, j = 1, . . . ,M. (2.3)

To investigate in more detail the cycle time distribution with LST ψ(M,N)(θ), Harrison [13]
obtained by direct (but tedious) inversion explicit expressions for the density functions of
distributions with LST

M∏
j=1

(
µj

µj + θ

)nj+1

, θ ≥ 0;

see [13, Theorem 1]. Applying the techniques we will develop in the present paper to the
mixture of densities with LST (2.2) may lead to a proof of a central limit theorem without
transform methods.

If we define the cycle time for the TC to be the time between two successive entrances of
the TC into some node Q[i], in the case of all service times being exponential, the cycle time
distribution would be the same; for details, see [9]. If nonexponential service times occur, this
property does not hold; see, e.g. [2, Section 4].

Notation. Denote by cN a random variable with LST (2.2), i.e. cN ∼ ψ(M,N). Whenever we
refer to a cycle time, we mean a random variable cN with LSTψ(M,N). In any case the number,
M , of nodes is fixed. Similarly, a vector with nonnegative coordinates (S(N)1 , S

(N)
2 , . . . , S

(N)
M ) ∼

φ(M,N)(θ1, . . . , θM) is considered as the vector of the TC’s successive sojourn times during a
cycle under customer stationary conditions.

Definition 2.1. The node Q[i], i = 1, . . . ,M , is a bottleneck node if µi = min{µk, k =
1, . . . ,M}.

To simplyfy the calculations, we assume without loss of generality that µ1 ≤ · · · ≤ µM .
Notation. Denote by m the number of different service rates, i.e. the number of different

values of µ1 ≤ · · · ≤ µM . The distinct service rates will be denoted by η1 < η2 < · · · < ηm.
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Weak convergence limits for closed cyclic networks 63

Let νl, 1 ≤ l ≤ m, be the number of i ∈ {1, . . . ,M} with µi = ηl . So ν1 is the number of
bottlenecks, and µ1 = η1 and µM = ηm.

Gordon and Newell [11] proved that the bottlenecks have an overwhelming influence on the
steady-state behaviour of a closed network, whenever the number,M , of nodes is constant and
N → ∞:

lim
N→∞ P(X(M,N)1 ≥ n) = 1 for all n ∈ N

lim
N→∞ P(X(M,N)2 = n2, . . . , X

(M,N)
M = nM) =

M∏
j=2

(
1 − µ1

µj

)(
µ1

µj

)nj

for all nj ≥ 0, j = 2, . . . ,M . The usual interpretation for a cyclic network is that, with an
increasing number of customers, the bottleneck approaches a Poissonian source feeding the
rest of the network, while all the other nodes eventually form an open ergodic tandem system,
the behaviour of which is well understood: local geometrical queue length distribution and
independence over the nodes in steady state. A similar property holds for sojourn times and
partial cycle times; see Theorem 5.1 of [10].

A similar interpretation should hold if several bottlenecks occur which divide the cycle into
bottlenecks and (possibly empty) sequences of nonbottleneck nodes between them. This will
be examined in Section 5.

If Q[1] is the only bottleneck (µ1 < µi for all i �= 2), it is not surprising to the TC that,
for large populations, almost all other customers are waiting before her atQ[1] when her cycle
commences. It follows (see [3]) that, as N → ∞,

E[cN ] = Nµ−1
1

{
1 +O

([
µ1

µ2

]N)}
, var(cN) = Nµ−2

1

{
1 +O

([
µ1

µ2

]N)}
. (2.4)

From (2.4), in heavy traffic the slowest queue generates the main fraction of the TC’s cycle
time. This suggests approximating the cycle time distribution for large N by the sum of N
consecutive service times at the slowest queue. This is supported by Chow’s [7] observation
that in a two-stage cycle a result parallel to (2.4) holds for the LST of the cycle times as well.
This suggests that a central limit theorem for the rescaled cycle time holds, when the population
size tends to ∞, while the number of stations remains fixed.

The central limit theorem for the rescaled cycle time was proved in [10, Theorem 4.1]
for pairwise distinct service rates, i.e. in the case of a single bottleneck. Furthermore, weak
convergence of the joint sojourn time vectors is proved, with the bottleneck under central limit
scaling, and the nonbottlenecks without scaling.

Moreover, in the general setting the usual interpretation suggests that the unscaled sojourn
times at the nonbottleneck nodes should converge to exponential distributions. This will be
proved in Theorem 5.1.

3. Cycle times and idle times of bottlenecks

The cycle time is defined as the time experienced by the TC between two successive entrances
intoQ[1]. We now adopt the following alternative description of cycle times due to Boxma [3,
p. 19], which is defined from the viewpoint of a server. We start by observing server Q[1] the
instant the TC leavesQ[1]. Denote by i1 the idle time (which may be 0) until the next customer
starts his service at node Q[1]. Then, denote by τ1 the service time of the next customer.
When this customer leaves Q[1], denote by i2 the next idle time (which may again be 0) of
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64 O. STENZEL AND H. DADUNA

the service channel, and so on. By and by, customers pass Q[1], and we denote the idle times
by ij (being 0 if customers are waiting at Q[1]) and the service times by τj , j = 1, . . . , N .
After the TC leaves Q[1] again, we obtain the cycle time as the sum of the service times and
idle times. With δN := τ1 + · · · + τN , the sum of N i.i.d. exp(µ1)-distributed service times,
and ρN := i1 + · · · + iN , the cumulative idle time, we have

cN = (i1 + · · · + iN )+ (τ1 + · · · + τN) = ρN + δN . (3.1)

A first simple observation yields a bound for E[ρN ] which is independent on N . We have

E[cN ] (2.3)=
∑

n∈Z(M,N−1)

π(M,N−1)(n)

M∑
j=1

(nj + 1) µ−1
j︸︷︷︸

≤µ−1
1

≤
∑

n∈Z(M,N−1)

π(M,N−1)(n)µ−1
1

M∑
j=1

(nj + 1)

︸ ︷︷ ︸
=N+M−1

= (N +M − 1)µ−1
1

∑
n∈Z(M,N−1)

π(M,N−1)(n)

= (N +M − 1)µ−1
1 .

