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ITERATIVE SOLUTION OF NONLINEAR EQUATIONS
OF THE MONOTONE TYPE IN BANACH SPACES

C.E. CHIDUME

Let £ be a real Banach space with a uniformly convex dual, and let if be a
nonempty closed convex and bounded subset of E. Suppose T: K —» K is a
continuous monotone map. Define 5 : K —* K by 5* = f—Tx for each z in K and
define the sequence {xn}£L0 iteratively by XQ G K, xn+i = (1 — Cn)xn + CnSxn ,
n ^ 0, where {Cn}X=o >s a r e a l sequence satisfying appropriate conditions. Then,
for any given / in K, the sequence {zn}S^=o converges strongly to a solution of
x + Tx = f in K. Explicit error estimates are also computed. A related result
deals with iterative solution of nonlinear equations of the dissipative type.

1. INTRODUCTION

Let E be an arbitrary real Banach. space. A mapping T with domain D(T) and

range R(T) in E is said to be monotone [10] if the inequality

(1) \\x-y\\^\\x-y

holds for each x, y in D(T) and some t > 0. If the inequality (1) holds for all t > 0,
then T is called accretive [2]. The accretive operators were introduced independently
by Browder [2] and Kato [10]. If E = H, a Hilbert space, one of the earliest problems
in the theory of monotone operators was to solve the equation x + Tx — f for x, given
an element f of H and a monotone operator T (see, for example, [4, 6, 7, 9, 14, 15,
23, 24]). In [2], Browder proved that if T is locally Lipschitzian and accretive then
T is m-accretive, that is, (/ + T)E = E, so that for any given / 6 E, the equation
x + Tx = / has a solution. This result was subsequently generalised by Martin [13] to
the continuous accretive operators. Zarantonello [24] also proved that if H is a Hilbert
space and T is a monotone and Lipschitzian mapping of H into itself then x + Tx = f
has a unique solution in H.

A class of operators closely related to the class of accretive operators is the class
of dissipative operators. An operator A is dissipative if and only if (—A) is accretive
and A on E is called m-dissipative if (/ — XA)E = E for A > 0. Browder [2] proved
the following theorem:
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22 C.E. Chidume [2]

THEOREM B. Let A be a single-valued dissipative operator on E which is locally
Lipschitzian on E = D(A). Then A is m-dissipative.

Recently, Ray [16] gave an elementary proof of Theorem B by employing a fixed
point theorem of Caristi, [5].

Iterative methods for approximating a solution (when one exists) of the equation

(2) x + Tx = f

have been studied by various authors. In [9], Dotson showed that if T: H —» H is
monotone and Lipschitzian with Lipschitz constant 1 (in this case T is called nonex-
pansive in the terminology of [11]), an iteration process of the type introduced by Mann
[12], under suitable conditions, converges strongly to the unique solution of equation
(2). In [6], the author constructed an approximation method which converges strongly
to a solution of the equation (2) where T: K —> H is a monotone Lipschitzian operator
with Lipschitz constant L > 1 and A" is a nonempty closed convex subset of H and T
has a fixed point in K. The results of the author [6] thus generalise the above result of
Dotson both in the domain of the operator T and in the range of its Lipschitz constant.
In [4], Bruck Jr., considered an iteration process, in Hilbert space, for approximating
a solution of the equation / 6 x + Tx where T: H —> H is a multivalued monotone
operator. He proved that if D(T) is an open domain of T in H and / 6 R{J + T) then
there exist a neighbourhood N in D{T) of x = (/ + T)~l f and a real number <7i > 0
such that for any a ^ a\, any initial guess Xi £ N and any single-valued section To
of T, the sequence generated from Zj by xn+i = xn — (n + a)~1{xn + Toxn — f) re-
mains in D(T) and converges to x with estimate ||xn — Ic|| — 0{n~1l2^ . No continuity
assumption was made on the map T. This result has recently been extended by the au-
thor [7] to Lp spaces for 2 ^ p < oo. The method used in [7] could not be modified to
yield any convergence result for Lp spaces when 1 < p < 2. More recently, the author
[8] again considered the equation (2) in Lp spaces for 2 < p < oo when T is single-
valued. Suppose E — Lp (or lp), p ^ 2, and if is a nonempty closed convex subset of
E. Suppose T: K —> K is a monotone Lipschitzian mapping with Lipschitz constant
L > 1. Define the sequence { i n } ^ 0 by x0 G K, xn+1 = (1 - X)xn + X(f - Txn) for
n > 0, where X=[(p- 1)(1 + X)2]"1. The author [8] proved that {xn}~= 0 converges
strongly to a solution of equation (2). Moreover, convergence is at least as fast as a
geometric progression with ratio (1 — A)1'2. Unfortunately, no convergence theorem
could be proved in [8] for Lp spaces with 1 < p < 2.

