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Let A be a complex Banach algebra with unit e of norm one. We show that A can be
represented on a compact Hausdorff space Cl which arises entirely out of the algebraic and
norm structures of A. This space induces an order structure on A that is preserved by the
representation. In the commutative case, Cl is the spectrum of A, and we have a generalization
of Gelfand's representation theorem for commutative complex Banach algebras with unit.
Various aspects of this representation are illustrated by considering algebras of n x n complex
matrices.

This paper is a revised and expanded version of the unpublished work [8] by the first
author.

The following notations are used throughout the paper: cl denotes closure, co denotes
convex span of, A' is the dual space of A, w*-topology = a{A', /4)-topology, and maximal left
ideal is abbreviated to m.l.i.

1. A wedge constructed from the algebraic and norm structures of A. Let 7 be a m.l.i. of A.
Since J is closed and e is at unit distance from /, there exists (by the Hahn-Banach theorem)
an element / i n A' such that/(7) = (0) and/(e) = 1 = | | / | | . Hence the following sets are
nonempty:

B = {fsA':f(e) =

M = {feB :f(J) = (0) for some m.l.i. J of A},

Cl = w*-cl M,

S = w*-cl co M,

C = |J {IS : X ^ 0},

K' = C'-iC,

K = {xeA:Ref(x)2L0 for all JeK'}.

The sets B, S, and Cl are compact and Hausdorff in the w*-topology. We have Cl s S £ B
and B and S are convex. Our aim is to represent A as a subspace of C(fi), the space of all
complex-valued continuous functions on Cl with sup norm, and to consider various aspects of
this representation (Examples: In general, M is not w""-closed and not in one-to-one corre-
spondence with the maximal left ideals).

We observe here that, if we let H(A) = {xeA :f(x) is real for all / i n B} and K(A) =
{xeA :/(*) ^ 0 for all / in B}, then K(A) + iK(A) s K. In fact, K(A) + iK(A) £KB£K,
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where KB = {xeA : Ref(x) ^ 0, Imf(x) £ 0, for all / in B}. We show below (§ 2) that
A = K-K so that, if K(A) + iK(A) = K, then A = H(A) + iH(A), and hence [6] A is a C*-
algebra. Conversely, if A is a C*-algebra, then A = #04) + iH(A) and also (see, for example,
[3, Proposition 2.9.1, Theorem 2.9.5]) M = extB, so that KB = KanA, ifxeK, then x = y+iz
(y, zeH(A)), which gives, for all / in B, f(y) = Re/(x) ^ 0, /(z) = Im/(x) ^ 0, and so
K E K(A) + iK(A). Thus ^ is a C*-algebra if and only if K(A) + iK(A) = K.

The set M also arises in a somewhat different context. In connection with the notion of
numerical ranges, F. F. Bonsall [2] considers the subset of B given by

D — {fsB : Lj-is an m.l.i. of A},

where

Jx being the principal left ideal generated by x. It is easy to show that M = D. We remark
that the definition of M is more direct than that of D.

Since 0 £ S, C" and ^ ' are cones; C" is contained in the set of all those functionals/which
support the unit ball at e; the intersection of the associated hyperplanes ({JC :f(x) = | | / | | =
/(e)}) is {e} (Bohnenblust and Karlin [1]), that is, e is a vertex of the unit ball.

The set S' = co {Su(-/S)} is a w*-compact base for K'. Since w*-convergent nets are
norm bounded and S, S' are w*-closed, it follows that such nets in C" or K' are contained in
suitable nonnegative multiples of S or S' which are evidently w*-closed and therefore contain
the limits of these nets. Thus C" and K' are w*-closed. Excepting M, the sets discussed so
far are also norm-closed. Using the facts that e and ie are in K (§ 2), it can be shown that C
and K' are also normal. It is clear that K+K^K and XKs K for all A ^ 0, that is, K is a
wedge. Here, in letting K' induce K, we are following the definitions of H. H. Schaefer
[7, p. 214].

2. Properties of the wedge K. Let xeA. Then

(1) xeK if and only if Re/O) >. 0 and Im/(;e) ^ 0 for all/in C (or, equivalently, 5 or
QorAf);

(2) x e ( - K)nK if and only if/(x) = 0 for all/in K' (or, equivalently, C or S or Q or M);
(3) since/(e) = | | / | | for all/in C, (1) shows that e, ie and (hence) u = e+/e are in K;
(4) Re/(«) = Im/(«) = 1 for all / i n M;
(5) /f is weakly closed and (hence) norm-closed.