Since E[ρN ] = E[cN ] − E[δN ] = E[cN ] −Nµ−1
1 , it follows that

E[ρN ] ≤ (M − 1)µ−1
1 . (3.2)

Boxma [3] observed that, for exactly one bottleneck in the cycle, we have E[ρN ] → 0 as
N → ∞. Equation (3.1) splits the cycle time into δN , with E[δN ] → ∞ and ρN , with bounded
mean values; see (3.2). So, for large N , the influence of ρN on the cycle time should not be
significant compared to that of δN :

cN − E[cN ]√
var(cN)

≈ δN − E[δN ]√
var(δN)

.

For the sequence of standardized random variables (indexed by N ) on the right-hand side of
the above expression, a central limit theorem holds. The main problem is to sharpen and
extend (3.2).

3.1. Idle times at the bottlenecks

Recall that node Q[1] is always a bottleneck and that ν1 ≥ 1 is the number of bottlenecks.
For the expected cumulative idle times atQ[1] during the TC’s cycle in the steady-state regime,
we have a precise asymptotic. This is obtained from moment properties of the cycle time, which
will be used to prove the central limit theorem.

Theorem 3.1. It holds that

lim
N→∞(E[cN ] − µ−1

1 N) = µ−1
1 (ν1 − 1). (3.3)

Theorem 3.2. It holds that

lim
N→∞(var(cN)− µ−2

1 N) = µ−2
1 (ν1 − 1). (3.4)
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An immediate corollary is as follows.

Corollary 3.1. It holds that

lim
N→∞ E[ρN ] = µ−1

1 (ν1 − 1) (3.5)

and

lim
N→∞(var(ρN)+ cov(ρN, δN)) = µ−2

1 (ν1 − 1). (3.6)

While (3.6) does not admit a direct interpretation, (3.5) has the following appealing inter-
pretation. Assume that we have a single bottleneck, Q[1]. Then, from (3.2), it follows that
limN→∞ E[ρN ] = 0. Assume further that, for Q[2],Q[3], . . . ,Q[k], with k < M , we let
µj → µ1, j = 2, . . . , k converge. Then we have a discontinuity of the asymptotic expected
idle times in this limiting procedure.

Alternatively, we could consider the sequence of networks to be dependent on the parameter
vector (µ1, . . . , µM), and assume that the parameters vary in such a way that we start with
Q[1] as the only bottleneck. Consider the function which maps any sequence of networks to
the value limN→∞ E[ρN ]. This function starts at 0 and stays there until at least one other µj
reaches µj = µ1. Then the mean value function E[ρN ] immediately jumps to a value greater
than or equal to µ−1

1 > 0 and a phase transition occurs when the parameter vector reaches
the boundary region defined by {µ1 = µ2}. We shall discuss this behaviour in more detail in
Section 4.

The proofs of Theorems 3.1 and 3.2 need several preparatory steps which will be given
now. The following interchange formula for sums and products is a consequence of Harrison’s
formula [12].

Lemma 3.1. We have∑
n∈Z(M,N)

M∏
j=1

(
1

µj

)nj
=

m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
.

(3.7)

Proof. We have

∑
n∈Z(M,N)

M∏
j=1

(
1

µj

)nj
(∗)=

m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N+M−νl(N + al

N

)

×
( m∏
u=1, u�=l

η−au
u

(
νu + au − 1

νu − 1

)(
1

ηl
− 1

ηu

)−νu−au)

=
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N+M−νl(N + al

N

)

×
( m∏
u=1, u�=l

η−au
u

(
νu + au − 1

νu − 1

)(
ηlηu

ηu − ηl

)νu+au)
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=
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N+M−νl(N + al

N

)
η

∑
u�=l (νu+au)

l

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

=
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
,

where ‘
(∗)=’ is the generalization of Harrison’s formula; see [18, Proposition 1.32]. Note that

the expression therein contains typos; see [15, Equation (1.19)].

Definition 3.1. For the general cycle, the following constants will help to keep some compu-
tations shorter:

(i) K1 := 1{ν1>1}
m∑
u=2

νu

ηu − η1
,

(ii) K2 := 1{ν1>2}
∑

a2+···+aM=2

m∏
u=2

(
1

ηu − η1

)au(νu + au − 1

νu − 1

)
,

(iii) K̃1 := (ν1 − 1)K1,

(iv) K̃2 := (ν1 − 1)(ν1 − 2)K2,

(v) by (aN)N∈N we denote sequences with the property

aN := 1 − η1
1

N + ν1 − 1
K̃1 + η2

1
1

(N + ν1 − 1)(N + ν1 − 2)
K̃2

+O

((
1

N

)3)
. (3.8)

Note that K1 = K̃1 = 0 if ν1 = 1 and that K2 = K̃2 = 0 if ν1 ≤ 2.

Lemma 3.2. Let (aN)N∈N denote a sequence with property (3.8). Then

lim
N→∞N(aN − 1) = −η1K̃1. (3.9)

Proposition 3.1. The normalization constant in the general cycle is

G(M,N) =
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
. (3.10)
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The normalization constants obey the asymptotic expansion

G(M,N) =
(

1

η1

)N(
N + ν1 − 1

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
aN, (3.11)

where (aN)N∈N is the sequence given in Definition 3.1(v).

Equation (3.11) tells us that the partition function G(M,N) is dominated by the term(
1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu
.

The proof of (3.11) is of a prototype structure for many of our later arguments. We therefore
give the details.