It is our purpose in this paper to prove convergence theorems for an iterative
method for approximating a solution of the equation

(3) ' x + Tx = f
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in real Banach spaces much more general than Lp spaces for 2 < p < oo. In particular,
our results will include all Lp (and tp) spaces for 1 < p < oo. In fact, we shall prove
that if E is any real Banach space with a uniformly convex dual E*, and if T: K —» K
is a continuous monotone map where if is a nonempty closed convex and bounded
subset of E, an iteration process of the Mann-type converges strongly to a solution
of equation (3) for any starting point x0 in K. We shall also prove some related
convergence theorems for the iterative approximation of a solution of the equation

(4) x - XAx = f, A > 0,

where A is a Lipschitzian dissipative operator on E.

2. PRELIMINARIES

Let E be a real Banach space and E* its dual. We shall denote by J the normalised

duality mapping from E to 2E given by

jx = { r eE* : \ \ r II2 = \\xf = (x, n h
where (, ) denotes the generalised duality pairing. It is well known that if E* is
uniformly convex then J is single-valued and is uniformly continuous on bounded sets
(see for example, [22]). Thus, by a single-valued duality mapping we shall mean a
mapping j : E —» E* such that for each x £ E, j(x) is an element of E* which
satisfies the following two conditions:

In terms of the single-valued duality mapping j , a map A with domain D(A) and
range R(A) in a real Banach space E is called monotone if

(5) (Ax-Ay,j(x-y))2 0,

for all x, y in D(A), (see for example, [10]). In the sequel we shall need the following

remarks:

REMARK 1. In [21, p.89], Reich proved that if E* is uniformly convex then there exists
a continuous nondecreasing function

b: [0, oo) ̂  [0, oo)

such that
fe(o) = 0, b(ct) < cb(t) for all c ̂  1,

and

(6) ||* + 1/||2 ^ | | s f + 2(t/, j (*))

for all x, y in E.
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REMARK 2. Nevanlinna and Reich [17] have shown that for any given continuous non-
decreasing function b(t) with b(o) = 0, sequences {An}£L0 always exist satisfying:

(i) 0 < An < 1 for all n ^ 0;
oo

(ii) £ An = co, and

(iii) £ An6(An)<oo.
n=0

If E = Lp, 1 < p < oo, we can choose any sequence {An}JJL0 in t' \ i1 with s = p if
1 < p < 2 and, a = 2, if p ^ 2.

3. MAIN RESULTS

We prove the following theorems:

THEOREM 1 . Let E be a real Banach space with a uniformly convex dual space,
E*, and let K be a nonempty closed convex and bounded subset of E. Suppose
T: K —* K is a continuous monotone map. Define S: K —> K by Sx = f — Tx for
each x in K. Define the sequence {xn}^=0 iteratively by XQ € K,

(7) xn+1 = (1 -\n)xn + \nSxn,

for n ^ 0, where {An}JJL0 is a real sequence satisfying:

(i) 0 < An < 1 for all n ^ 0;
oo

(ii) £ An = oo, and
n=0

(iii) £ Anfc(An)<oo.
n=0

Then, for any given f G K, the sequence {xn}%L0 converges strongly to a solution of

x + Tx = f in K.

PROOF: The existence of a solution of x + Tx — f follows from [13]. Let q

denote a solution of this equation. Observe that q is a fixed point of S. Moreover, the
montonicity of T implies,

(8) (Sx - Sy, j(x - y)) = -(Tx - Ty, j(x - y)) < 0,

for each x, y in K. Furthermore, using equation (7) and inequalities (6) and (8), we
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obtain:

||*»+i - 9||2 = 11(1 " A»)(xn - q) + Xn(Sxn - Sq)\\2

< (1 - An)2 ||xn - 9 | |2 + 2An(l - \n)(Sxn - Sq, j(xn - q))

+ max{(l - An) \\xn - q\\, l}An \\Sxn - Sq\\ b(Xn \\Sxn - Sq\\)

+ max{(l - An) ||*B - 9 | | , l}An \\Sxn - Sq\\ max{\\Sxn - Sq\\, l}6(An)

< (1 - An) ||xn - g||2 + MAn6(An), for some M > 0,

since K is bounded. Hence we have:

(9) | |*B +i - 9| |2 < (1 - An) | |xn - 9 | |2 + MAn6(An).