Let/=/x- i f 2eK' , so that/x and/2 are in C". From (4) we have, for all x in A,

Re/(«+x) = f,{e) +f2(e)

This shows that K contains the w-translate of the unit ball. Therefore u is in int K (interior
of K); hence it is an order unit, and K generates A.
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It is easy to see that, if txu-xeK for all a > 0, then - x e K , so that K induces an Archi-
medean ordering denoted by £ .

If xe int K, then x- Xue Kfor some A > 0; hence, from (1) and (4), we have, for all/in M,
fix) ^ 0 (indeed, 0 < A g min (Re/(x), Im/(x)}). Since, for each m.l.i. / of A, f(J) = (0)
for some/in M, one has that x is not in any m.l.i. Therefore x is left regular. Thus int K is
contained in the principal component of the set of all left regular elements of A.

For each xeA, the set x{M) = {/(x) : / eM} contains the set ff,(x) = {XeC : x—Xe is not
left regular}, which may be called the left spectrum of x, and which, in the commutative case,
is the spectrum of x.

Since ie e K and — e = (/e)2 £ K, K is not closed under multiplication; in contrast, Kung-
Fu Ng [5] obtains representation theorems for Banach algebras with given cones closed under
multiplication.

If x is in every m.l.i., then/(x) = 0 for all / i n M, so that, by (2) above, xe( — K)nK.
This shows that, if K is a cone, that is, if (0) = (—K)nK, then A is semisimple.

3. Two seminorms on A and their properties. Since u is an order unit for A and (therefore)
for Ao, the underlying real space of A, the following is an order unit seminorm on Ao:

|| x ||u = inf {a > 0 : - a u ^ x g au}.

Since the ordering is Archimedean, this seminorm is a norm on Ao if and only if A" is a cone.
For the same reason, the || ||u-unit ball is the order-interval [—u, u]. Since K contains the
w-translate of the unit ball, | |x| |u g | |x | | , so that [—w, M] contains the given unit ball.

Since fi is w*-compact, the usual embedding of A into C(Q) and the restriction of the
sup norm to A, yield the following function seminorm on A:

| | * | | o = s u p { | / ( x ) | : / e n } .

Here Q may be replaced by M or S. Tkis is a norm if and only if K' — K' is w*-dense in A',
which is so (by property (2) of the wedge K) if and only if AT is a cone. We also have || x | | n ^
| |x | | , for all x in A. However, unlike the order unit seminorm, the function seminorm is
absolutely homogeneous for complex scalars.

PROPOSITION 1. On Ao, || • ||u and || • | | n are equivalent seminorms.

Proof. For all/in SI, Re/(«) =/(e) = 1; hence, if —au ̂  x ^ ecu for some a > 0, then
au±xsK, or, equivalent^, | Re/(x) | <; a and | Im/(x) | ^ a. Thus |/(x) | g yjla. and

On the other hand, for all/in Q, | Re/(x) | ^ |/(x) | g 11 x 11 n ; equivalent^, Re/( -11 x 11 n u)
^ R e / ( x ) g R e / ( | | x | | n M ) . These inequalities hold with Im in place of Re; hence — | | x | | n w ^
x = | |*| |nM> that is,

l l x l l«^llx l |n-
The assertion follows.

The next proposition is, essentially, well known. We are indebted to the referee for
the proof given here.
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PROPOSITION 2. Let the wedge K be a cone. Then the following statements are equivalent:

(a) K is normal with respect to the given norm.

(b) || • || and || • ||u are equivalent norms on Ao.

(c) The || • || and || • ||u duals of Ao are identical.

Proof. Since Kis a cone and the ordering is Archimedean, || • ||u is a norm on Ao. Hence,
if K is normal, [—u, u] is norm bounded, i.e., \\x\\ ^ w | | JC|L for all x in Ao and for some
constant m > 0. Since we already have (aj=>(b). Conversely, since || • ||u is
monotonic on K, if || • || is equivalent to | • ||u, then AT is normal.

That (b) => (c) is evident. Conversely, if the dual spaces are identical, then the dual norms
are equivalent (by the closed graph theorem and the fact that there is an inequality one way)
and hence, by the Hahn-Banach theorem, the norms on Ao are equivalent.