Proof of Proposition 3.1. Equation (3.10) follows immediately from (3.7).
We start with the normalization constant in the form (3.10) and split the term where l = 1,

i.e. the summand representing the bottlenecks. As will be seen later, only this summand is
persistent if N → ∞. We have

G(M,N) =
m∑
l=2

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u �=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

+
∑

a∈Z(m,ν1−1)

(−1)a1−ν1+1
(

1

η1

)N−ν1+a1+1(
N + a1

N

)

×
( m∏
u=2

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au)

=
m∑
l=2

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u �=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

+
∑

a∈Z(m, ν1−1), a1<ν1−3

(−1)a1−ν1+1
(

1

η1

)N−ν1+a1+1(
N + a1

N

)

×
( m∏
u=2

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au)

+
∑

a∈Z(m, ν1−1), a1≥ν1−3

(−1)a1−ν1+1
(

1

η1

)N−ν1+a1+1(
N + a1

N

)

×
( m∏
u=2

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au)
.
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Splitting the last expressions for a1 ≥ ν1 − 3, i.e. a1 = ν1 − 1, a1 = ν1 − 2, and a1 = ν1 − 3,
yields

G(M,N) =
m∑
l=2

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

+
∑

a∈Z(m, ν1−1), a1<ν1−3

(−1)a1−ν1+1
(

1

η1

)N−ν1+a1+1(
N + a1

N

)

×
( m∏
u=2

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au)

+
(

1

η1

)N−2(
N + ν1 − 3

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
K2

−
(

1

η1

)N−1(
N + ν1 − 2

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
K1

+
(

1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu
.

A short comment may be in order here. So far, we have only split the sum. First, we extracted
the summand with l = 1, then we extracted the summands with a1 ≥ ν1 − 3. Finally, we wrote
down the explicit expressions for a1 = ν1 − 1, a1 = ν1 − 2, and a1 = ν1 − 3. Now we factor
out (

1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu
.

Since

lim
N→∞N

p

(
η1

ηl

)N
= 0, p ∈ N, 2 ≤ l ≤ m,

it follows that((
1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu)−1

×
m∑
l=2

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

= O

((
1

N

)r)
for all r ∈ N.
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We choose r = 3, yielding O((1/N)3). Since

(
N + a1

N

)/(
N + ν1 − 1

N

)
= O

((
1

N

)3)
for a1 < ν1 − 3,

it follows that

G(M,N) =
(

1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

×
[

1 − η1
ν1 − 1

N + ν1 − 1
K1 + η2

1
(ν1 − 1)(ν1 − 2)

(N + ν1 − 1)(N + ν1 − 2)
K2 +O

((
1

N

)3)]

=
(

1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

×
[

1 − η1
1

N + ν1 − 1
K̃1 + η2

1
1

(N + ν1 − 1)(N + ν1 − 2)
K̃2 +O

((
1

N

)3)]

=
(

1

η1

)N(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu
aN .

The next calculations establish the basis for obtaining asymptotic expansions for the first
two cycle time moments.

Proposition 3.2. It holds that

(i) ψ(M,N+1)(θ)

= G(M,N)−1

×
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1η
νl
l

(
1

ηl + θ

)N+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
, (3.12)

(ii) E[cN+1] = η−1
1 (N + ν1)

1

aN
− 1

aN
K̃1 + η1

1

aN

1

(N + ν1 − 1)
K̃2

+O

((
1

N

)2)
, (3.13)

(iii) E[cN+1] = η−1
1 (N + ν1)

1

aN
− 1

aN
K̃1 +O

(
1

N

)
, (3.14)

(iv) E[c2
N+1] = η−2

1 (N + ν1)(N + ν1 + 1)
1

aN
− η−1

1 (N + ν1)
1

aN
K̃1

+ 1

aN
K̃2 +O

(
1

N

)
. (3.15)
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Proof. (i) We have

ψ(M,N+1)(θ)G(M,N)
(2.2)= G(M,N)

∑
n∈Z(M,N)

π(M,N)(n)

M∏
j=1

(
µj

µj + θ

)nj+1

=
( M∏
j=1

µj

µj + θ

) ∑
n∈Z(M,N)

M∏
j=1

(
1

µj

)nj M∏
j=1

(
µj

µj + θ

)nj

=
m∏
l=1

(
ηl

ηl + θ

)νl ∑
n∈Z(M,N)

M∏
j=1

(
1

µj + θ

)nj
(3.7)=

m∏
l=1

(
ηl

ηl + θ

)νl

×
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl + θ

)N−νl+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

(ηu + θ)νu
(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

=
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1η
νl
l

(
1

ηl + θ

)N+al+1(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
.

(ii) Since E[cN+1] = −∂ψ(M,N+1)(θ)/∂θ |θ=0, we first calculate ∂ψ(M,N+1)(θ)/∂θ :

∂

∂θ
ψ(M,N+1)(θ)

(3.12)= −G(M,N)−1

×
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1η
νl
l (N + al + 1)

(
1

ηl + θ

)N+al+2(
N + al

N

)

×
( m∏
u=1,u �=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
. (3.16)

So

E[cN+1] = − ∂

∂θ
ψ(M,N+1)(θ)

∣∣∣∣
θ=0

(3.16)= G(M,N)−1

×
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1(N + al + 1)

(
1

ηl

)N−νl+al+2(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
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= G(M,N)−1

×
m∑
l=2

∑
a∈Z(m,νl−1)

(−1)al−νl+1(N + al + 1)

(
1

ηl

)N−νl+al+2(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

+G(M,N)−1

×
∑

a∈Z(m,ν1−1), a1<ν1−3

(−1)a1−ν1+1(N + a1 + 1)

(
1

η1

)N−ν1+a1+2(
N + a1

N

)

×
( m∏
u=2

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au)

+G(M,N)−1

×
∑

a∈Z(m,ν1−1), a1≥ν1−3

(−1)a1−ν1+1(N + a1 + 1)

(
1

η1

)N−ν1+a1+2(
N + a1

N

)

×
( m∏
u=2

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − η1

)νu+au)
.

Applying (3.11) leads to the result that the first two sums are of order O((1/N)2); therefore,

E[cN+1] = G(M,N)−1(N + ν1)

(
1

η1

)N+1(
N + ν1 − 1

N

) m∏
u=2

(
ηu

ηu − η1

)νu

−G(M,N)−1(N + ν1 − 1)

(
1

η1

)N(
N + ν1 − 2

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
K1

+G(M,N)−1(N + ν1 − 2)

(
1

η1

)N−1(
N + ν1 − 3

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
K2

+O

((
1

N

)2)
(3.11)= (N + ν1)η

−1
1

1

aN
− 1

aN

(N + ν1 − 1)(ν1 − 1)

N + ν1 − 1
K1

+ η1
1

aN

(N + ν1 − 2)(ν1 − 1)(ν1 − 2)

(N + ν1 − 1)(N + ν1 − 2)
K2 +O

((
1

N

)2)

= (N + ν1)η
−1
1

1

aN
− 1

aN
K̃1 + η1

1

aN

1

(N + ν1 − 1)
K̃2 +O

((
1

N

)2)
.