Set pn = \xn — q\\ and MXnb(Xn) = an. Then, inequality (9) becomes:

(10) pn+i < (1 - Xn)pn + an.

A simple induction on inequality (10) yields:

(11) 0 < Pn+1 <
3=1

where
I &i, n = 1

For any fixed integer k, with l < f c < n — l ,we obtain:

k n n—1 n

^ n c1-
»=1 ;=»+l j=*+l j—i+1

Since Sn £ [0, 1], the above equation yields,

i = i

Condition (ii) implies lim Yl (1 — Ay) = 0, Jfe ̂  1, so that

(12) 0 ^ lim inf/3n ^ lim sup/3n ^

»=*+!
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Since inequaltiy (12) holds for arbitrary k ^ 1, and since condition (iii) implies
oo

lim X) »» = 0, it follows that

(13) lim inf 0n = lim sup/3n = lim /?„ = 0.
n—»oo n—»oo

F r o m i n e q u a l i t y (11 ) a n d e q u a t i o n (13) w e o b t a i n t h a t / ) n - » 0 a s n - » M s o t h a t
xn —> q as n -* oo. D

COROLLARY 1. Let E = Lp (or lp), 1 < p ^ 2, and Jet K, T and S be as in
Tieorem 1. Define t ie sequence {*n}SLo iterativeiy by xo € if,

*n+i = (1 - K)xn + XnSxn,

for n ^ 0, wAere {An}^_0 is a real sequence satisfying:

(i) 0 < An < 1 for all n > 0;
oo

(ii) Z) An = oo; and
n=0

(iii) E^<°o.
n=0

Tien for any given f in K the sequence {zn}£L0 converges strongly to a solution of
x + Tx = / in K.

PROOF: The existence of a solution to x+Tx = f follows from [13]. Remark 2 and
conditions (ii) and (iii) imply £2 An6(An) < oo. The result follows from Theorem 1. D

COROLLARY 2 . Let E - Lp (or lp), 2 < p < oo, and let K, T and S be as in
Theorem 1. Define the sequence {xn}£L0 iterativeiy by x0 £ K,

xn+i = (1 - An)a;n + XnSxn,

for n ^ 0, wiere {An}^_0 is a reaJ sequence satisfying:

(i) 0 < An < 1 for all n > 0,
oo

(») £ An = oo, and

71=0

Tien for any given f E K, the sequence {xn}%LQ converges strongly to a solution of
x + Tx = f in K.

PROOF: The proof follows exactly as in the proof of Corollary 1. D

REMARK 3. The only use we have made of the continuity of T in Theorem 1 and Corol-
laries 1 and 2 above is to obtain the existence of a solution to the equation x + Tx = f.
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ERROR ESTIMATES: For the error estimates we shall need the following definition
and lemma:

DEFINITION: The modulus of convexity of a real Banach space E is the function

denned by the following formula:

SB(e) = inf [1 - ||(x + y)/2 | | :x,y e E,\\x\\ = l = \\y\\, \\x - y\\ > e].

LEMMA. Reich, [18]. If SE* (e) > KtT for some K > 0 and r ^ 2 then for t ^ M,

b(t) < d'-% with s - r/(r - 1). If E - Lp, 1 ^ p < oo, then s = p if 1 < p < 2; and
s = 2 i f 2 < p < o o .

The above lemma enables us to obtain a convergence rate in the setting of Theo-
rem 1. If we set An = a/{n + 1) then ||xn - g|| = O(n<-('-1»/2) . To see this, observe
that by the above lemma and inequality (9) we have:

" =7i)'- -
so that

(14) ||xn+1 - 9| |2 < ( l - - i - j . ) ||xn - 9| |2 + M*

for some constant M* > 0. Let M2 = max{||xi — g||, M*}. Then clearly, ||x! — g|| < M2

CLAIM:

Proof of this claim is by induction. For n = 1, the claim follows from the definition of

M?.. Assume (15) holds for n = k. Then from (14),

-«»'< (1 - rii
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a n d so, by induction, (15) holds for all positive integers, and establishes tha t

In particular, if E — Lp, 1 < p < oo, we have:

l l * n - ? | | = 0 ( n - ( " - 1 ) / 2 ) if l < p < 2

and,

\\xn-q\\=0(n-i'*>) i f 2 < p < o o .

