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Abstract

Wind energy’s ability to liberate theworld from conventional sources of energy relies on lowering the significant costs
associated with the maintenance of wind turbines. Since icing events on turbine rotor blades are a leading cause of
operational failures, identifying icing in advance is critical. Some recent studies have utilized deep learning
(DL) techniques to predict icing events with high accuracy by leveraging rotor blade images, but these studies only
focus on specific wind parks and fail to generalize to unseen scenarios (e.g., new rotor blade designs). In this paper, we
aim to facilitate ice prediction on the face of lack of ice images in new wind parks. We propose the utilization of
synthetic data augmentation via a generative artificial intelligence technique—the neural style transfer algorithm to
improve the generalization of existing ice prediction models. We also compare the proposed technique with the
CycleGAN as a baseline. We show that training standalone DL models with augmented data that captures domain-
invariant icing characteristics can help improve predictive performance across multiple wind parks. Through efficient
identification of icing, this study can support preventive maintenance of wind energy sources by making them more
reliable toward tackling climate change.

Impact Statement

As global deployment of wind turbines continues to rise toward tackling climate, there are growing concerns
on operations and maintenance in cold climates. To prevent significant downtimes or damage to the turbines,
preventive intervention is critical by facilitating early ice detection. Existing research has used artificial
intelligence (AI) for ice detection in standalone wind parks, but fails to generalize to new, unseen wind parks.
We perform domain-invariant icing detection independent of the wind parks that the AI models have been
trained on, and predict icing on the face of lack of ice images in new wind parks. This can help make ice
detection with AI scalable in the wind industry, facilitating wider adoption across different wind parks around
the globe.
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1. Introduction

With a growing awareness of the pressing need to transition to renewable energy sources globally toward
combating climate change, the total global installed wind power capacity has touched over 837 GW in
2022 (GlobalWind EnergyCouncil, 2022). This fact shows that the energy transition is possible andwind
energy contributes to around one-fifth of the electricity generated by renewable sources (Global Wind
Energy Council, 2022). Winters are generally considered to be highly promising for wind power
generation, owing to higher wind speeds and increased air density accompanied with low prevailing
temperatures (Gao and Hu, 2021). In particular, cold regions are usually sparsely populated, have a good
wind availability and are suitable for deployment of wind parks (Clifton et al., 2022). However, such
regions, particularly in Northern Europe and North America, are highly prone to icing conditions on the
wind turbine rotor blades—leading to high stress on the overall structure of the turbines that prohibits their
safe operation (Kreutz et al., 2019; Alvela Nieto et al., 2023). The ice throw scenario, which is
considerably worse, occurs when the accumulated ice breaks free from the blades and can harm adjacent
living beings. Such icing events not only give rise to unexpected downtimes, but also reduce the potential
energy yield and shorten the mechanical lifetime of the turbines (Wallenius and Lehtomäki, 2016).

Ice formation on wind turbine rotor blades is influenced by a number of factors, including external
temperature, wind speed, humidity, and so forth. But also less common factors, such as the liquid water
content and median volume diameter of water droplets can have an influence. The original Messinger
model (Messinger, 1953) and the Makkonen model (Makkonen, 2000) are only a few examples of
physical models that describe the production of ice on rotor blades. These models typically call for
additional parameters unique to wind turbines—mostly related to wind turbine SCADA data (Chatterjee
and Dethlefs, 2020; Turnbull et al., 2021) in addition to the ones already discussed. Existing methods and
models are complex and require certain parameters that are not typically available for wind turbine
systems. As a potential solution, there has been a rising interest in leveraging color images (RGB) of
turbine rotor blades acquired through cameras installed on the nacelles and the application of computer
vision techniques for detecting ice accretion on the surface of the blades (Denhof et al., 2019; Kabardin
et al., 2021). A camera generally captures images of the complete rotor blade even under harsh weather
conditions (e.g., foggy environments), making this technique more robust than some sensor-based
approaches (Chatterjee and Dethlefs, 2020) and suitable for remote autonomous inspection (Gu et al.,
2020). As a potential benefit of leveraging preventive maintenance strategies for condition monitoring
(Stetco et al., 2019) through computer vision-based icing prediction systems (i.e., before ice accretion can
lead to unexpected downtimes or total shutdowns)—rotor blades can be monitored and heating systems
can be triggered in advance to prevent ice formation (Merizalde et al., 2019).

