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ABSTRACT 
We present calculations of favored dynamo modes when advection of ambient magnetic fields onto accretion 

disks is important. These models are relevant for compact binary systems and young stellar objects and can be 
extended to active galactic nuclei (AGNs). The dynamo equation, including the standard a-effect, is modified to 
take into account advected magnetic fields. Vacuum boundary conditions are assumed outside the disk and the 
dynamo number switches sign across the equatorial plane. For the local steady state problem, critical dynamo 
numbers for various modes are obtained analytically. Our motivation is to investigate whether the dominant 
dynamo generation of quadrupolar magnetic fields and accretion of dipolar magnetic fields is likely to lead to 
particle acceleration in the form of jets. The results shown here are for a particular choice of boundary conditions 
and geometry of the advected field. Besides examining other choices, we shall calculate growth rates for different 
modes, and the influence of the initial seed field configuration on the evolution of the magnetic fields in subse­
quent work. 

Subject headings: acceleration of particles — accretion, accretion disks — binaries: close — galaxies: nuclei — 
MHD — stars: pre-main-sequence 

1. INTRODUCTION 

Instances of particle acceleration in the form of bipolar flows 
are common to many classes of objects including active galac­
tic nuclei, binary X-ray sources, and protostars. Several papers 
have proposed hydromagnetic mechanisms which utilize 
strong poloidal magnetic fields emanating from an accretion 
disk (which is believed to exist around the central object) to 
drive these flows (Blandford & Payne 1982; Lovelace, Wang, 
& Sulkanen 1987; Pelletier & Pudritz 1992). The commonal­
ity of these mechanisms is that they invoke vp || B„ under steady 
axisymmetric MHD flow (Chandrasekhar 1956; Mestel 
1961). 

Our concern in this paper is to examine whether a dynamo 
operating in the ambience of an advected external field can 
produce the required geometry for switching on the jets. If 
indeed these mechanisms are responsible for the jet phenome­
non, then the reason for one-sided radio sources seen among 
AGNs may also be explained within the framework of the accel­
eration model. Blandford (1989) suggested that a dynamo 
generating a quadrupolar field in addition to an advected field 
with dipolar symmetry may produce a significant difference 
between the poloidal field strength on two sides of the disk 
leading to a strong and a weak (and hence unseen) jet in a few 
sources, even though a majority of one-sidedness may be attrib­
uted to the relativistic beaming effect. We shall examine this 
intriguing possibility of a dynamo producing a field of opposite 
symmetry to that of advected external field. 

The dynamo that we shall consider is of the a — w variety 
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operating in a Keplerian thin disk. The mean helicity parame­
ter a is given by (Zeldovich, Ruzmaikin, & Sokoloff 1983, p. 
154) 

a = /2<o-Vln(p), (1) 

where / is the turbulent length scale, ce is the angular velocity, 
and the density scale height V In (p), will vary in the different 
regions; also, departures from Keplerian flow will result in dy­
namos other than the a - w type and consequently fields of 
different symmetry. It will be interesting to study the fields and 
the global modes resulting from dynamos in the outer region 
(i.e., galaxy or outer accretion disk) providing the seed field for 
dynamos operating in the inner region (outer accretion disk or 
inner accretion disk). Another possible application of this idea 
could be in accretion disks around neutron stars and X-ray 
binaries where the star provides a strong ambient dipolar field 
which may be advected inward and enhanced by long-term 
dynamo action to produce strong poloidal field lines. In this 
paper we present calculations of the local steady state problem 
for a simple case of an ambient dipole field. 

2. MATHEMATICAL FORMULATION 

The standard kinematic dynamo equation has the form 
(Parker 1955, 1971; Krause & Radler 1980; Moffat 1978): 

V X (v X B + aB) + V X TJ(V X fl) = 0 , (2) 
at 

where v is the laminar velocity, T\ the turbulent resistivity, and 
<xB the "a-effect" generating term arising from the helicity of 

963 

https://doi.org/10.1017/S0252921100078398 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100078398


964 MANGALAM & SUBRAMANIAN Vol. 90 

the turbulence. Cylindrical polar coordinates (r, <p, z) are used 
throughout. The following assumptions and approximations 
are made: (1) azimuthal symmetry in both velocity and mag­
netic fields; (2) a is time independent; (3) T? is taken as uni­
form; (4) the dynamo is of the a - a> type, with the effect of 
differential rotation dominating over the a-effect; (5) the thin 
disk approximation is made, so (Ruzmaikin, Shukurov, & So-
koloff 1988) d/dz > d/dr; (6) Since we are concerned with the 
problem of advection the important time scales of the problem 
are diffusion rd, and radial drift rr, and their ratio is given by 

rlvt 

~uz1. (3) 

where v, is turbulent velocity and u is the radial drift velocity. 
For the region under consideration in our problem this ratio is 
large, but we assume that the external field is strong enough 
that its advection term should be retained in the expansion. 
We also assume that region is far enough from the central 
object that relativistic effects of the light cylinder, etc., can be 
ignored. We introduce the magnetic stream function V, which 
determines the poloidal field strength and is of utility in calcu­
lating the mass flux via vp oc Bp: 

B„ - V ^ | X <j> . (4) 

do only a local analysis (i.e., variation only in z) so the bound­
ary conditions (7)-(9) are greatly simplified. 

