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COMPLEX INVERSION FORMULA FOR THE
DISTRIBUTIONAL STIELTJES TRANSFORM

by STEVAN PILIPOVIC

(Received 19th September 1985)

1. Introduction

There are several approaches to the Stieltjes transform of generalized functions ([1,
10, 5, 6, 3, 2]). In this paper we use the definition of the distributional Stieltjes
transform of index p (peU\( — No); Mo = Nu{0}), Sp-transform, given by Lavoine and
Misra [3]. The Sp-transform is defined for a subspace of the Schwartz space <3'(U) while
in [10, 5, 6, 2] the Stieltjes transform is defined for the elements of appropriate spaces
of generalized functions. In these spaces differentiation is not defined which means that
the Stieltjes transform of some important distributions, for example d(k)(x — a), a^0,keN,
is meaningless in the sense of [10, 5, 6, 2]. It is easy to see that the distributions <5(t)(x — a),
a^O, keN, have the Sp-transform for p>—k, peU\( — NQ). These facts favour the
approach to the Stieltjes transform given in [3].

The inversion theorems for the Stieltjes transform of generalized functions (in their
own approaches) were given in [1, 10, 6, 7, 2]. We gave in [8] the so-called real
inversion theorem for the Sp-transform.

The intention of this paper is to prove that the complex inversion theorem for the
classical Stieltjes transform given by Sumner in [9] is also valid, with the convergence in
9" instead of pointwise convergence, for Spf, p > 0, where / belongs to a subspace of the
space of Sp-transformable tempered distributions. (As in [9] we suppose that p>0.)

2. Definition of the ^-transform

Lavoine and Misra defined the Stieltjes transform by introducing the space 3>'(d) in
[3] and f'(r) in [4]. As in [8] we give the definition of the Sp-transform in a little
different notation.

The space f{p), p e U\( — No), is the space of distributions with supports in [0, oo)
such that ftf\p) iff there exists keN0 and locally integrable function F with
supp F <= [0, oo), such that

(a) f = DkF;
(2-1)

(b) f. |F(t)|(t+ /?)- '-*A<oo for P>0
o

(D is the distributional derivative). Obviously, fXp)<^/\p + p), peN0.
If instead of (2.1) (b) we suppose that there exist C = C(F) and e = e(F)>0 such that

(c) |F(x)|SC(l+x)p+*~1~<! if x^0 (2.1*)

363

https://doi.org/10.1017/S0013091500026754 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026754


364 S. PILIPOVlC

the corresponding space is denoted by J\p). Obviously J\p) <= f'(p), peU\( — No). The
following implications hold ([8]):

for

'(p), for p>-k, peU\(-N0).

The Stieltjes transform Sp, peU\( — No), of a distribution fef'(p) with properties
given in (2.1)(a),(b), is a complex-valued function (Spf) defined by

(Spfl(s) = (p)k] F(t)(t + s)->-kdt, s6C\(-oo,0], (2.2)
o

where (p)k = p(p + l) ...(p + k-l), k>0 and(p)0 = l.
For convenience we take that determination of (s + t)~"~k (also for any z~p~5, seN0,

which occurs in the paper) for which arg(s + t)~p~'I(argz~p~s, SG f̂ J0) has its principal
value.

It is known ([4]) that (Spf) is a holomorphic function in C\( — oo, 0] and

)(5)) fe/'(p + p), (2.3)

(/<p) also denotes the pth distributional derivative).

3. Preliminary lemmas

Let t]>0, teU. Following Sumner [9] we denote by Cm, the contour in C which
starts at the point — t — ir\, proceeds along the straight line lmz= —rj to the point — ir\,
then along the semicircle |z| = /?, RezSO to the point ir\ and finally along the line
\mz = r\ to the point —t + ir\. We notice that these contours were observed in [9] only
for (>0.

Let

u,t) = K1(t-u), t,ueU, t±u

where

K1(x) = x-1((ri-ix)->'-(r1 + ix)-<>), xeU\{0}, r,>0.

We need the following identities:

i [l+u)"^ dz = -K(u'^u>0' IeR' l±u' '?>0-
(for t>0 this was quoted in [9, p. 180])

tydt^i-iyd'Kfatydu', t,ueU, u±t, r]>0.
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By Leibniz formula we have

\d'K(u,t)/dti\^Cl £ | t -H|- ' -1 + r ( i j 2 + (t-u)2)-("+r ) /2

r = 0

where C 1 = 2max{(j)( i -r)!(p) r ; O ^ r g i } . Thus, with C 0 = ( i + \)CU there holds

| | " ) 2 ) " ' ' / 2 (3.2)

Up to the last section we shall suppose that p > 0.
We denote by J'(p)(p>0) a subset of J'(p + l) such that feJ'(p) if in (2.1)(a) F is

continuous and if instead of (2.1*)(c) there holds

(d) |F(x)|gC(l+x)'-£, x^O. (2.1**)

for some C>0 and some £>0. (We choose e such that p — £>0.)

Lemma 1. Let F be a continuous function on U with s u p p F c [0, oo) and let (2.1**)(d)
hold. Then for every keN0 and toeU

J F(u)(dkK(u,t)/dtk) (3.3)
= '0

Proof. Let t o > l and / = [t0—j, to+j]. We shall prove that for any ieN0, the
function d'K{u,t)/dt' is a continuous one for (u,t)eUxI, u±t (and has removable
singularities on the set of measure zero in U2) and that the integral

converges uniformly on /. This will imply the assertion.
We split the last integral:

(o+l ° \

J + j \\F(u)diK(u,t)/dti\du.

From (2.1**)(d) and (3.2) we obtain that the integrals J\ and J3 converge uniformly in /.

Let

{ K(u,t) u + u (u,t)eU2.