There has been very limited research on applying intelligent algorithms, for example, artificial
intelligence (AI), for ice recognition on rotor blades. Only a few studies have applied deep learning
(DL) methods for detecting icing based on image data (Kreutz et al., 2020; Alvela Nieto et al., 2023). For
instance, Alvela Nieto et al. (2023) used CNN models with unfrozen backbones and learning schedulers
for detecting ice events on images, with no data augmentation. Basically, the models were created using
data of individual wind turbines, as the merge of data from two or more wind turbines led to lower
performance. In real-world settings, wind turbine designs vary from stakeholder to stakeholder, as do the
rotor blade forms, colors, and lengths, but also the turbine’s surroundings (i.e., landscape, light pollution),
which can entail a drop of accuracy in model predictions. Further, the installation of new wind parks,
consisting of individual design characteristics and new locations, initially requires a phase of data
collection for model creation. While this study has achieved near-perfect accuracy in individual wind
turbine data sets (Alvela Nieto et al., 2023), our experiments showed that: (a) Such models generally
perform poorly in generalizing to new turbines and/or wind parks. (b) Occurrence of ice events within the
first few days after turbine installation is extremely unusual, prompting the application of methods for
generating rotor blade images of the newly installed turbine containing ice for bettermodel generalization.
We aim to tackle all these challenges by facilitating domain adaptation using generative AI. The goal of
this article is to ensure that a model trained on data from a specific wind park (source domain) is able to
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make effective predictions in newwind park locations (target domain), where no ice images or only a few
are available. We propose the utilization of synthetic data augmentation performed with generative AI
models. Our proposed technique for the problem task in this paper is a neural-style transfer algorithmwith
CNNs. We leveraged a state-of-the-art method in generative AI modeling—CycleGAN for comparison
against the proposedmethod. To the best of our knowledge, this is the first study to propose synthetic data
augmentation with two different generative AI strategies toward improving the predictive performance of
existing intelligent models for detecting domain-invariant icing events in the wind industry.

Our study showcases that the neural style transfer algorithm helps to improve the generation of
synthetic images that can capture transferable fine-grained icing representations that are not bound to a
specific wind park. By training the domain-specific models with the curated synthetic data, the gener-
alizability of themodels is improved toward detecting icing across different wind parks. Notably, themain
contribution of this paper is its specific focus on application to new wind parks which do not have any
historical data available for icing. In our study, a new wind park signifies that there is no data (RGB
images) of the rotor blade (neither plain nor with icing) available. In the initial few days of operation of a
new wind park, we can collect background and plain rotor blade images, which can then be augmented
with icing characteristics from another wind park to facilitate ice detection in the new park. This is based
on the foundation that icing characteristics across different wind parks would be similar. The training of a
classifier without synthetic data, however, assumes that images containing ice are available. That is not
always the case, specially after turbine installation in summer periods. Note that this is in contrast to the
idea of training a classification model combining all the images from both wind parks, as it would still
require images from the new wind park. Our approach ensures that there is no data augmentation period
for the newwind park since real-time images can be instantaneously analyzedwithout any requirement for
additional data acquisition of icing images beforehand. This can help facilitate the adoption of such
domain-agnostic models across multiple wind parks in the near future for preventive maintenance of
turbines, providing instrumental decision support for making wind turbines more reliable toward tackling
climate change.

2. Related Work

Planning the location of wind turbines can sometimes be challenging—for instance, due to legal safe
distance requirements prohibiting close proximity to residential properties. Therefore, less populated
locations are often more suited for the installation of newwind turbines. In particular, cold regions at high
altitudes are typically unpopulated and have strong wind availability, making them attractive locations for
the placement of wind turbines (Ibrahim et al., 2011). In such regions, there is a substantial risk of ice
formation on the rotor blades during the winter (Fakorede et al., 2016). Moreover, the available wind
power is nearly 10% higher in such areas than in other regions (Fakorede et al., 2016). Severe icing events
can occur for up to 30 days a year. Such unexpected events lead to forced shutdowns of wind turbines
during ice accretion, leading to significant downtimes and financial loss for wind park operators.