(iii) This is an immediate corollary of (3.13).
(iv) Since

E[c2
N+1] = ∂2

∂θ2ψ
(M,N+1)(θ)

∣∣∣∣
θ=0

,
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we first have to calculate ∂2ψ(M,N+1)(θ)/∂θ2:

∂2

∂θ2ψ
(M,N+1)(θ)

(3.16)= G(M,N)−1

×
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1η
νl
l (N + al + 1)(N + al + 2)

×
(

1

ηl + θ

)N+al+3(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
.

Applying this result yields

E[c2
N+1] = ∂2

∂θ2ψ
(M,N+1)(θ)

∣∣∣∣
θ=0

= G(M,N)−1

×
m∑
l=1

∑
a∈Z(m,νl−1)

(−1)al−νl+1(N + al + 1)(N + al + 2)

×
(

1

ηl

)N−νl+al+3(
N + al

N

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

= (N + ν1)(N + ν1 + 1)η−2
1

1

aN
− (N + ν1 − 1)(N + ν1)η

−1
1

1

aN

1

N + ν1 − 1
K̃1

+ (N + ν1 − 2)(N + ν1 − 1)
1

aN

1

(N + ν1 − 1)(N + ν1 − 2)
K̃2 +O

(
1

N

)

= (N + ν1)(N + ν1 + 1)η−2
1

1

aN
− (N + ν1)η

−1
1

1

aN
K̃1 + 1

aN
K̃2 +O

(
1

N

)
.

We are now in a position to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Note that µ1 = η1. Then

lim
N→∞(E[cN+1] − η−1

1 (N + ν1))

(3.14)= lim
N→∞

(
η−1

1 (N + ν1)
1

aN
− 1

aN
K̃1 +O

(
1

N

)
− η−1

1 (N + ν1)

)

= η−1
1 lim

N→∞

(
N(1 − aN)

aN

)
+ lim
N→∞

(
ν1(1 − aN)

aN

)
− lim
N→∞

K̃1

aN

(3.9)= 0,

and the theorem follows.
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Proof of Theorem 3.2. Since µ1 = η1, it is sufficient to prove that limN→∞(var(cN+1) −
η−2

1 (N + ν1)) = 0. We have

E2[cN+1] (3.13)=
(
η−1

1 (N + ν1)
1

aN
− 1

aN
K̃1 + η1

1

aN

1

(N + ν1 − 1)
K̃2 +O

((
1

N

)2))2

=
(
η−1

1 (N + ν1)
1

aN
− 1

aN
K̃1 + η1

1

aN

1

(N + ν1 − 1)
K̃2

)2

+O

(
1

N

)

=
(
η−1

1 (N + ν1)
1

aN
− 1

aN
K̃1

)2

+ 2

(
η−1

1 (N + ν1)
1

aN
− 1

aN
K̃1

)(
η1

1

aN

1

(N + ν1 − 1)
K̃2

)

+
(
η1

1

aN

1

(N + ν1 − 1)
K̃2

)2

+O

(
1

N

)

=
(
η−1

1 (N + ν1)
1

aN
− 1

aN
K̃1

)2

+ 2
1

a2
N

N + ν1

N + ν1 − 1
K̃2 +O

(
1

N

)

= η−2
1 (N + ν1)

2 1

a2
N

− 2η−1
1 (N + ν1)

1

a2
N

K̃1 + 1

a2
N

K̃1
2

+ 2
1

a2
N

N + ν1

N + ν1 − 1
K̃2 +O

(
1

N

)

and

lim
N→∞(var(cN+1)− η−2

1 (N + ν1))

= lim
N→∞(E[c2

N+1] − E2[cN+1] − η−2
1 (N + ν1))

(3.15)= lim
N→∞

[
η−2

1 (N + ν1)(N + ν1 + 1)
1

aN
− η−1

1 (N + ν1)
1

aN
K̃1 + 1

aN
K̃2

− η−2
1 (N + ν1)

2 1

a2
N

+ 2η−1
1 (N + ν1)

1

a2
N

K̃1 − 1

a2
N

K̃1
2

− 2
1

a2
N

N + ν1

N + ν1 − 1
K̃2 − η−2

1 (N + ν1)

]

= lim
N→∞

[
η−2

1 (N + ν1)
2 1

aN
− η−2

1 (N + ν1)
2 1

a2
N

− η−1
1 (N + ν1)

1

aN
K̃1

+ 2η−1
1 (N + ν1)

1

a2
N

K̃1

]

+ lim
N→∞

(
η−2

1 (N + ν1)
1

aN
− η−2

1 (N + ν1)

)
− K̃1

2 − K̃2. (3.17)

Note that

lim
N→∞

(
η−2

1 (N + ν1)
1

aN
− η−2

1 (N + ν1)

)
= η−2

1 lim
N→∞

(
N(1 − aN)

aN

)
(3.9)= η−1

1 K̃1. (3.18)
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Also, note that, using Lemma 3.2 at ‘
(∗∗)= ’,

η−2
1 (N + ν1)

2 1

aN
− η−2

1 (N + ν1)
2 1

a2
N

= η−2
1

1

a2
N

(N + ν1)
2(aN − 1)

(∗∗)= η−2
1

1

a2
N

(N2 + 2Nν1 + ν2
1 )

×
(

−η1
1

N + ν1 − 1
K̃1 + η2

1
1

(N + ν1 − 1)(N + ν1 − 2)
K̃2 +O

((
1

N

)3))

= −η−1
1

1

a2
N

N2

N + ν1 − 1
K̃1 + 1

a2
N

N2

(N + ν1 − 1)(N + ν1 − 2)
K̃2

− 2η−1
1 ν1

N

N + ν1 − 1
K̃1 +O

(
1

N

)
. (3.19)

Inserting (3.18) and (3.19) into (3.17) leads to

lim
N→∞(var(cN+1)− η−2

1 (N + ν1))

= lim
N→∞

[
−η−1

1
1

a2
N

N2

N + ν1 − 1
K̃1 − η−1

1 (N + ν1)
1

aN
K̃1 + 2η−1

1 (N + ν1)
1

a2
N

K̃1

]

+ η−1
1 K̃1 − 2η−1

1 ν1K̃1 − K̃1
2 + K̃2 − K̃2

= η−1
1 K̃1 lim

N→∞

[
1

a2
N

(N + ν1)(N + ν1 − 1)−N2

N + ν1 − 1︸ ︷︷ ︸
→2ν1−1

+ 1

a2
N

(N + ν1)(1 − aN)︸ ︷︷ ︸
→η1K̃1

]

+ η−1
1 K̃1 − 2η−1

1 ν1K̃1 − K̃1
2

= 0.

