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Abstract

We prove the existence of common fixed points for monotone contractive and monotone nonexpansive
semigroups of nonlinear mappings acting in Banach spaces equipped with partial order. We also discuss
some applications to differential equations and dynamical systems.
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1. Introduction
The question of existence of fixed points for contractions and nonexpansive mappings
acting in Banach spaces, as well as of common fixed points for semigroups of such
mappings, has been thoroughly investigated since the early 1960s. In recent years, we
observe an emergence of a new research stream, which is focused on dealing with fixed
point theorems in Banach, or more general, metric spaces equipped with partial order.
In this case, the Lipschitzian assumption is only made for comparable (in the order
sense) elements, unlike in the general theory, where such an assumption is made for all
elements. Since the set of such comparable elements may be quite small, proofs often
require the use of innovative techniques and special attention needs to be paid to avoid
the forces of habit. For instance, monotone contractions or monotone nonexpansive
mappings do not have to be continuous while the continuity of nonexpansive mappings
is typically taken for granted. Moreover, some of the results are counter-intuitive as
well. For example, the uniqueness of a fixed point takes a new and different form.
However, an interesting and always evolving body of applications, as well as the
linkage to graph theory (see [1, 8]), make this new field important and promising.

Ran and Reurings [17] initiated this research direction in relation to a class of
matrix equations. The study of these matrix equations is motivated by applications,
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including stochastic filtering, control theory, and dynamic programming [7]. Nieto
and Rodriguez-Lopez [16] improved the results of Ran and Reurings, using similar
arguments to find periodic solutions for a class of differential equations. Khamsi and
Khan [9] used this approach to prove the convergence of the Krasnoselskii–Ishikawa
iteration process to fixed points of a monotone nonexpansive mapping acting in L1. Bin
Dehaish and Khamsi [6] proved analogs of Browder and Göhde fixed point theorems
for monotone nonexpansive mappings acting in uniformly convex hyperbolic spaces
and uniformly convex in every direction Banach spaces. For more information on the
results in monotone fixed point theory, the reader is referred to the recent survey article
by Bachar and Khamsi [3], see also [2].

So far, not much has been done for the development of the theory of common
fixed points for semigroups of monotone contractions and monotone nonexpansive
mappings. Bachar and Khamsi [5] showed nontrivial examples of such semigroups
and proved some results on approximate fixed point sequences for such semigroups.
However, the main issue slowing down the development of this theory is the fact
that there have been no general existence theorems proven for such semigroups. The
likely reason is that the iterative methods of construction used for a single monotone
mapping [6] do not adapt well to the case of semigroups.

In the current paper, we were able to demonstrate, for the first time, the
existence of common fixed points of monotone contractive semigroups and monotone
nonexpansive semigroups of nonlinear mappings acting in Banach spaces. Therefore,
the results presented in the paper provide a solid base for future investigations of
monotone semigroups from the fixed point theory perspective.

The paper is organized as follows:

(a) Section 2 provides necessary preliminary material.
(b) Section 3 presents the main existence results for common fixed points of

monotone contractive and monotone nonexpansive semigroups.
(c) Section 4 discusses applications to the theory of ordinary differential equations

in ordered Banach spaces, shows when the solution set forms a monotone
nonexpansive semigroup and interprets the common fixed points as the stationary
points of an associated dynamical process.

(d) Section 5 touches upon the question of the algorithmic construction of such
common semigroups referring the reader to the appropriate literature.

(e) Section 6 summarizes what has been achieved in the paper.

2. Preliminaries

Throughout this paper X will always denote a Banach space, and C a nonempty,
bounded, closed and convex subset of X. Let us denote by d(C) the diameter of C
which, by boundedness of C is a finite number. Throughout this paper J will be a
fixed parameter semigroup of nonnegative numbers, that is, a subsemigroup of [0,∞)
with the normal addition. We assume that 0 ∈ J and that there exists t > 0 such that
t ∈ J. The latter assumption implies immediately that +∞ is a cluster point of J in the
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sense of the natural topology inherited by J from [0,∞). As a convention, by t→∞
we will always understand that t converges to∞ over J. The typical examples of such
parameter semigroups are: J = [0,∞) and J = {0, 1, 2, 3, . . .} but also ideals of the form
J = {nα; n = 0, 1, 2, 3, . . .} for a given α > 0.

