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ITERATIVE SOLUTION OF NONLINEAR EQUATIONS
OF THE MONOTONE TYPE IN BANACH SPACES

C.E. CHIDUME

Let E be a real Banach space with a uniformly convex dual, and let K be a
nonempty closed convex and bounded subset of E. Suppose T: K — K is a
continuous monotone map. Define S: K — K by Sz = f—Tz foreach z in K and
define the sequence {z,}5%, iteratively by zo € K, znt1 = (1 — Cn)zn +CnS2Za,
n 2 0, where {Cn}720 is a real sequence satisfying appropriate conditions. Then,
for any given f in K, the sequence {zn}a2¢ converges sirongly to a solution of
2+ Te = f in K. Explicit error estimates are also computed. A related result
deals with iterative solution of nonlinear equations of the dissipative type.

1. INTRODUCTION

Let E be an arbitrary real Banach space. A mapping T with domain D(T) and
range R(T) in E is said to be monotone [10] if the inequality

(1) lz — yll < |lz —y+ Tz - Ty)il,

holds for each z,y in D(T) and some ¢t > 0. If the inequality (1) holds for all t >0,
then T is called accretive [2]. The accretive operators were introduced independently
by Browder [2] and Kato [10]. If E = H, a Hilbert space, one of the earliest problems
in the theory of monotone operators was to solve the equation =+ Tz = f for z, given
an element f of H and a monotone operator T' (see, for example, (4, 6, 7, 9, 14, 15,
23, 24]). In [2], Browder proved that if T is locally Lipschitzian and accretive then
T is m-accretive, that is, (I + T)E = E, so that for any given f € E, the equation
z+ Tz = f has a solution. This result was subsequently generalised by Martin [13] to
the continuous accretive operators. Zarantonello [24] also proved that if H is a Hilbert
space and T is a monotone and Lipschitzian mapping of H into itself then z + Tz = f
has a unique solution in H.

A class of operators closely related to the class of accretive operators is the class
of dissipative operators. An operator A is dissipative if and only if (—A) is accretive
and A on E is called m-dissipative if (I — AA)E = E for A > 0. Browder (2] proved
the following theorem:
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THEOREM B. Let A be a single-valued dissipative operator on E which is locally
Lipschitzian on E = D(A). Then A is m-dissipative.

Recently, Ray [16] gave an elementary proof of Theorem B by employing a fixed
point theorem of Caristi, [5].

Iterative methods for approximating a solution (when one exists) of the equation
(2) z+Tz=f

have been studied by various authors. In [9], Dotson showed that if 7: H — H is
monotone and Lipschitzian with Lipschitz constant 1 (in this case T is called nonez-
pansive in the terminology of [11]), an iteration process of the type introduced by Mann
[12], under suitable conditions, converges strongly to the unique solution of equation
(2). In [6], the author constructed an approximation method which converges strongly
to a solution of the equation (2) where T: K — H is a monotone Lipschitzian operator
with Lipschitz constant L > 1 and K is a nonempty closed convex subset of H and T
has a fixed point in K. The results of the author {6] thus generalise the above result of
Dotson both in the domain of the operator T and in the range of its Lipschitz constant.
In [4], Bruck Jr., considered an iteration process, in Hilbert space, for approximating
a solution of the equation f € ¢ + T'z where T': H — H is a multivalued monotone
operator. He proved that if D(T') is an open domain of T in H and f € R(I + T) then
there exist a neighbourhood N in D(T) of Z = (I + T) ' f and a real number o; > 0
such that for any ¢ > o, any initial guess z; € N and any single-valued section T
of T, the sequence generated from z; by 2,41 =z, — (n + 47)_'1(::ﬂ + Tozs — f) re-
mains in D(T) and converges to T with estimate ||z, — Z[| = O(n~!/?). No continuity
assumption was made on the map T'. This result has recently been extended by the au-
thor [7] to L, spaces for 2 < p < 0o. The method used in [7] could not be modified to
yield any convergence result for L, spaces when 1 < p < 2. More recently, the author
[8] again considered the equation (2) in L, spaces for 2 < p < oo when T is single-
valued. Suppose E = L, (or &), p > 2, and K is a nonempty closed convex subset of
E. Suppose T: K — K is a monotone Lipschitzian mapping with Lipschitz constant
L > 1. Define the sequence {z,}32¢ by 2o € K, 2o41 = (1 — A)zp + A(f — Tz,,) for
n > 0, where A = [(p — 1)(1 4+ L)?]~!. The author [8] proved that {z,}%2, converges
strongly to a solution of equation (2). Moreover, convergence is at least as fast as a
geometric progression with ratio (1 — A)ll 2. Unfortunately, no convergence theorem
could be proved in (8] for L, spaces with 1 < p < 2.