3.2. Central limit theorem for cycle times

The following theorem removes the requirement of distinct service rates at all nodes in
Theorem 4.1 of [10]. It turns out that the methods needed for the proof are completely different.

Theorem 3.3. (Central limit theorem for the cycle time.) Let µ1 ≤ · · · ≤ µM . Then

cN − E[cN ]√
var(cN)

d−→ X ∼ N (0, 1) as N → ∞. (3.20)

Proof. We shall utilize from Slutsky’s theorem [1, p. 461] the following facts. Let X, Xn,
and Yn, n ≥ 1, be real-valued random variables so that Xn

d−→ X and Yn
p−→ c for some c ∈ R.

Then it holds that
Xn + Yn

d−→ X + c, XnYn
d−→ Xc. (3.21)

Recall from (3.1) that cN can be expressed as cN = δN + ρN , with δN the sum of N i.i.d.
exp(µ1)-distributed service times and ρN the cumulative idle time. Therefore, the normalized
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cycle time can be written as

cN − E[cN ]√
var(cN)

= δN − E[δN ] + ρN − E[ρN ]√
var(cN)

= δN − E[δN ]√
var(δN)

√
var(δN)√
var(cN)

+ ρN − E[ρN ]√
var(cN)

.

First, note that, because of the central limit theorem for i.i.d. random variables,

δN − E[δN ]√
var(δN)

d−→ X ∼ N (0, 1) as N → ∞. (3.22)

Since var(δN) = µ−2
1 N → ∞ asN → ∞ and limN→∞ | var(cN)− var(δN)| = constant (see

(3.4)), it holds that

lim
N→∞

√
var(δN)√
var(cN)

= 1. (3.23)

Combining (3.22) and (3.23) and applying (3.21), we obtain

δN − E[δN ]√
var(δN)

√
var(δN)√
var(cN)

d−→ X ∼ N (0, 1) as N → ∞. (3.24)

Finally, let us analyze the last term, (ρN − E[ρN ])/√var(cN). It holds that

E

[∣∣∣∣ρN − E[ρN ]√
var(cN)

∣∣∣∣
]

= E[|ρN − E[ρN ]|]√
var(cN)

≤ 2 E[ρN ]√
var(cN)

→ 0 as N → ∞

since var(cN) → ∞ as N → ∞ and

lim
N→∞ E[ρN ] = lim

N→∞(E[cN ] − E[δN ]) = lim
N→∞(E[cN ] −Nµ−1

1 )
(3.3)= constant.

Applying the Markov inequality,

P

(∣∣∣∣ρN − E[ρN ]√
var(cN)

∣∣∣∣ ≥ ε

)
≤ E[|(ρN − E[ρN ])/√var(cN)|]

ε
→ 0 as N → ∞ for all ε > 0,

it follows that
ρN − E[ρN ]√

var(cN)
p−→ 0 as N → ∞. (3.25)

Combining (3.24) and (3.25) and applying (3.21) yields (3.20).

4. Single bottleneck case versus multiple bottleneck case

We now analyze how the filling behaviour of the networks depends on the number of
bottleneck nodes. We noted in Corollary 3.1 the discontinuity of the asymptotic idle time
behaviour when varying the service rates, i.e. limN→∞ E[ρN ] = (ν1 − 1)µ−1

1 , which is greater
than 0 for ν1 > 1 and 0 for ν1 = 1. For pairwise distinct service rates µ1 < · · · < µM , it even
holds that E[ρN ] = Nµ−1

1 O((µ1/µ2)
N); cf. [3].

For the cumulative idle time ρN , it makes a major difference whether the network has a single
bottleneck node or multiple bottleneck nodes. In the case of a single bottleneck, the cumulative
idle time of a bottleneck node during a customer’s cycle does not only converge stochastically
to 0 for N → ∞, but the rate of convergence is very high. Thus, for large values of N , the
bottleneck node will almost never be empty. Also, since cN = δN + ρN and ρN is converging

https://doi.org/10.1239/jap/1331216834 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216834


76 O. STENZEL AND H. DADUNA

stochastically to 0, for large values ofN , the cycle time cN can be approximated by δN , the sum
of N i.i.d. exp(µ1)-distributed variables. In contrast, in the case of multiple bottleneck nodes,
the expected cumulative idle time converges towards a positive constant, i.e. during one cycle,
the bottleneck node Q[1] will on average be empty for a positive time period. By symmetry,
this also holds for the other bottlenecks. For the filling behaviour of bottleneck nodes, we
observe a similar dichotomy.

Theorem 4.1. Let Q[i] be a bottleneck node. Then it holds that

P(X(M,N)i ≥ r) =

⎧⎪⎪⎨
⎪⎪⎩

1 −O

(
1

N

)
for ν1 > 1,

1 −Nν2−1O

((
µ1

µ2

)N)
for ν1 = 1,

(4.1)

and the equation is sharp with respect to the speed of convergence.