We assume in addition that X is endowed with a partial order ‘�’. Let us recall that
an order interval is any of the subsets [a,→) = {y ∈ X : a � y} and (←, b] = {y ∈ X : y �
b}. For a � b we will also use the notation [a, b] = [a,→) ∩ (←, b]. Throughout this
paper, we will always assume that the partial order ‘�’ and the linear structure of X are
linked to each other by the following convexity property:

a � b, c � d⇒ αa + (1 − α)c � αb + (1 − α)d (2.1)

for any α ∈ [0, 1] and all a, b, c, d ∈ X. In view of the previous assumptions, it is clear
that all order intervals are convex. We will also assume that all order intervals are
closed. We will say that x ∈ X and y ∈ X are comparable if either x � y or y � x.

Let us start with the more formal definitions of monotone Lipschitzian mappings
and monotone Lipschitzian semigroups of mappings.

Definition 2.1. We say that T : C → C is a monotone (or order-preserving) mapping
if

x � y⇒ T (x) � T (y).

Definition 2.2. We say that T : C → C is a monotone Lipschitzian mapping if it is
monotone and there is a constant L > 0 such that

‖T (x) − T (y)‖ ≤ L‖x − y‖ (2.2)

for any x, y ∈ C such that x and y are comparable in the sense of the partial order ‘�’.
Such a mapping will also be called L-monotone Lipschitzian. If L < 1, then T will
be called a monotone contraction. Similarly, if L = 1 then T is called a monotone
nonexpansive mapping.

An element w ∈ C is called a fixed point of T if T (w) = w. The set of all fixed points
of T will be denoted by Fix(T ).

Note that (2.2) needs to hold only for comparable x and y, which implies, among
others, that monotone Lipschitzian mappings do not have to be continuous.

We illustrate this notion by the following example with an immediate application to
the theory of integral equations.

Example 2.3 [4]. Let X = L2([0, 1],R) be equipped with the partial order defined by:
x � y⇔ x(t) ≤ y(t) almost everywhere for t ∈ [0, 1]. Consider the integral equation

x(t) = g(t) +

∫ 1

0
F(t, s, x(s)) ds, t ∈ [0, 1], (2.3)

where g ∈ X and F : [0, 1] × [0, 1] × X → R is measurable and satisfies

0 ≤ F(t, s, x(s)) − F(t, s, y(s)) ≤ x(t) − y(t),
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for t, s ∈ [0, 1] and x, y ∈ X such that y � x. Assume also that there exists a nonnegative
function h(·, ·) ∈ L2([0, 1] × [0, 1]) and M < 1

2 such that for every t, s ∈ [0, 1] and every
u ∈ L2([0, 1],

|F(t, s, u)| ≤ h(t, s) + M|u|,

almost everywhere. Let B be a closed ball in X centered at zero, with radius ρ > 0,
where ρ is chosen so that

2
(1 − 4M2)

∫ 1

0
|g(t)|2 dt +

4
(1 − 4M2)

∫ 1

0

∫ 1

0
h2(t, s) ds dt ≤ ρ2.

Define the operator J : X → X by

J(x)(t) = g(t) +

∫ 1

0
F(t, s, x(s)) ds.

It is not difficult to show, using the Cauchy–Schwarz inequality, that J is a monotone
nonexpansive mapping acting within B. Using a fixed point existence for monotone
nonenxpansive mappings, [4], it can be proved that the integral equation (2.3) has a
nonnegative solution provided that

g(t) +

∫ 1

0
F(t, s, 0) ds ≥ 0

for almost everywhere t ∈ [0, 1], which implies also that J(0) ≥ 0.

For further examples, we refer the reader to [3]. Let us now introduce the notion of
monotone Lipschitzian semigroups.

Definition 2.4. A one-parameter family S = {Tt : t ∈ J} of mappings from C into itself
is said to be a monotone Lipschitzian semigroup on C if S satisfies the following
conditions:

(i) there exists L > 0 such that all Tt are monotone L-Lipschitzian mappings;
(ii) T0(x) = x for x ∈ C;
(iii) Tt+s(x) = Tt(Ts(x)) for x ∈ C and t, s ∈ J;
(iv) for each x ∈ C, the mapping t 7→ Tt(x) is norm continuous.

For each t ∈ J let Fix(Tt) denote the set of its fixed points. Define then the set of all
common set points for mappings from S as

Fix(S) =
⋂
t∈J

Fix(Tt).

If L < 1 then S will be called a monotone contractive semigroup. Similarly, if L = 1
then S will be called a monotone nonexpansive semigroup.