4. The Representation Theorem.

THEOREM. Let A be a complex Banach algebra with unit e of norm one and let the sets
defined in § I be constructed. Then there is a mapping <j> from A into C(Q) such that

(a) <f> is a continuous linear homomorphism from A to a subspace of C(Q);
(b) with respect to the cone P of functions in C(Q) with nonnegative real and imaginary

parts, the homomorphism <p is also an order homomorphism;
(c) the homomorphism <f> is an isomorphism if and only ifK is a cone;
(d) if K is a cone, then <j> is a homeomorphism if and only if K is normal.

Proof Let (j> be the evaluation mapping of A into C(Q); i.e., let (p(x) = x, where
x{f) =/(jt). Then use the fact that || • | | n ^ || • || to establish that </> is continuous and hence
that (a) holds.

(b) follows by observing that xeK if and only if 0 ^ Rex(f) and 0 ^ Imx(f) for a l l /
in fi, which is so if and only if x e P (as an element of C(Q)).

In § 2, property (2) of K shows that A" is a cone if and only if x = 0 whenever x(f) = 0
for al l /ef t , which is so if and only if x = 0 whenever x | n = 0; (c) follows.

Let K be a cone. From (c), the evaluation mapping is a continuous isomorphism. It is
a homeomorphism if and only if the norms 11 • 11 and 11 • 11 n are equivalent, which is so if and only
if || • || and || • ||u are equivalent norms on Ao (since || • ||u and || • | | n are equivalent on Ao, by
Proposition 1). By Proposition 2, this is so if and only if K is normal, and (d) follows.

Remark. If A is commutative, then M is precisely the set of nonzero multiplicative linear
functionals, which is w*-closed, so that M = Q. The evaluation mapping reduces to the
Gelfand transform and we thus have a generalization of Gelfand's representation theorem.

5. Examples. These are drawn from the algebra E = Mn(C) of all n x n (n ^ 2) complex
matrices. It can be considered as the space of linear operators on C , the space of «-tuples of
complex numbers.

In what follows, an element of E will be denoted either by its entries or by its column
vectors enclosed within square brackets. Thus x = (a(j) = [blt b2,. •., bn] denotes an arbitrary

https://doi.org/10.1017/S0017089500001877 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001877


132 A. C. THOMPSON AND M. S. VIJAYAKUMAR

element x of £ with column vectors bu b2,. •., bn a n d / = (py) denotes an arbitrary element of
E', the algebraic dual of E; unless the contrary is stated, the indices range from 1 to n.

One can verify that the operator norm on E induced by the maximum modulus norm on
C , its dual norm, and/(x) are given by

Z Z y u
i j

With respect to this norm, £ is a noncommutative Banach algebra with unit / (the identity
matrix) of norm one.

The maximal left ideals (m.l.i.) of E are its principal left ideals generated by elements of
rank (n -1 ) (see, for example, [4], pp. 230-231). These generating elements can be chosen in
" row-reduced echelon form " as follows:

xo = [O,e1,...,en-1'],
(1)

r

where the unit basis vectors e{ are regarded as column vectors, l g ( ^ j ^ n - l , and a,eC.
In Propositions 3,4, and 5 below, we show that certain properties of the set M which hold

in commutative complex algebras are not true in general.

PROPOSITION 3. In general, the set M and the m.l.i.'s are not in one-to-one correspondence.

Proof. The set B (see § 1) for the Banach algebra E is given by

B = {/= (p y )eF : | Pu | £ P,, £ 1 = ! ? „ } •
r

The extreme points of B are given by

#i = [>! ef, <x2 ej, ...,eh . . . , a B e , ] ,

where af = 1 = | a, | (/ ^ i).
The assertion follows by proving that each gt determines and belongs properly to a convex

subset of B, each element of which annihilates the same m.l.i.
It is enough to consider gu for which ax = 1 and | a, | = 1 (2 ̂  t S «)• Define A, by Ax =

(l/an), A, = At aj (2 ̂  / ̂  n - 1 ) , and An = 1. Thus | X, \ = 1 for all i. The following are n
elements of extB (the set of extreme points of B):

fr = X7\X,er,X2e ,Aner] (r = 1, 2 , . . . , n). (2)

The element
n - l

x = [e1; e 2 , . . . , en_ l5 - Z A; ej] (3)
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has rank (n— 1), so that the principal left ideal Jx generated by x is maximal. An element c
of Jx is given by

n - l

C=[c1,C2,...,Cn-1,~ £ kjCj],

where Cj are arbitrary vectors of C . Regarding er in (2) as linear functional on C", one has

fXc) = W z */«» cj)-(er, V V,.)} = 0.
j=l j=l

Therefore each/r and all linear combinations offu . . . , /„ annihilate Jx. Conversely, each
m.l.i. generated by an element such as x in (3) above is annihilated by elements such as/ r in
(2) above, and their linear combinations.