Proof. Without loss of generality, we assume that Q[i] = Q[1]. We then have

P(X(M,N)1 < r) =
∑

n∈Z(M,N)
π(n)P(X(M,N)1 < r | X(M,N) = n)

(2.1)=
r−1∑
n1=0

[ ∑
n2+···+nM=N−n1

G(M,N)−1
M∏
j=1

(
1

µj

)nj ]

=
r−1∑
n1=0

(
1

µ1

)n1
[∑

n2+···+nM=N−n1

∏M
j=2(1/µj )

nj

G(M,N)

]
. (4.2)

Let us first consider the case of multiple bottlenecks, i.e. ν1 > 1. Note that

∑
n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj

is the normalizing constant of a network with the same service rates, but with one bottleneck
node less and n1 customers less. We therefore define, for j = 1, . . . , m,

ν̃j =
{
ν1 − 1 for j = 1,

νj for j �= 1.

It follows that ∑
n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj
(3.7)=

m∑
l=1

∑
a∈Z(m,ν̃l−1)

(−1)al−ν̃l+1
(

1

ηl

)N−n1−ν̃l+al+1(
N − n1 + al

N − n1

)

×
( m∏
u=1, u �=l

ην̃uu

(
ν̃u + au − 1

ν̃u − 1

)(
1

ηu − ηl

)ν̃u+au)
.
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From (3.11), we know that

G(M,N) =
(

1

η1

)N(
N + ν1 − 1

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
aN,

with aN = 1 +O(1/N). Note that, for 2 ≤ l ≤ m and a ∈ Z(m, ν̃l − 1), it holds that

G(M,N)−1(−1)al−ν̃l+1
(

1

ηl

)N−n1−ν̃l+al+1(
N − n1 + al

N − n1

)

×
( m∏
u=1, u�=l

ην̃uu

(
ν̃u + au − 1

ν̃u − 1

)(
1

ηu − ηl

)ν̃u+au)

=
[
(−1)al−ν̃l+1

(
1

ηl

)N−n1−ν̃l+al+1(
N − n1 + al

N − n1

)

×
( m∏
u=1, u�=l

ην̃uu

(
ν̃u + au − 1

ν̃u − 1

)(
1

ηu − ηl

)ν̃u+au)]

×
[(

1

η1

)N(
N + ν1 − 1

N

)( m∏
u=2

(
ηu

ηu − η1

)νu)
aN

]−1

= constant

(
η1

ηl

)N (
N−n1+al
N−n1

)
(
N+ν1−1

N

) 1

aN

= O

((
1

N

)2)
,

since

lim
N→∞N

p

(
η1

ηl

)N
= 0, p ∈ N. (4.3)

Because of (4.3), which holds for all p ∈ N, 2 ≤ l ≤ m, it follows that

G(M,N)−1
∑

n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj

= G(M,N)−1
∑

a∈Z(m,ν̃1−1)

(−1)a1−ν̃1+1
(

1

η1

)N−n1−ν̃1+a1+1(
N − n1 + a1

N − n1

)

×
( m∏
u=2

ην̃uu

(
ν̃u + au − 1

ν̃u − 1

)(
1

ηu − η1

)ν̃u+au)
+O

((
1

N

)2)
.

Only the term with a1 = ν̃1 −1 = ν1 −2 needs to be considered, the rest is of orderO((1/N)2).
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Therefore,

G(M,N)−1
∑

n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj

= (1/η1)
N−n1

(
N−n1+ν1−2

N−n1

) ∏m
u=2(ηu/(ηu − η1))

νu

(1/η1)N
(
N+ν1−1

N

)(∏m
u=2(ηu/(ηu − η1))νu

)
(1 +O(1/N))

+O

((
1

N

)2)

= (1/η1)
−n1

(
N−n1+ν1−2

N−n1

)
(
N+ν1−1

N

)
(1 +O(1/N))

+O

((
1

N

)2)
(4.4)

= O(1/N)

1 +O(1/N)
+O

((
1

N

)2)

= O

(
1

N

)
. (4.5)

Substituting (4.5) into (4.2) leads to the first part of (4.1). From (4.4), we see that

lim
N→∞

(
NG(M,N)−1

∑
n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj) {
> 0 for n1 < N ,

≥ 0 for n1 = N .

This shows that, for ν1 > 1, it holds that

P(X(M,N)i ≥ r) = 1 −O

(
1

N

)
and P(X(M,N)i ≥ r) �= 1 − o

(
1

N

)
.

For the case of a single bottleneck, i.e. ν1 = 1, we have

∑
n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj
(3.7)=

m∑
l=2

∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)N−n1−νl+al+1(
N − n1 + al

N − n1

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

=
m∑
l=2

(
1

ηl

)N ∑
a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)−n1−νl+al+1(
N − n1 + al

N − n1

)

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
.

It follows, with

G(M,N) =
(

1

η1

)N( m∏
u=2

(
ηu

ηu − η1

)νu)
aN
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(cf. (3.11)), that

G(M,N)−1
∑

n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj

= 1

aN

m∑
l=2

(
η1

ηl

)N

×
∑

a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)−n1−νl+al+1(
N − n1 + al

N − n1

)( m∏
u=2

(
ηu

ηu − η1

)νu)−1

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)

= 1

aN

(
η1

η2

)N m∑
l=2

(
η2

ηl

)N

×
∑

a∈Z(m,νl−1)

(−1)al−νl+1
(

1

ηl

)−n1−νl+al+1(
N − n1 + al

N − n1

)( m∏
u=2

(
ηu

ηu − η1

)νu)−1

×
( m∏
u=1, u�=l

ηνuu

(
νu + au − 1

νu − 1

)(
1

ηu − ηl

)νu+au)
. (4.6)

Since, for all p ∈ N,

lim
N→∞N

p

(
η2

ηl

)N
= 0, 3 ≤ l ≤ m,

only the sum for l = 2 is of importance and only the summand with a2 = ν2 − 1 needs to be
considered. This leads to

G(M,N)−1
∑

n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj
= 1

aN

(
N − n1 + ν2 − 1

N − n1

)(
η1

η2

)N[
1 +O

(
1

N

)]

= Nν2−1O

((
η1

η2

)N)
µ2=η2= Nν2−1O

((
µ1

µ2

)N)
. (4.7)

Substituting (4.7) into (4.2) leads to the second part of (4.1).We can show that (4.6) implies that

lim
N→∞

([
Nν2−1

(
η1

η2

)N]−1

G(M,N)−1
∑

n2+···+nM=N−n1

M∏
j=2

(
1

µj

)nj)
{
> 0 for n1 < N ,

≥ 0 for n1 = N .