Many techniques exist that can combat the problem of icing on rotor blades and similar structures.
Deicing removes the ice once it has been formed on the structure. A heater at the blade in combinationwith
an ice sensor is one valid solution. In contrast, anti-icing prevents any ice from forming at all. Preheating
the blade is an active anti-icing method so that icing events do not occur.Most of the ice detection systems
mounted on rotor blades at present vary greatly in terms of their quality and are not sufficiently accurate
(Parent and Ilinca, 2011; Kreutz et al., 2020). Additionally, these approaches suffer from several
drawbacks (Parent and Ilinca, 2011)—such as the inability to provide direct ice measurements owing
to dependence on secondary operational parameters including temperature or oscillation frequencies.

Despite the rapid and continuous decline in levelized cost of electricity in recent years (Wiser et al.,
2021), the wind industry still faces multiple operational challenges. Some of the current anti-icing or
deicing techniques still rely on forced shutdown of the wind turbine. When there is a severe risk of ice
projection, the wind turbine pitch motors cannot supply the turbine and the system simultaneously
(Fakorede et al., 2016). To overcome icing effects, precise ice detection techniques are a necessity as a first
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step (Parent and Ilinca, 2011). Existing ice detection techniques are based on various concepts, which can
be classified into twomain categories: (a) indirect and (b) direct approaches. These are described below in
further detail.

2.1. Indirect approaches

Fikke et al. (2007) listed the available prototypes of ice detectors in the market. External weather
parameters, such as temperature and humidity, combined with deterministic models, can be utilized to
predict icing events indirectly (Molinder et al., 2018). Deterministic models require several parameters
which must be provided as inputs in order to characterize the beginning or end of all types of icing events
(wind, humidity, precipitation, etc.) (Wei et al., 2020). Unfortunately, such parameters are not always
measured in a standard way for icing risk assessment, especially in older-generation wind turbines (which
may or may not have sensors for detecting such external parameters). Nevertheless, it may be possible to
use weather forecasting models to derive an approximation of these values (Fikke et al., 2007; Kreutz
et al., 2023). However, dependence on approximations derived from such weather forecasting models
(often based on numerical simulations) makes the operations and maintenance (O&M) process more
complex, expensive, and not entirely reliable.

Despite the prevalence of existing sensor-based systems, there are still no industry standards in place
which clearly define the values of the parameters for the tools—such as the threshold ratio for icing.
Others have a coarse accuracy, which makes such sensors unstable for measuring light icing events.
Pivotal measured parameters for detecting ice on the rotor blades are commonly used, like the droplet size
distribution (Cattin et al., 2016). In summary, most existing studies on indirect approaches have outlined
that all systems have their shortcomings under specific conditions. In summary, and to our understanding,
none of the existing ice detectors mentioned here have leveraged intelligent algorithms for detecting icing
events.

2.2. Direct approaches

Direct ice detection techniques analyse changes in physical parameters caused by icing and can depend on
(amongst others) inductance or optic systems (Battisti, 2015; Fakorede et al., 2016;Wei et al., 2020). The
latter are able to accomplish this on a thermal (heated wires) or optical (laser scanning) basis (Cattin,
2012). The main drawback of thermal solutions is that they are either very expensive or not able to derive
the measurements automatically. Additionally, there can be large uncertainties depending on the utilized
approach (Cattin, 2012). Another recent direct approach is the use of optical cameras to detect icing on the
blades of a wind turbine. A camera ismounted on the spinner of the rotor, so that the camera is rotating and
always pointing to the rotor blades. However, a key disadvantage of this approach is that the camera is
strongly exposed to the external weather and the view angle to the blade is very flat. This makes it highly
challenging to monitor the icing status on the tip of the blades (Wallenius and Lehtomäki, 2016).