For the discussion on examples and applications of such semigroups please refer to
Section 4.
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3. Existence theorems

In order to prove our existence results, we will need to assume some form of
a linkage between the order structure and the semigroup S. This is not really
surprisingly, as otherwise we could have a situation where no element from set C was
comparable with its images via mappings from S and hence it would be very difficult
to expect an existence of a common fixed point. We will assume consequently that
there exists an x ∈ C such that x � Tt(x) for all t ∈ J and we will use this element as
the starting point of our construction of a common fixed point. The reader will note
that we could replace this assumption by Tt(x) � x and the proofs would follow an
analogous path.

Let us start with the question of an existence of a common fixed point for the
monotone contractive semigroups.

Theorem 3.1. Assume C is weakly compact. Let S be a monotone contractive
semigroup on C. Assume in addition that there exists x ∈ C such that x � Tt(x) for
all t ∈ J. Then there exists a common fixed point z ∈ Fix(S) such that x � z and
‖Tt(x) − z‖ → 0 as t→∞. Moreover, if w is another common fixed point, which is
comparable with z, then w = z.

Proof. Define

Cx = C ∩
(⋂

s∈J

[Ts(x),→)
)
.

In order to prove that Cx is not empty, note that for any finite family t1, . . . , tn ∈ J,

Tti (x) � Tt1+···tn (x),

because for any s ∈ J, x � Ts(x) and Ts is monotone. Hence

Tt1+···tn (x) ∈ C ∩
( ⋂

s∈{t1,...,tn}

[Ts(x),→)
)
.

The weak compactness of C and the fact that each [Ts(x),→) is closed convex force
Cx to be nonempty. It is also clear that Cx is a closed and convex. Hence, Cx is weakly
compact. Observe that Ts(Cx) ⊂ Cx for every s ∈ J. Indeed, let y ∈ Cx. Then Tt(x) � y
for every t ∈ J. Since Tt is monotone for every t ∈ J and x � Ts(x)

Tt(x) � Tt+s(x) � Ts(y),

hence, Ts(y) ∈ Cx. Define the type function ρ : Cx → [0,∞) by

ρ(y) = lim sup
t→∞

‖Tt(x) − y‖,

for y ∈ Cx. It is easy to show that ρ is a convex lower semicontinuous function on Cx.
Hence, by Mazur’s lemma, ρ is also weakly lower semicontinuous on Cx. Since Cx
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is weakly compact it follows that ρ attains its infimum at a point z ∈ Cx. Since z ∈ Cx

then Ts(x) � z for any s ∈ J. Let us fix temporarily s ∈ J.

ρ(Ts(z)) = lim sup
t→∞

‖Tt(x) − Ts(z)‖ = lim sup
t→∞

‖Ts+t(x) − Ts(z)‖

≤ L lim sup
t→∞

‖Tt(x) − z‖ = Lρ(z). (3.1)

Using the minimality of z
ρ(z) ≤ ρ(Ts(z)) ≤ Lρ(z),

which implies that ρ(z) = 0 because L < 1. Then, by (3.1), for every s ∈ J

lim
t→∞
‖Tt(x) − Ts(z)‖ = 0. (3.2)

Taking s = 0
lim
t→∞
‖Tt(x) − z‖ = 0. (3.3)

From (3.2) and (3.3) it follows immediately that Ts(z) = z, that is, z ∈ Fix(S) as
claimed.

To prove the uniqueness part, let us take another w ∈ Fix(S) which is comparable
with z. Hence for each t ∈ J,

‖z − w‖ = ‖Tt(z) − Tt(w)‖ ≤ L‖z − w‖,

which gives us w = z because L < 1. This completes the proof of the theorem. �

Let us prove now the existence of common fixed points for monotone nonexpansive
semigroups.

Theorem 3.2. Assume X is uniformly convex. Let S be a monotone nonexpansive
semigroup on C. Assume in addition that there exists x ∈ C such that x � Tt(x) for
all t ∈ J. Then S has a common fixed point z ∈ Fix(S) such that x � z. Moreover, if
f1, f2 ∈ Fix(S) are comparable then f = c f1 + (1 − c) f2 ∈ Fix(S) for every c ∈ [0, 1].

Proof. Let us define again

Cx = C ∩
(⋂

s∈J

[Ts(x),→)
)
.

Hence, as shown in the proof of Theorem 3.1, Cx is a nonempty, convex and weakly
compact subset of C. Let us define on Cx the type function τ by the formula

τ(y) = lim sup
t→∞

‖Tt(x) − y‖2.