The assertion follows.

Remarks, (a) In the above example, some m.I.i.'s have unique annihilators in B. The
annihilator of Jxo (see (1) above) i s / = (/»y), whose only nonzero entry is/?lx = 1; that of JXm,
for |a, j < 1 for all t, i s / = (ptj) such that/»(s+1)t = a, (1 ^ t ̂  s),pis+i)ls+1) = 1, a.ndpu = 0
otherwise.

(b) Since ext.fi £ M, we have S = B, C = the cone generated by 5, and K' = C'-iC.
The wedge K is described by

n

K = {x = (ah)eE: £ |a,y| ̂ min{ReaH,Ima,,}}.

It is clear that # i s a cone. Hence || • ||u and || • ||n are norms. Indeed, the latter is the given
norm and

n „

|| x \\u = max { Z | au |+max {| Reait |, | Im ati |} : i = 1, 2 , . . . , n}.

Hence the representation of E on fi is an isometric order isomorphism of E into C(Q) and
AT is a normal, closed, generating cone.

PROPOSITION 4. In general, the set M depends on the norm.

Proof. For M2(C) with the above norm, it is readily verified that/0 = annihilates

and is in M. If, now, we consider M2(C) with

the /j -operator norm,/0 is no longer of norm 1 in the dual space and so is not in the new set

M. Conversely, is in the new set but not in the former one.

Remark. This example corrects the oversight in [6] by which it was assumed that M is
independent of all equivalent Banach algebra norms p such that p{e) = 1. This oversight made
it appear that K is a cone if and only if A has no nonzero topologically nilpotent elements.
Clearly, E = Mn(C) has such elements and we have seen that the wedge K (above) is a cone.
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PROPOSITION 5. In general, the set M is not w*-closed.

Proof. We show that M can even be dense in B. Let E be the noncommutative algebra
of all 2 x 2 upper triangular complex matrices. This is a Banach algebra for the /^-operator
norm. The m.l.i.'s are of the following form:

o a-Ji: with elements of the form
iy t j

J2k: with elements of the form (A: e C).

The annihilators of these in B are respectively given by

and

CO

Therefore no point of int co {/0, g0} annihilates either Jt or J2k. The assertion follows, as
M is the complement of this interior in B.

We observe that throughout the preceding discussion maximal left ideals can be replaced
by maximal right ideals (m.r.i.). Corresponding to these two cases, we now let the sets M be
denoted by M, and Mr, respectively.

PROPOSITION 6. (a) In general, M, =£ Mr; (b) however, there exist unital noncommutative
Banach algebras for which Mx — Mr = M.

Remark. If M, — Mr, then, whether or not the algebra is commutative, the spectrum of
each element x of the algebra is contained in the set {f{x) :feM} and int/iTis contained in the
principal component of the set of all regular elements.

Proof, (a) This follows from the previous example, whose m.r.i.'s are / t and I2k with

elements respectively of the forms and (a, keC).

Let / = e B. If y = 0, then / annihilates It; if y ± 0, then it annihilates I2k with

k = Py'1. Hence Mr = B, which properly contains M,.
(b) This is true for M2(C) with the /^-operator norm. For its m.r.i.'s are / t and I2k with

elements respectively of the form

[-1 _
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The annihilators in B of these ideals are respectively of the forms

= [i J]

(hk) ••

where p = \k\/k', r = \k\/kk', q = k/k', s = I/A:', k' = 1 +1k | .

hk (k-£0) have, unlike Jt and 72O, unique annihilators.
Therefore

M r =UM, . ( l ^ / g 3 ) ,
where

| o oJ-U >
with

M3k = int co

(k~ is the conjugate of k).
M, can be computed from the general case discussed above and shown to be equal to Mr.
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