3. LOCAL ANALYSIS 

We look for critical steady state modes by setting the time 
derivatives in equations (5)-(6) equal to zero, in which the 
dissipation is compensated by generation and advection of 
fields. Neglecting radial diffusion but retaining the radial drift 
coupled to the external field, applying the approximation (6) 
and ignoring self advection we get 

dz* 
Da{z) Br = -DB\a{z) - R, 

d2Be
z 

dz2 

B 
H{z) 

R„ 
R»Bi + 

dBr 

dz 

(11) 

(12) 

where the dynamo number D = RaR„, Rw = Gh2jr\,G being 
the shear term and z is scaled by h. Ru and Ra = a0h/ri are 
useful dimensionless numbers. Now we estimate 

R„ = 
hu hu 

(13) 

and the scaled helicity is taken to be 

Incorporating the above assumptions and using equation (4) 
we obtain the induction equations for the poloidal magnetic 
stream function * and the toroidal field B+: 

d 11 d 

jt-VTrrrTrr^'2ruTr ^ = aB4>r, (5) 

dt 
JL(LJL) _il 
dr \ r dr) dz2 

d 
+ u — 

dr 
BA 

dr dz B.f,. (6) 

We shall superpose the external and excited fields in the 
following manner for mathematical simplification of the prob­
lem: 

* = i> + V, B^ = B for \z\ < h, the disk height; (7) 

* = V, ^ = 0 for \z\=h; (8) 

I A " - ^ for \z\ >h; (9) 

where *̂* is the external magnetic field being advected, \[/ is the 
generated field, and \p" is the intermediate vacuum field at z = 
h which asymptotically matches to the external field. Since the 
seed field is curl-free we can use a general form: 

a(z) = aoH(z), H(z) = d(z) - 8(-z) , (14) 

where 9 is the step function. 
We note that from equation (11) that the particular solution 

will have no symmetry if Be
z and Be

r have opposite symmetry 
and that it will have even (odd) symmetry only when both are 
odd (even) since the operator acting on Br is odd. The homoge­
neous solution indeed can have either symmetry, and we there­
fore note that the radial field can be asymmetric. 

The seed field used in this analysis is the classical dipole field 
expanded to the lowest order terms in / = h/r: 

B*{z) = -3 / z , B%(z) = - 2 / V + 1 (15) 

where the z is scaled as before and the magnetic fields are 
scaled by JEf̂ (O). Since Be

r and Be
z are not simultaneously odd 

or even, the general solution has no symmetry and the bound­
ary conditions on both sides of the disk must be included. The 
general form for the solutions above and below the disk are 

V3" 
B+(z) = Cieyz + c2e-yz'2 sin J - yz 

V3" Ru 
+ c 3 ^ 2 / 2 c o s M f T Z + 3/z + 4 / 2 - f , (16) 

D 

V(r,z)= \ a(k)e*v(-k\z\)rJx{kr)dk, (10) Br{z) Qe " + C^Z>1 S in [ 2 yZ) 

where forms for the spectrum a(k) can be tried out in the 
global analysis (i.e., variation in r and z). In this paper we shall 

+ C 6 ^ 2 c o s ( ^ 7 z ) + 3 / z - 4 / 2 ^ , (17) 
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FIG. 1.—(a) shows the dependence of Ru, the advection parameter, on the dynamo number for the higher eigenmode and (b), for the lower eigenmode. 
The lower mode exists only for Ru > 1.4. 

where y = —V D. The boundary conditions are given by 

[Br](0) = [B'r](0) = [B"r](0) = 0 , (18) 

as the third derivative should be defined at 0, the equator, and 
similarly we demand that for the azimuthal field: 

[fi](0) = [B'](0) = 0 , (19) 

while they vanish at boundaries: B(±\) — 0 to match to vac­
uum fields. The boundary conditions furnish seven algebraic 
equations for the six unknown coefficients and y. Therefore 
the critical dynamo number can be obtained by numerically 
solving the equations for a set of inputs of Ra, Ru, and/. Note 

that the edge conditions on Br cannot be fixed by a purely local 
analysis. The solution presented here is yielded by a particular 
choice of boundary conditions adopted, i.e., a smooth match 
of the fields at the equator. More general boundary conditions, 
taking into account the radial structure of the fields, will be 
explored in a detailed paper in preparation (Mangalam & Su-
bramanian 1994). 