We now consider iterative methods for single-valued dissipative and Lipschitz maps,
and prove the following theorem:

THEOREM 2 . Let E be a real Banach space with a uniformly convex dual space,

E*. Let K be a nonempty closed convex bounded subset of E. Suppose A: K —> K

is a single-valued dissipative and Lipschitzian mapping of K into itself with Lipschitz

constant L ^ 1. Define G: K —» K by Gx = \Ax + / for arbitrary x £ K and fixed

f in K. Define the sequence {xn}%L0 iterative]/ by XQ £ K,

xn+1 = (1 - An)xn + XnGxn, n ^ 0,

where {An}£L0 is a real sequence satisfying:

(i) 0 < An < 1 for all n ^ 0,
OO

(") Y, *n = oo, and
n=0

(iii) £ An6(An)<oo.
n=0

Then {*n}^Lo converges strongly to a solution of the equation

(16) x - XAx = f in K.

PROOF: The existence of a solution to equation (16) follows from Theorem B.
Let q denote a solution. Observe that q is a fixed point of G. Moreover, since A is
dissipative we have

(Gxn - Gq, j(xn - q)) = X(Axn - Aq, j(xn - q)) < 0.

So,

| |*»+i - ?| |2 = 11(1 - A n ) ( x n - , ) + \n(Gxn - Gq)\\2

< (1 - A n ) 2 | | s n - 9 | | 2 + 2An(l - \n)(Gxn - Gq, j(xn - q))

+ m a x { ( l - An) | |*B - 9 | | , l }A n | |GxB - Gq\\ 6(An \\Gxn - Gq\\)

< (1 - A n ) 2 | | z n - q\\2

+ m a x { ( l - An) | |*B - q\\, l }A n | | G z n - Gq\\ max{ | |G* B - Gq\\, l}6(An)

< (1 - An) ||asn - q\\2 + M\nb(\n), for some constant M > 0.
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Now, set pn = \\xn — g\\ > so that the above inequality becomes

Pn+i ^ (1 — An)pn + <rn

which is exactly inequality (10). The rest of the argument now follows exactly as in
the proof of Theorem 1 to yield that xn —> q as n —» oo, completing the proof of
Theorem 2. Q

COROLLARY 1. Let E = Lp, 1 < p ^ 2 and Jet K, A andG beasin Theorem2.
Define the sequence {xn}^=o iteratively by x0 g K,

xn+i = (1 - An)xn + AnGxn, n ^ 0

wiere {An}JJL0 is a reaJ sequence satisfying:

(i) 0 < An < 1, for all n,
oo

(ii) E An = oo, and
n=0

(iii) DAn<°°-
n=0

Tien {xn}^=0 converges strongly to a solution of the equation x — XAx = f in K.

PROOF: Observe that conditions (ii) and (iii) imply that {An}JJL0 e lp \l* and so
oo

by Remark 2, £) An6(An) < oo. Corollary 1 then follows from Theorem 2. U
n=0

COROLLARY 2 . Let E = Lp, 2 ^ p < oo, and let K, A and G be as in
Theorem 2. Define tie sequence {xn}JJL0 iteratively by x0 G K,

xn + 1 = (1 - An)xn + AnGxn, n > 0,

wiere {An}^_0 is a real sequence satisfying:

(i) 0 < An < 1 foraU n,
oo

(ii) £ *n = oo, and
n=0
oo

(iii) EAn<co.
n=0

Tien {xn}^L0 converges strongly to a solution of the equation x — XAx = f in K.

PROOF: Since {An}°^0 £ I2 \ I1, Remark 2 implies X) An6(An) < oo, and the
n=0

Corollary follows from Theorem 2. D
REMARK 4. The error estimates for Theorem 2 and Corollaries 1 and 2 of this theorem
are obtained as in Theorem 1 (and Corollaries 1 and 2 of Theorem 1).
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REMARK 5. Corollaries 1 and 2 of Theorem 1 generalise the main result of Dotson
[9] and of the author [6] in several ways. In both [9] and [6] convergence theorems
were proved in Hilbert spaces and the operator T was assumed to be monotone and
Lipschitzian. In Corollaries 1 and 2 of Theorem 1 above, convergence of the iteration
scheme is proved for the much larger class of Banach spaces Lp spaces, 1 < p < oo,
and also for the much larger class of monotone continuous maps. Moreover, the rate
of convergence established in Corollaries 1 and 2 of Theorem 1 above agrees with that
established in both [6] and [9].

REMARK 6. It is a consequence of the proof of Theorem 1 that, under the hypotheses of
the theorem, the solution of the given equation must be unique. The element q 6 F(S),
where F(S) denotes the set of fixed points of 5 , was arbitrarily chosen. Suppose now
there is a q* £ F(S) with q* ^ q. Repeating the argument of the theorem relative
to q*, one sees that the sequence {sn}^L0 converges to both q and q*, showing that
F(S) = {q}.

A similar argument shows that the solution of the equation in Theorem 2 is unique.
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