Similarly as in the proof of Theorem 3.1, we can deduce that τ attains its infimum
in Cx, that is, there exists a z ∈ Cx such that τ(z) = inf{τ(y) : y ∈ Cx}. Let us fix
arbitrarily t, s, u ∈ J. Because X is uniformly convex it follows from [10, Proposition
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3.4] (see also [11, Theorem 3.4] and [18, Theorem 2]) that for each d > 0 there exists
a continuous function λ : [0,∞)→ [0,∞) such that λ(t) = 0⇔ t = 0, and

‖cw + (1 − c)v‖2 ≤ c‖w‖2 + (1 − c)‖v‖2 − c(1 − c)λ(‖w − v‖), (3.4)

for any c ∈ [0, 1] and all w, v ∈ X such that ‖w‖ ≤ d and ‖v‖ ≤ d. Applying (3.4)
to w = Ts+u+t(x) − Ts(z), v = Ts+u+t(x) − Tu(z), d = d(C) and c = 1

2 we obtain the
following inequality

‖Ts+u+t(x) − 1
2 (Ts(z) + Tu(z))‖2

≤ 1
2‖Ts+u+t(x) − Ts(z)‖2 + 1

2‖Ts+u+t(x) − Tu(z)‖2 − 1
4λ(‖Ts(z) − Tu(z)‖).

Letting t→∞ and using the fact that z and Tp(x) are comparable for any p ∈ J,

τ
(Ts(z) + Tu(z)

2

)
≤ τ(z) −

1
4
λ(‖Ts(z) − Tu(z)‖).

Using the convexity of C and the minimality property of τ at z,

τ(z) ≤ τ
(Ts(z) + Tu(z)

2

)
for all s, u ∈ J. Hence,

τ(z) ≤ τ(z) − 1
4λ(‖Ts(z) − Tu(z)‖),

which immediately implies that

λ(‖Ts(z) − Tu(z)‖) = 0. (3.5)

Using (3.5) with u = 0 we immediately see that z ∈ Fix(S).
Let f1, f2 ∈ Fix(S) be comparable. Let c ∈ [0, 1], f = c f1 + (1 − c) f2. We need to

prove that f ∈ Fix(S). Set t ∈ J. Without any loss of generality we can assume that
f1 � f2. Using the properties of �, f1 � f � f2. Hence,

‖Tt( f ) − f1‖ = ‖Tt( f ) − Tt( f1)‖ ≤ ‖ f − f1‖ = (1 − c)‖ f1 − f2‖, (3.6)

and similarly
‖Tt( f ) − f2‖ ≤ c‖ f1 − f2‖. (3.7)

Since X, as uniformly convex, is strictly convex it follows from (3.6) and (3.7) that
Tt( f ) = c f1 + (1 − c) f2 = f . �

4. Applications to differential equations and dynamical systems

In this section we assume that (X,�) is an ordered Banach space in the sense that
x � y⇒ αx � αy for α ≥ 0 and that a � b, c � d⇒ a + c � b + d. Note that this is a
very typical situation and that the condition (2.1) follows from the above assumptions.
Let us fix x ∈ C.
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In this section we consider the following initial value problem (IVP) for an unknown
function u(x, ·) : [0,∞)→ C.u(x, 0) = x

u′(x, t) + (I − Ht)(u(x, t)) = 0,
(4.1)

where Ht : C → C are monotone nonexpansive mappings with respect to the order �.
The notation u′(x, t) denotes the derivative of the function t 7→ u(x, t). We assume that
x � Ht(x) for every t ∈ [0,∞). Our aim is to construct a solution u(x, ·) for the IVP,
(4.1), such that x � u(x, t) for every t ∈ [0,∞). To achieve this we need to construct
u(x, ·) such that

u(x, t) = e−t x +

∫ t

0
es−tHs(u(s)) ds.

It is easy to show, using the standard methods of the Bochner integration, that the above
formula gives us the required solution. Define then Tt : C→ C by Tt(x) = u(x, t) for all
t ≥ 0. We will show that S = {Tt : t ≥ 0} forms a monotone nonexpansive semigroup
in the sense of Definition 2.4.

Let us introduce the following convenient notations which will be used throughout
this section. For any t > 0 we define

K(t) = 1 − e−t =

∫ t

0
es−t ds.