It is our purpose in this paper to prove convergence theorems for an iterative
method for approximating a solution of the equation

(3) z+Tz=f
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in real Banach spaces much more general than L, spaces for 2 € p < 00. In particular,
our results will include all L, (and £,) spaces for 1 < p < co. In fact, we shall prove
that if E is any real Banach space with a uniformly convex dual E*, andif T: K —» K
is a continuous monotone map where K is a nonempty closed convex and bounded
subset of E, an iteration process of the Mann-type converges strongly to a solution
of equation (3) for any starting point zo in K. We shall also prove some related
convergence theorems for the iterative approximation of a solution of the equation

(1) z—Mz=f, A>0,

where A is a Lipschitzian dissipative operator on E.

2. PRELIMINARIES
Let E be areal Banach space and E* its dual. We shall denote by J the normalised
duality mapping from E to 28" given by
Jz={f* € E":||f*|I" = ll=* = (=, £},

where (, ) denotes the generalised duality pairing. It is well known that if E* is
uniformly convex then J is single-valued and is uniformly continuous on bounded sets
(see for example, [22]). Thus, by a single-valued duality mapping we shall mean a
mapping j: E — E* such that for each z € E, j(z) is an element of E* which
satisfies the following two conditions:

(w, 3(w)) = ll7C)l - flull s Nl ()l =l -

In terms of the single-valued duality mapping 7, a map A with domain D{A) and
range R(A) in a real Banach space E is called monotone if

() (Az — Ay, j(z —y)) 2 0,
for all z,y in D(A), (see for example, [10]). In the sequel we shall need the following
remarks:

REMARK 1. In {21, p.89], Reich proved that if E* is uniformly convex then there exists
a continuous nondecreasing function

b: [0, c0) — [0, o0)

such that
b(o) =0, b(ct) < cb(t) forall c>1,
and
Q) e + I < llel* + 2y, 3(<)) + max{lizll, 1} Iyl (181,

foral z,y in E.
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REMARK 2. Nevanlinna and Reich [17] have shown that for any given continuous non-
decreasing function 5(t) with b(o) = 0, sequences {},}52, always exist satisfying:
(i) 0<A,<1forall n>0;
o0
(ii) ¥ X, = o0,and

n=0

GH) 3 Anb(An) < oo.

n=0
If E=L,, 1<p< oo, we can choose any sequence {A,}32, in £*\ ¢! with s = p if
l1<p<2and,s=2,if p>2.

3. MAIN RESULTS

We prove the following theorems:

THEOREM 1. Let E be a real Banach space with a uniformly convex dual space,
E*, and let K be a nonempty closed convex and bounded subset of E. Suppose
T: K — K is a continuous monotone map. Define S: K — K by Sz = f — Tz for
each z in K. Define the sequence {z,}3, iteratively by z € K,

(7) Tnt1 = (1 — /\,,):c,. + A,.S’:c,,,

for n > 0, where {A,}52, is a real sequence satisfying:
(i) 0<A, <1 forall n>0;
(ii)) 3 Ap = o0, and

n=0

(i) §0 Anb(An) < 00.

Then, for any given f € K, the sequence {z,}32, converges strongly to a solution of
z+Tz=fin K.

PROOF: The existence of a solution of z + Tz = f follows from [13]. Let ¢
denote a solution of this equation. Observe that ¢ is a fixed point of S. Moreover, the

montonicity of T implies,
(8) (Sz—sy1 j(z—y)) =_(T2_Tya j(z—y)) <0,

for each z,y in K. Furthermore, using equation (7) and inequalities (6) and (8), we
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obtain:

lzn+1 = all* = I(1 = An)(zn — @) + An(Sz0 — S)I’
< (1= 2n) |z — gl +2Xa(1 = An)(S2n — Sq, §(2n — 2))
+max{(1 — An) ||z — gl , 1}An [|S2n — Sql| 5(An [|Sza — Sqll)
< (1= ) |lza —gll®
+ max{(1 — An) |zn — gl ,1}An ISz — Sql| max{|| Sz, — Sqll,1}(2)
<(1-20)12n — ql* + MA,B(),), for some M > 0,

since K is bounded. Hence we have:

(9) len+s — gl* < (1 = An) llzn — glI* + MAsb(As).

Set pn = |n — g||* and MA,b(A,) = 0». Then, inequality (9) becomes:
(10) Pnt1 € (1= An)pn + on.