4. RESULTS 

The parameter Ra which is of order unity and taken to be 1, 
merely scales the azimuthal field and hence has no qualitative 
impact on the nature of solutions. Ru given by equation (13) is 
estimated to be of the order of few typically (v, ~ u) but can be 
large close to the central object and negligible near the bound-
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FIG. 2.—(a) shows the behavior of the radial field (the dashed line is the total field which includes the external field) and (b), the behavior of the 
azimuthal field vs. the height of the disk for the 7 = 1.4315 mode. The fields have nearly odd symmetry with B, pointing inward and B positive for z > 0. 
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FIG. 3.—(a) shows the behavior of the radial field (the dashed line is the total field which includes the external field) and (b), the behavior of the 
azimuthal field vs. the height of the disk for the 7 = 0.1045 mode. This mode has no symmetry in the radial field and is pointed inward through out the disk. 

ary of the disk. The geometry of the external field as deter­
mined by / has significant effects toward the center. The re­
gion that we consider in our problem has f< 0.1 since this is a 
non-relativistic calculation. So we use Ru = [0,10], / = z/r = 
[0, 0.1] as the ranges for the inputs; these cover the possible 
values corresponding to stellar and AGN disks. 

The eigenvalue (7 = - \ D.) is solved for by numerically 
finding the roots resulting from the condition that the determi­
nant of the boundary condition equations is zero. We find that 
there are basically two modes excited for the parameter space 
explored: they have 7 of ~0.1 and 1.43. The latter mode we 
find to have very nearly odd symmetries in radial and azi­
muthal fields, but the former mode has no symmetry in the 
radial field and is pointed inward throughout the disk. The 
mode with the lower dynamo number is excited only if Ru is 
greater than a critical value which is —1.4 for / = 0.1; and for / 
greater than a critical value of 0.08 for Ru kept fixed at 2 (see 
Figs, la-lb). The (7 «=> 1.4) mode is universal and can be 
excited anywhere on the disk and decreases with /and asymp­
totes to 1.45 for large Ru. 

5. CONCLUSIONS AND DISCUSSION 

The basic result we find is that the universal mode is easily 
excited in the inner region (high / a n d Ru). The other mode 
has a significantly lower critical value of D. The ratio of the 
amplitudes of the magnetic fields for the two modes are found 
to be 

5 r ( 7 = 0.1) 
= 336, 

5 ( 7 = 0.1) 
= 0.05 

Br(y = 1.43) ' B(y = 1.43) 
for inputs o f / = 0.1 and Ru = 2. While both modes lack sym­
metry as expected, the 1.43 mode is nearly odd, with radial 
field negative and azimuthal field positive for z > 0 (see Figs. 2 
and 3). This geometry corresponds to the even z symmetry 
situation given in Lovelace, Wang, & Sulkanen (1987, their 

Fig. la) with an oppositely directed current (due to the anti­
symmetric nature of the toroidal field) and an odd radial mag­
netic field. The lower eigenmode could very well correspond to 
the asymmetric case where the radial field is one-sided. The 
ratios are, however, valid for a steady state and will otherwise 
vary with time depending on the growth rates of the individual 
modes. We note that these conclusions from a local analysis 
cannot be taken too seriously, and one ought to solve the 
global problem. In particular, the poloidal field geometry 
which is crucial in the acceleration mechanisms can only be 
obtained after solving for Bz. 

The expectation in kinematic dynamo theory is that the 
mode with a lower eigenvalue will also have a higher growth 
rate, but a situation wherein the back reaction of the fields on 
the fluid is included is more complicated. We also note that the 
eigenvalue we have found is lower than the value of 2.45 ob­
tained for the advection free problem which corresponds to a 
mode of even symmetry Pudritz (1981 a, b). It is likely that the 
prevalent field may not be completely dynamo generated, but 
interaction with external fields could help set up the environ­
ment for hydromagnetic disk winds. 

The global analysis should employ a general form for exter­
nal curl-free fields in equation (10) so one can experiment 
with the spectrum. A different form for the helicity (i.e., a oc z; 
Pudritz 1981b) may be physically more meaningful in accre­
tion disks than the step function used in this preliminary inves­
tigation of the problem which forces extra boundary condi­
tions at the equator. It is interesting that the problem can be 
reversed and solved for forms of «(z) for a given symmetry of 
the fields (Ruzmaikin & Sokoloff 1979). 
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