Let us fix A > 0. For a Bochner measurable function v : [0, A]→ X, t ∈ [0, A], and
any τ = {t0, . . . , tn}, a subdivision of the interval [0, A], we define

S τ(v)(t) =

n−1∑
i=0

(ti+1 − ti)eti−tv(ti).

Let us start with the following technical lemma.

Lemma 4.1 [12, Lemma 4.4], [5, Example 2.1]. Let f , g : [0, A]→ X be two Bochner-
integrable ‖ · ‖-bounded functions. Then for every t ∈ [0, A]

‖e−tg(t) +

∫ t

0
es−t f (s) ds‖ ≤ e−t‖g(t)‖ + K(t) sup

s∈[0,t]
‖ f (s)‖.

Define the sequence of functions un : C × [0, A]→ C by the following inductive
formula: 

u0(x, t) = x

un+1(x, t) = e−t x +

∫ t

0
es−tHs(un(x, s)) ds.

Observe that all un(x, t) belong to C. Indeed, for a given subdivision τ of [0, A]
define

uτn+1(x, t) = e−t x + S τ(Hti (un(x, ti)))(t).
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Since C is convex it is easy to prove by induction that uτn(x, t) ∈ C. By the properties
of the Bochner integral,

‖uτn(x, t) − un(x, t)‖ → 0,

as |τ| → 0. Since C is closed it follows that un(x, t) ∈ C.
We will show now that for every n = 0, 1, 2, . . . and every t ∈ [0, A]

un(x, t) � un+1(x, t). (4.2)

Let us prove (4.2) by induction. It follows from x � Hs(x) that

u0(x, t) = x = e−t x + (1 − e−t)x � e−t x +

∫ t

0
es−tHs(x) ds = u1(x, t).

Assume now that (4.2) holds for n = k. Because each Hs is monotone then

uk+1(x, t) = e−t x +

∫ t

0
es−tHs(uk(x, s)) ds � e−t x +

∫ t

0
es−tHs(uk+1(x, s)) ds = uk+2(x, t).

Note that (4.2) can be rewritten as

x = u0(x, t) � u1(x, t) � · · · un(x, t) � un+1(x, t) � · · · ,

which implies that x and all un(x, t) are comparable to each other (in a monotone way)
and that they belong to the order interval [x,→).

Now we will prove that un(x, t) is a Cauchy sequence. To do this it is enough to
validate the following inequality:

‖un+p(x, t) − un(x, t)‖ ≤ Kn(A) d(C), (4.3)

for any p ∈ N and all t ∈ [0, A]. We prove this by induction with respect to n with p
fixed arbitrarily. For n = 0 (4.3) is trivial. Assume now (4.3) holds for n = k. Noting
that

uk+1+p(x, t) − uk+1(x, t) =

∫ t

0
es−t(Hs(uk+p(x, s)) − Hs(uk(x, s))) ds

and applying (4.1) with g(t) = 0 and f (t) = Hs(uk+p(x, s)) − Hs(uk(x, s)), then

‖uk+1+p(x, t) − uk+1(x, t)‖ ≤ K(A) sup
s∈[0,A]

‖Hs(uk+p(x, s)) − Hs(uk(x, s))‖

≤ K(A) sup
s∈[0,A]

‖uk+p(x, s) − uk(x, s)‖ ≤ K(A)K(A)n d(C) = K(A)n+1 d(C),

finishing the proof of (4.3). Hence, un(x, t) is Cauchy and, since C is closed, there
exists u(x, t) ∈ C such that ‖un(x, t) − u(x, t)‖ → 0 as n→∞. Since un(x, t) ∈ [x,→)
and [x,→) is closed it follows that x � u(x, t). Following an inductive proof similar to
the one above, it is easy to show that if x � y then u(x, t) � u(y, t). In addition,

‖Hs(un(x, s)) − Hs(u(x, s))‖ ≤ ‖un(x, s) − u(x, s)‖ ≤ K(A)n d(C),
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which implies that both ‖un(x, s) − u(x, s)‖ and ‖Hs(un(x, s)) − Hs(u(x, s))‖ tend to zero
uniformly in t ∈ [0, A]. Therefore,

u(x, t) = e−t x +

∫ t

0
es−tHs(u(s)) ds,

as claimed. It is clear that the solution of the IVP (4.1) can be extended to a solution
u(x, t) defined on [0,+∞) such that its restriction to the interval [0, A] is the limit of
the sequence {un(x, t)}.