This shows that the second equation of (4.1) is sharp according to the speed.
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From (4.1), limN→∞ P(X(M,N)1 ≥ r) = 1 for every r ∈ N, i.e. bottlenecks are filled up
asymptotically. But the way they get filled up is essentially different. In the case of a single
bottleneck, we have a very high rate of convergence; in the case of multiple bottlenecks, the
rate of convergence is quite low, O(1/N). The fact that in the multiple bottleneck case, the
bottleneck nodes are filled up slower is comprehensible since the customers spread over the
bottleneck nodes. However, the size of the difference is surprising.

It is well known [3] that in the single bottleneck case the rate of convergence of the filling
behaviour is mainly determined by the quotient (µ1/µ2)

N . However, the speed of convergence
is also influenced by the number of second slowest servers (Nν2−1), i.e. the more second slowest
servers there are in the network, the more customers will be present at nonbottleneck nodes.
This is an interesting result, an interpretation of which can be given as follows. The second
slowest servers more strongly resist the fast passing of customers than all other nonbottleneck
nodes. Calling these nodes ‘semibottlenecks’ would make this phenomenon intuitive. The
semibottlenecks are the most important hills which customers have to climb up on their way to
the single bottleneck. The more hills, the longer the time to reach the bottleneck for almost all
customers.

5. Weak convergence of sojourn times at nonbottleneck nodes

In the case of a single bottleneck the joint sojourn time distribution for the TC at the
nonbottleneck nodes Q[2], . . . ,Q[J ] during her cycle converges for N → ∞ to the joint
distribution of the sojourn times of a customer passing this tandem fed by a Poisson-µ1
stream [10, Theorem 5.1]. For cycles with multiple bottlenecks, where the bottlenecks are
now distributed over the cycle, the limiting picture is as follows.

Theorem 5.1. Let (S(N)1 , S
(N)
2 , . . . , S

(N)
M ) denote a vector distributed according to φ(M,N)(θ1,

. . . , θM) from (2.3). Let A := {l ∈ {1, . . . ,M} : µl �= µ1} be the set of indices of the
nonbottleneck nodes.

Then the sequence (S(N)j , j ∈ A) converges for N → ∞ to a vector with distribution⊗
j∈A

exp(µj − µ1).

The proof is a direct consequence of (2.3) and the following theorem; see [17].

Theorem 5.2. The joint steady-state queue length distribution of the nonbottleneck nodes con-
verges weakly to an independent product of geometrical distributions, which can be represented
as the respective steady-state queue length distribution of an open ergodic tandem system with
a Poisson-µ1 arrival stream, i.e. it holds that

P(X
(M,N)
s ,s∈A) d−→

⊗
s∈A

Geo

(
1 − µ1

µs

)
as N → ∞.

6. Central limit theorem for cycle times in a homogeneous cycle

Our results in the previous sections are for cycles where at least two different service rates
occur, i.e. we have bottleneck and nonbottleneck nodes. In this section we discuss the case in
which all nodes have service intensity µ > 0. The first consequence is that the steady-state
distribution is uniform on Z(M,N).
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Theorem 6.1. In the homogeneous cycle the steady-state distribution is

π(M,N)(n1, . . . , nM) =
(
M +N − 1

N

)−1

, (n1, . . . , nM) ∈ Z(M,N). (6.1)

Kelly [14, Corollary 3.2] proved a first-order limit for the cycle times in steady state.

Theorem 6.2. (Weak law of large numbers for the cycle time in homogeneous cycles.) Let
µ1 = · · · = µM = 1. Then, for all ε > 0,

P

(∣∣∣∣cNN − 1

∣∣∣∣ ≥ ε

)
≤ (N +M2)M−2ε−2 as N → ∞.

Using the notation of the previous sections, we now formulate our main observation similarly
to Theorem 3.3.

Theorem 6.3. (Central limit theorem for the cycle time in homogeneous cycles.) Let µ1 =
· · · = µM =: µ. Then

cN − E[cN ]√
var(cN)

d−→ X ∼ N (0, 1) as N → ∞.

Proof. From (2.2) and (6.1), we conclude that the cycle time has a gamma distribution,
i.e. cN ∼ �µ,M+N−1, which is distributed as a sum ofM+N−1 independent exp(µ)-distributed
random variables.

Comparing this result with Theorem 3.3 we observe an obvious similarity. With regards
to the central limit time and space scales, the result of Theorem 3.3 looks like the result of
Theorem 6.3, i.e. as if all nonbottleneck nodes have been erased. However, comparing the
proofs of the theorems reveals a delicate difference in the central limit theorems. Since in both
theorems the accumulated mean E[cN ] and variance var[cN ] contribute to the standardization
procedure, the nonbottleneck nodes do not disappear from the limiting procedure. On the other
hand, from the viewpoint of the TC successively visiting the nodes of the cycle, the proof of
Theorem 6.3 would rely on all individual sojourn times when N → ∞, while the proof of
Theorem 3.3 should eventually rely only on those individual sojourn times experienced by the
TC at the bottlenecks.

In hindsight, we can interpret Theorem 6.3 by considering all nodes in the homogeneous
cycle as bottlenecks.

7. Cycle times in cycles with multiple-server nodes

With multiple-server nodes, the problem of computing cycle time and sojourn time dis-
tributions becomes much more involved. This is visible even in the open tandem system of
exponential multiple-server nodes.

In this situation, overtaking of customers comes into play, as was proved by Burke; see [5]
and [6]. Excluding the case of infinite-server queues and summarizing briefly, the results are as
follows. In steady state a customer’s sojourn times on a passage through a tandem of exponential
servers are independent as long as the interior nodes of the tandem are single servers. The first
and the last nodes may each be a multiple server. The total passage time distribution is therefore
the convolution of the sojourn time distributions.
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For closed systems, especially cycles, a similar theorem was proved under the heading
of ‘Burke’s theorem on passage times in Gordon–Newell networks’. We investigate the
random time between two entrances of the TC into node Q[1], i.e. the cycle time of interest is
characterized by starting at Q[1].