A simple induction on inequality (10) yields:

(11) 0< png1 € H (1= 2Aj)p1 + Brsa,
j=1
where
K. 01, n=1
n+l — - n

on+ 30 o Mieita (1 =2j), n>1.
For any fixed integer k, with 1 < k € n — 1, we obtain:

k n n—1 n

Bri1 =Un+20’.' H (1-25)+ Z o; H (1 -2j).
i=1 j=i+1 i=k+1 j=i+1

Since 6, € [0, 1], the above equation yields,

k n n
0< By < (Za;) H 1-2)+ Z o
=1

j=k+1 i=k+1

Condition (ii) implies lim [] (1 -2X;)=0, k> 1, so that

j=k+1
e <]
(12) 0< lim infB, € lim supf, < E o;.
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Since inequaltiy (12) holds for arbitrary & > 1, and since condition (iii) implies
o0

lim ) o¢;=0,it follows that

k—oo—k11

(13) lim inf B, = nll.n:o sup B, = lim 8, = 0.

n—oo

From inequality (11) and equation (13) we obtain that p, — 0 as n — oo so that

z, — g as . — 00O. 0

COROLLARY 1. Let E=Ly (orf,),1<p<2,andlet K, T and S be asin
Theorem 1. Define the sequence {z,}32, iteratively by zo € K,

ZTn41 = (1 - Aﬂ)z"n. + A5z,

for n > 0, where {Ap}32, is a real sequence satisfying:
(i) 0<Aa<1foralln>0;
(o4
(i) Y A, =o0;and
n=0
o0
(i) 3 A< oo.
n=0
Then for any given f in K the sequence {x,}3, converges strongly to a solution of
z+Tz=finK.
PROOF: The existence of a solutionto z+7Tz = f follows from [13]. Remark 2 and
conditions (ii) and (iii) imply ¥ Anb(An) < 0. The result follows from Theorem 1. []

COROLLARY 2. Let E=L, (or{,),2<p<oo,andlet K, T and S be as in
Theorem 1. Define the sequence {z,}%, iteratively by zy € K,

Zn41 = (1 - /\n)zn + Ans:c'n)

for n > 0, where {A,}32, is a real sequence satisfying:
(i) 0<An<1foralln>0,
(i) X An=o0,and

n=0
Gi) ¥ A2 < oo.
n=0

Then for any given f € K, the sequence {z,}32, converges strongly to a solution of
z+Tz=fin K.

Proor: The proof follows exactly as in the proof of Corollary 1. g

REMARK 3. The only use we have made of the continuity of T in Theorem 1 and Corol-
laries 1 and 2 above is to obtain the ezistence of a solution to the equation z + Tz = f.
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ERROR ESTIMATES: For the error estimates we shall need the following definition

and lemma:

DEFINITION: The modulus of convezity of a real Banach space E is the function
6g:[0,2] - [0, 1]
defined by the following formula:
55(e) = int (1~ |z +3)/2ll : 2,y € B, ]z =1 = lyl, llo — ]l > €.

LEMMA. Reich, [18]. If §g+(e) > Ke™ for some K > 0 and r > 2 thenfort < M,
b(t)<ct*! withs=r/(r—-1). I E=L,,1<p<oo, then s=pif1 <p<2;and
3=2if 2< p<oo.

The above lemma enables us to obtain a convergence rate in the setting of Theo-
rem 1. If we set A, = s/(n + 1) then ||z, — g|| = O(n(~(*=1))/2) To see this, observe
that by the above lemma and inequality (9) we have:

s—1
2 s
— < _
241 — gl \(1 n+1)”z" q” +M( +1)C(n+1)

so that

1

S
14 —gP<s{1-——=)llzn g’ + M*——
(14) lenis =l < (1= 7 ) len —all + M e

for some constant M* > 0. Let M, = max{||z; — q||, M*}. Then clearly, |lz; — ¢q|| < M.

CLAIM:

1
2
lan — 0l < Mo

Proof of this claim is by induction. For n = 1, the claim follows from the definition of
M. Assume (15) holds for n = k. Then from (14),

1
—alP < (1= Y ok — qlP + M ——;
"zk+l q” k +1 ”Zk q” + (k + 1)l

<(1- 1 )Mz LI PR

E+1 k-1 (k+1)*
1\ 1 1
<(1-
(1 k+1) M’k'-1+M’(k+1)'
1
e +1)7"
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and so, by induction, (15) holds for all positive integers, and establishes that
llon — qll = 0(n(+-172).