Let us denote Tt(x) = u(x, t). We will show that T = {Tt}t≥0 is a monotone
nonexpansive semigroup in the sense of Definition 2.4. Observe first that if x � y
then x � u(x, t) = Tt(x) � u(y, t) = Tt(y), which proves that each Tt is monotone. By
an easy induction one can show that ‖un(x, t) − un(y, t)‖ ≤ ‖x − y‖ which implies that
‖u(x, t) − u(y, t)‖ ≤ ‖x − y‖ and consequently that ‖Tt(x) − Tt(y)‖ ≤ ‖x − y‖, that is, that
each Tt is monotone nonexpansive. Clearly, T0(x) = u(x, 0) = x proving part (ii).
The function t 7→ Tt(x) = u(x, t) is norm continuous as the almost uniform limit of
continuous functions t 7→ un(x, t), which justifies (iv). It remains to be proved that
Tt+s(x) = Tt(Ts(x)). Let us fix temporarily n ∈ N. We know that

‖un+m(x, t + s) − u(x, t + s)‖ → 0, (4.4)

as m→∞. On the other hand, it can be proved by induction on n and by the use of
Lemma 4.1 (see [13, Lemma 5.1]) that

‖un(u(x, s), t) − u(n+m(x, t + s)‖ ≤
n+m+1∑
i=n+1

Ki(s) d(C) + Kn+1(t) d(C). (4.5)

Using (4.4) with (4.5),

‖un(u(x, s), t) − u(x, t + s)‖= lim
m→∞

‖un(u(x, s), t) − un+m(x, t + s)‖

≤ lim
m→∞

n+m+1∑
i=n+1

Ki(s) d(C) + Kn+1(t) d(C)→ 0,

as n→∞. On the other hand,

‖un(u(x, s), t) − Tt(Ts(x))‖ = ‖un(Ts(x), t) − Tt(Ts(x))‖ → 0.

From the uniqueness of the limit if follows that Tt(Ts(x)) = u(x, t + s) = Tt+s(x), as
claimed.

Let us summarize the results of this section. First we proved that the IVP, (4.1), has
the solution u(x, t) such that x � u(x, t) for a given x ∈ C. Let us emphasize again that
we only assume nonexpansiveness of each of Ht on comparable elements of C, which
can be a much smaller set than C. Recall that in Section 2 of this paper we presented
nontrivial examples of such monotone nonexpansive mappings. Next we proved that
the solution set for this IVP forms a monotone nonexpansive semigroup, giving us a
nontrivial example of such a semigroup. Moreover, such a situation is quite typical
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in mathematics and applications. For instance, in the theory of dynamical systems,
the Banach space X would define the state space and the mapping (t, x)→ Tt(x)
would represent the evolution function of a dynamical system. The question about
the existence of common fixed points, and about the structure of the set of common
fixed points (addressed in our Theorems 3.1 and 3.2), can be interpreted as a question
of whether there exist stationary points for this process, that is, elements of C that
are fixed during the state space transformation Tt at any given point of time t, and
if yes, what the structure of a set of such points may look like and how such points
can be constructed algorithmically. In the setting of this paper, the state space may
be an infinite dimensional. Therefore, it is natural to apply these results not only to
deterministic dynamical systems but also to stochastic dynamical systems.

5. Notes on the construction of common fixed points

In [6], the authors proved convergence of some iterative processes to a fixed point
of a monotone nonexpansive mapping using an algorithm based on the Krasnoselskii–
Ishikawa iterations. It is, however, much harder to obtain such methods for finding a
common fixed point of a monotone nonexpansive semigroup. For some special cases
when this can be done, we refer the reader to [14], where the author introduced new
algorithms while applying some of the techniques from [15].

6. Conclusions

We have proved the existence of common fixed points for monotone contractive
and monotone nonexpansive semigroups of nonlinear mappings acting within a convex
and weakly compact subset of a Banach space equipped with a partial order. We also
discussed some properties of the set of common fixed points: a form of uniqueness in
the contraction case, and a form of convexity in the case of nonexpansiveness. In both
cases, an existence of an x ∈ C such that x is comparable with any Tt(x) was the critical
assumption. In the nonexpansive case, we also used several geometrical properties of
uniformly convex Banach spaces. In each case we demonstrated an existence of a
common fixed point by showing an existence of an element of C on which a suitably
defined type function attains its infimum. We also provided a generic example of a
monotone nonexpansive semigroup and touched upon its application to the theory of
differential equations and dynamic systems. Knowing that the common fixed points
actually do exist, while important on its own, is also fundamental for the construction
of such algorithms, see [14].
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