We consider a cycle as in Section 2 with multiple servers at nodes 1 and M , having s1 and
sM service channels with service times µ1 and µM , respectively. All other nodes are single
servers, as before.

Proposition 7.1. The state space of the Markovian joint queue length process X(M,N) =
(X(M,N)(t), t ≥ 0) is Z(M,N) := {(n1, . . . , nM) ∈ N

M | n1 + · · · + nM = N}. The process
X(M,N) is irreducible and positive recurrent. The limiting and stationary distribution is, with
µj (m) = µj min(m, sj ) for j = 1,M ,

π(M,N)(n) = G(M,N)−1
( n1∏
m=1

1

µ1(m)

)M−1∏
i=2

(
1

µi

)ni( nM∏
m=1

1

µM(m)

)
(7.1)

with n = (n1, . . . , nM) ∈ Z(M,N) and normalising constant

G(M,N) =
∑

n∈Z(M,N)

( n1∏
m=1

1

µ1(m)

)M−1∏
i=2

(
1

µi

)ni( nM∏
m=1

1

µM(m)

)
.

Theorem 7.1. (Limiting distribution of the cycle time and sojourn time vector [8].) The limiting
distribution of the TC’s cycle time is given by its LST

ψ(M,N)(θ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)
∏

j∈{1,M}

{
µj

µj + θ

(
µjsj

µj sj + θ

)(nj−sj+1)+}

×
M−1∏
j=2

(
µj

µj + θ

)nj+1

, θ ≥ 0, (7.2)

whereπ(M,N−1)(n1, . . . , nM) (defined in (7.1)) is the steady-state probability that at the arrival
instants of the TC at node Q[1], he observes n1 customers before him at node Q[1] and ni
customers present at node Q[i], i = 2, . . . ,M , without counting himself.

The limiting joint distribution of the TC’s successive sojourn times during a cycle is of
similar structure; see [16]. If we define the cycle time for the TC to be the time between two
successive entrances of the TC into some other node Q[i], i �= 1, the cycle time distribution
would change. Furthermore, (7.2) no longer holds [8, p. 880–881] and, to date, the cycle time
distribution seems to be unknown.

With respect to the investigation in this paper we conclude that it matters whether there is
at, say, node 2 < M one server with service rate µ2 or two servers with service rate µ2/2. The
complete picture of the mode of convergence of the cycle time distribution when the population
size N increases unboundedly is part of our ongoing research, but is still an open problem.

Acknowledgement

We thank the anonymous referee for his/her careful reading of the manuscript and construc-
tive criticism: Sections 6 and 7 emerged from his/her comments.

https://doi.org/10.1239/jap/1331216834 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216834


Weak convergence limits for closed cyclic networks 83

References

[1] Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. Prentice-
Hall.

[2] Boxma, O. J. (1983). The cyclic queue with one general and one exponential server. Adv. Appl. Prob. 15,
857–873.

[3] Boxma, O. J. (1988). Sojourn times in cyclic queues - the influence of the slowest server. In Computer
Performance and Reliability, eds G. Iazeolla, P.-J. Courtois and O. J. Boxma. North-Holland, Amsterdam,
pp. 13–24.

[4] Boxma, O. J., Kelly, F. P. and Konheim, A. G. (1984). The product form for sojourn time distributions in
cyclic exponential queues. J. Assoc. Comput. Mach. 31, 128–133.

[5] Burke, P. J. (1968). The output process of a stationary M/M/s queueing system. Ann. Math. Statist. 39,
1144–1152.

[6] Burke, P. J. (1969). The dependence of sojourn times in tandem M/M/s queues. Operat. Res. 17, 754–755.
[7] Chow, W. M. (1980). The cycle time distribution of exponential cyclic queues. J. Assoc. Comput. Mach. 27,

281–286.
[8] Daduna, H. (1984). Burke’s theorem on passage times in Gordon–Newell networks. Adv. Appl. Prob. 16,

867–886.
[9] Daduna, H. and Szekli, R. (2002). Conditional job-observer property for multitype closed queueing networks.

J. Appl. Prob. 39, 865–881.
[10] Daduna, H., Malchin, C. and Szekli, R. (2008). Weak convergence limits for sojourn times in cyclic queues

under heavy traffic conditions. J. Appl. Prob. 45, 333–346.
[11] Gordon, W. J. and Newell, G. F. (1967). Closed queueing networks with exponential servers. Operat. Res.

15, 254–265.
[12] Harrison, P. G. (1985). On normalizing constants in queueing networks. Operat. Res. 33, 464–468.
[13] Harrison, P. G. (1990). Laplace transform inversion and passage-time distributions in Markov processes. J. Appl.

Prob. 27, 74–87.
[14] Kelly, F. P. (1984). The dependence of sojourn times in closed queueing networks. In Mathematical Computer

Performance and Reliability, eds G. Iazeolla, P.-J. Courtois andA. Hordijk, North-Holland,Amsterdam, pp. 111–
121.

[15] Malchin, C. (2008). Stochastic networks: discrete and continuous time models. Doctoral Thesis, Department
of Mathematics, University of Hamburg.

[16] Schassberger, R. and Daduna, H. (1987). Sojourn times in queuing networks with multiserver nodes. J. Appl.
Prob. 24, 511–521.

[17] Stenzel, O. and Daduna, H. (2009). Weak convergence limits for closed cyclic networks of queues with
multiple bottleneck nodes. Preprint 2009-05, Mathematische Statistik und Stochastische Prozesse, Fachbereich
Mathematik der Universität Hamburg, 22 pp.

[18] Serfozo, R. F. (1999). Introduction to Stochastic Networks (Appl. Math. 44). Springer, New York.

https://doi.org/10.1239/jap/1331216834 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1331216834

	1 Introduction
	2 Model specification and previous results
	3 Cycle times and idle times of bottlenecks
	3.1 Idle times at the bottlenecks
	3.2 Central limit theorem for cycle times

	4 Single bottleneck case versus multiple bottleneck case
	5 Weak convergence of sojourn times at nonbottleneck nodes
	6 Central limit theorem for cycle times in a homogeneous cycle
	7 Cycle times in cycles with multiple-server nodes
	Acknowledgement
	References