2 / o + l = t,
We shall prove that this function is a smooth one on / , = [ t 0—l,to + l ] x [r0—i. '

E.M.S.
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On setting u = u, t = u + ntg<p, we obtain

. . . ,. „ . . .
H(u, u + ntgcp) = Hl(4>) = rf

2icosf>+l4) (l-(p<f>)2/3\

The function H^cp) is an analytic one in [arctg( — I/In), arctg(3/2>/)] <= [ — n/2,7t/2]. Since
dH/dt = {dHJd<p)(cos24>h)• • • we obtain that H{u,t) is a smooth function in It.

^ t o ^ l . then we put

and by the same arguments as above one can prove that Lemma 1 holds.
If to<0, then the integrand in (3.3) is a smooth function of the variable t on an

interval [to — h, to + h], where we choose h such that to + h<0, and there is no longer the
need to remove the singularity at u = t. So by (2.1**)(d) and (3.2) the assertion of
Lemma 1 follows.

Lemma 2. Let F satisfy the conditions of Lemma 1, and let

<f>i(t)= J \F(u)d(K(u,t)/dt'\du, teU, ieN0. (3.4)
— oo

(i) There exist constants K(i, n) and polynomials p,(t) such that

ten, ielM.

(Notice that K(i, rj) depends on F, as well.)

(ii) There exist a constant Ko (which does not depend on n) and a polynomial po(i) such
that

ri'4>o(i)^Kop0{t), ten.

Proof, (i) Let t > 1. We have

/l - 1 1+1 oo \

M i + J + J H\F(u)#K(u,t)/dt'\)du = J1-
\ 0 ( - 1 1+1/

>+J3-
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By (3.2) and (2.1**)(d) we have

f v ' ' du
6 \t-u\'+i(ri2 + (t-u)2y12

t-1

J du^CC0{

because for r> l and ue(0 , t - l ) , (t-u)i + i(r\2 + (t-u)2)pt2>\.

j <rr 1
3 = V | t u | '

Since p-£>0, from (2 + r + «)"~*^2''~<!((2 + t)/'~e + up"<!), u>0, we obtain

For J2
 w e have

r+l

J 2 ^ sup {|F(II)|} J |a'X(«,
I < < + 1 1

Since the function H(0, s), se[— 1,1], where H(u, t) is defined in the proof of Lemma 1,
is a smooth one, we obtain that for some constant Mf which depends on t\

Estimations for J u J2 and J3 imply that the assertion holds if t> 1.
Let 0 ^ t < l . Then we have

l\)du

and by the similar arguments as above one can prove that the assertion holds.
If £<0, there is no need to split the integral in (3.4) and the assertion follows by the

arguments given above.
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(ii) Let t>l. From the first part of this lemma we conclude that only in the
estimation of the integral J2, the constant K(i, n) really depends on n. But, on setting

4 i

in the same way as in the proof of Lemma 4(b) from [9], one can prove the assertion.
For 1^1 we have to use arguments given above.

Lemma 3. Let F be a continuous function on R with suppFc [0, oo) and let (2.1**)(d)
hold. Then

lim ^ - ] F(u)K(u,t)du = F(t), teU.

Proof. For t^O the proof follows from [9, Lemma 4(c)] since for enough large R

lim ^-1 F(u)K(u,t)du = 0.
,-,0+ 2in R

Since p > 0 and

we obtain

lim 1— ] F{u)K(u,t)du = 0, r<0.
, -o + 2in -a,

The proof is complete.
If feJ'{p), then for teU we have
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The last equality holds on the basis of the uniform convergence of

J L ( ? H ^ * ror Z6C--
Thus we have (by (3.1))

p j (z + t)"-1(Sp+1/)(z)<iz = ( - l ) V ? F(u)(dkK(u,t)/duk)du, teU.

Lemma 2 implies that this integral defines a tempered distribution.

4. The main result

Theorem 4. Let feJ'(p). Then for every 4>e£?

lim ( W J

Proof. We have

2in

=x7-(p)* + i( | (z + t)"~i(Sl>+k+lF)(z)dz, <f>(t)\ (by (2.3))
\ iji /

2in V

= — T - ^ ( j F(u)[ J +k + 1 dz \du,4>(t)\ (by the uniform convergence)

J F ( M ) ( I ? J tzVly*1 dz)du'^' (by the uniform convergence)
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=T^ 1 J F{u)(dkK(u,t)/dtk)du)mdt

=jr- J T T ( ? F(«)/C(M,t)dMJ0(f)<it, (by Lemma I)

1) J / J F(u)K(ut)du \<t>W(t)dt, (by partial integration).
- 00 \ - 0 0

Thus, by Lemma 3, Lemma 2(ii) and Lebesque's theorem we obtain

The proof is complete.

Let us notice that if / e J'{p) n J\p) then we have —p{Sfi+lf)={SlJ)', and Theorem
4 can be formulated in a way more similar to [9].

Example. Let p e M\( - No), p > 1 and a ̂  0.

since

pc-a , x^fl
<5(*>(x - a) = F(*+ 2)(x) where F =^

lO, x<a

We have

-k, seC\(-oo,0].

Theorem 4 implies that for the distribution determined by the function

z' teU'

lim <l>v{t) = 8w(x-a) in
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5. Remarks

There is an easy way to give the complex inversion formula for Spf, where p e R\( — No)
and / e J\p). This formula is not so "natural" as the quoted one in Theorem 4 but we
shall give it here for the sake of completeness.

If feJ'{p) ((2.1)(a) and (2.1*)(c) hold), peOJ\(-N0) and if F is a continuous function
then, using [9, Theorem 4(a)] and Lemmas 2 and 3, one can easily prove that

converges to

as>?-0+ (4>eSf).
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