Previous studies (Zhang et al., 2018; Liu et al., 2019;Yuan et al., 2019; Jiang and Jin, 2021;Kreutz et al.,
2021; Kemal et al., 2022) have utilized image data from automated optical cameras to train machine
learning models (e.g., decision trees) as well as leveraged DL techniques for ice detection. They have all
demonstrated near-perfect accuracywith regards to the degree of detecting ice, including near and far views
of a blade, ice density, and light (Alvela Nieto et al., 2023). However, it is integral to note that the
characteristics of awind park are unique. In the casewhere a neuralmodel has been developed from a single
scenario, the model compatibility with all scenarios (e.g., all rotor blade types) is not always implied.

Generative AI models such as CycleGAN have shown immense success toward synthetic data
generation in multiple domains (including safety-critical areas) like healthcare (Sandfort et al., 2019;
Motamed et al., 2021), remote sensing for wildfire detection (Park et al., 2020), flood event detection
(Pouyanfar et al., 2019), road surface detection for autonomous vehicles (Choi et al., 2021) and so forth.
Particularly, the utilization of CycleGAN was helpful to make models from a single satellite compatible
with all the satellites of the constellation. GANs have also been used for condition monitoring of various
types of wind turbine gearboxes (Zhang et al., 2020).
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In our study, the automated camera was mounted on the nacelle catching the blade bymotion detection
when it moves through the image. This approach has the advantage that it is not necessary to put a hole into
the spinner, the camera is less exposed and the view angle toward the blade is more steep, that is, it is
possible to see the whole blade in perspective. Further, this paper focuses on a different strand of research
compared to existing studies. The use of algorithms based on generative AI detects icing on different
blades from the RGB-camera images automatically—while most previous studies rely on manual
analysis. The generation of synthetic data facilitates better compatibility of DL models originally
developed for one specific wind turbine (i.e., rotor blades of a single turbine) to any other wind turbines.

3. Dataset Description and Preprocessing

We utilized RGB images for our study that were recorded by cameras in two real-world wind parks—wind
park A located inNorthAmerica andwind parkB located inNorthernEurope. Note that the images acquired
fromwind park A are of significantly higher quality thanwind park B owing to a better camera quality. The
images were manually labeled into three classes by two humans (with cross-validation also performed
between the labels)—no rotor blade on foreground, rotor blade without icing and rotor blade with icing.We
experiment with both scenarios—wind park A as source domain andwind park B as target domain and vice
versa. The trainingdata of the base sets contains 150 background images, 20 rotor blade images plus 50 rotor
blade images from the target domain and 70 icing images from the source domain. The rotor blade and ice
images are augmented with up to 10% random rotation, reaching 400 images. The test data includes around
200 images of each class forwind park A and around 800 forwind park B.Examples of images belonging to
the datasets used in this paper are available for the interested reader in Alvela Nieto et al. (2023).

4. Proposed Methodology and Learning Models

We intend to utilize existingDLmodelswhichhave already achieved success in domain-specific icedetection
in past literature as baselines, includingMobileNetV2, VGG-19, and Xception. We utilized the same dataset
types from wind parks used in the past study in our experiments for fair comparison (Alvela Nieto et al.,
2023). However, in this study, we aim to develop models that are fine-tuned to the domain-specific target
using generative AI for better generalization to other wind parks. As successful training of CNNmodels for
domain-specific applications requires substantial amounts of data, the standalone networks generalize poorly
on the face of small, limited datasets with significant class imbalance (Motamed et al., 2021). As the existing
models are domain-specific and bound to distinct wind parks, we apply transfer learning to accomplish
generalized ice detection that is independent of characteristics of the wind parks that the models have
previously been trained on.Consider theRGB images fromwindparkA as the sourcedomain, and the images
from wind park B as the target domain (or vice versa). The target domain is significantly different from the
source because of the varying rotor blade shape, background of the geographical area, quality of the recorded
images and so forth. However, both domains show some similarities regarding the presence or absence of ice.
The goal is to train models which can make more effective predictions for the target domain, when trained
only with ice images from the source domain. For accomplishing domain adaptation, we propose to perform
synthetic data augmentation which is eventually utilized to train the standalone ice-prediction models. We
experiment with two different approaches for generating synthetic data—one being a state-of-the-art method
in unsupervised image translation (CycleGAN) and another being a more traditional method (neural style
transfer algorithm). Both approaches are described below and will be compared later in Section 6.