In particular,if E=L,, 1 < p < 00, we have:
lzn —qll = O(n'(p‘l)/z) ifl<pg?2
and,
lzn — || = O(n'l/z) H2< p<oo.
We now consider iterative methods for single-valued dissipative and Lipschitz maps,
and prove the following theorem:
THEOREM 2. Let E be a real Banach space with a uniformly convex dual space,
E*. Let K be a nonempty closed convex bounded subset of E. Suppose A: K — K
is a single-valued dissipative and Lipschitzian mapping of K into itself with Lipschitz
constant L > 1. Define G: K — K by Gz = MAz + f for arbitrary ¢ € K and fixed
f in K. Define the sequence {z,}32, iteratively by zo € K,
Tpt1 = (1 - Aﬂ.)zu + AnGzynyn 20,
where {A.}52, is a real sequence satisfying:
(1) 0<Apa<lforallnz0,
[end
(i) Y An =00, and
n=0
[ed
(i) Y Anb(An) < 00.

n=0

Then {z,}32., converges strongly to a solution of the equation

(16) z— Az =f in K.

PRroOOF: The existence of a solution to equation (16) follows from Theorem B.
Let ¢ denote a solution. Observe that ¢ is a fixed point of G. Moreover, since 4 is

dissipative we have
(Gzn —Ggq, j(za — q)) = A{Az, — Aq, j(zn - Q)) <0.
So,
l2n+s = all* = (1 = An)(@n — @) + An(Czn — Go)|?
<(@- An)z llzn — qllz +22n(1 = Aa)(Gzn — Gg, j(zn — 9))
+max{(1l — An)|2n — gll, 1}An |G2n — Gal| {(An |G — Gyll)
<(1=2n) flza — gl
+ max{(1 - An)||zn — Il 1}An |GZa — Gq| max{||Gz. — Ggl| ,1}b(An)
< (1= 2n)llzn — glI* + MAB(X,), for some constant M > 0.
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Now, set pn = ||zn — g|l?, so that the above inequality becomes
Pny1 S (1 - An)Pn +0on

which is exactly inequality (10). The rest of the argument now follows exactly as in
the proof of Theorem 1 to yield that z, — g as n — oo, completing the proof of
Theorem 2.

COROLLARY 1. Let E=L,,1<p<2andlet K, A and G be as in Theorem 2.
Define the sequence {z,}32., iteratively by zo € K,

Znt:r = (1 = An)zp + AnG2pn, n 20

where {A\,}32, is a real sequence satisfying:
(i) 0<An<1,forall n,
(ii) Y An =00, and

n=0
[oacd
() Y A2 < oo.
n=0
Then {z,}3, converges strongly to a solution of the equation ¢ — AAz = f in K.
PROOF: Observe that conditions (ii) and (iii) imply that {A\,}2, € £7\ £’ and so

by Remark 2, i Anb(An) < 00. Corollary 1 then follows from Theorem 2. 1]

n=0

COROLLARY 2. Let E = L,, 2 < p < o0, and let K, A and G be as in
Theorem 2. Define the sequence {z,}32, iteratively by zo € K,

Znt1 = (1 — An)zn + AnGzpn, n 20,

where {\,}32, is a real sequence satisfying:
(1) 0< A< foralln,
(ii) 3 A = o0, and

n=0
(=4
(i) Y A2 <oo.
n=0
Then {z,}32, converges strongly to a solution of the equation z — Mz = f in K.

PROOF: Since {),}2, € €2\ !, Remark 2 implies i Anb(A,) < oo, and the

n=0

Corollary follows from Theorem 2. 0

REMARK 4. The error estimates for Theorem 2 and Corollaries 1 and 2 of this theorem
are obtained as in Theorem 1 (and Corollaries 1 and 2 of Theorem 1).
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REMARK 5. Corollaries 1 and 2 of Theorem 1 generalise the main result of Dotson
[9] and of the author [6] in several ways. In both [9] and [6] convergence theorems
were proved in Hilbert spaces and the operator T was assumed to be monotone and
Lipschitzian. In Corollaries 1 and 2 of Theorem 1 above, convergence of the iteration
scheme is proved for the much larger class of Banach spaces L, spaces, 1 < p < oo,
and also for the much larger class of monotone continuous maps. Moreover, the rate
of convergence established in Corollaries 1 and 2 of Theorem 1 above agrees with that
established in both (6] and [9].

REMARK 6. It is a consequence of the proof of Theorem 1 that, under the hypotheses of
the theorem, the solution of the given equation must be unique. The element ¢ € F(S5),
where F(S) denotes the set of fixed points of S, was arbitrarily chosen. Suppose now
there is a ¢* € F(S) with ¢* # g. Repeating the argument of the theorem relative
to ¢*, one sees that the sequence {z,}3%, converges to both ¢ and ¢*, showing that
F(S) = {4}

A similar argument shows that the solution of the equation in Theorem 2 is unique.
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