4.1. CycleGAN for unpaired image-to-image translation

Image-to-image translation (Liu et al., 2017) is a popular computer vision task that aims to automatically
map images in one domain onto corresponding images in another domain. Conventional image-to-image
translation relies on supervised learning models requiring labeled pairs of images between the source and
target domains, which is rarely available in many real-world practical problems. This includes the wind
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industry in which there is often a lack of historically paired images across different scene representations
(e.g., image of the same wind turbine rotor blade in summer and winter, day and night). Owing to this
challenge, unsupervised image-to-image translation models are recently gaining prominence—as they do
not require a paired dataset of images or additional domain expertise and can simply leverage existing
unlabelled datasets (Hoyez et al., 2022).

CycleGANs (Zhu et al., 2017) are a type of generative adversarial network (GAN)model that can be used
for unpaired image-to-image translation. They rely on unsupervised learning to automatically map patterns
between images from two different domains—and thus learn to translate the images from one domain to the
style of the other domain. The CycleGAN is based on the typical GAN architecture consisting of:

1. Generator: The generator is a deep neural network (DNN) that aims to generate new (fake) images
which would match the style of the target domain images, while preserving the underlying content
of the source domain images. It achieves this by receiving continuous feedback from the discrim-
inator as described next.

2. Discriminator: The discriminator is another DNN that checks whether the new image generated by
the generator is actually a real image (i.e., a copyof the original target domain images), or a truly novel
(fake) image that modifies the source domain image to the style of the target domain. It acts as a basic
classificationmodel that aims to distinguish between real and fake images generated by the generator.

While the traditional GAN only has a single generator and a discriminator, the CycleGAN consists of
two generators and two discriminators. It uses them to compute the cyclic-consistency loss—a loss metric
that is used when translating images from domain A to B (or vice versa) by leveraging a mapping function
G andmapping the translated image back toA (or vice versa) by utilizing a differentmapping functionF to
quantify how close the generated (fake) image is to the original (real) image. The CycleGAN aims to learn
a mapping G :Domain A!Domain B during its training process to ensure that the probabilistic distri-
bution of the images obtained with the function G Xð Þ is identical to the probabilistic distribution of
domain B images based on an adversarial loss (Zhu et al., 2017). The model also learns an inverse
mapping F :DomainB!DomainA and computes the cyclic-consistency loss Lcyc G,Fð Þ:

Lcyc G,Fð Þ=Ex�pdata xð Þ ∥F G xð Þð Þ�x∥1½ �
þEy�pdata yð Þ ∥G F yð Þð Þ� y∥1½ �, (1)

wherein, x represents the images in training data for domainA (x ∈ A), y represents the images for domainB
(y ∈ B) and E represents the expected values to ensure that F G Xð Þð Þ≈X (or vice versa) byminimizing the
value of the cyclic-consistency loss. We propose to utilize the CycleGAN model for learning to translate
plain rotor blade images in domain A (without ice, as obtained during the summers) to rotor blade images
with icing (as evident in the winter) in domain B. Figure 1 describes the proposed framework, wherein,
CycleGAN is used as a generative AI model. Note that for simplicity, only one part of the CycleGAN is
shown in this figure with one generator and one discriminator—there would be another similar generator
and discriminator that would learn to translate from domain B to A. For more details on the generic model
architecture of CycleGAN, the interested reader is referred to Liu et al. (2017) and Sinha (2021).

4.2. Neural style transfer algorithm

Neural style transfer with CNNs (Gatys et al., 2015; Jing et al., 2020) is a more traditional method of
facilitating domain adaptation in computer vision tasks. The algorithm employs an optimization tech-
nique in a pretrained CNN (e.g., based on weights from VGG-16, VGG-19) to transform a content image
to the style of a reference style image—while ensuring that the weighted sum of the content loss and style
loss functions computed across the content, style and generated stylized images are minimized
(Ganegedara, 2020; Jing et al., 2020). The weighted sum is represented as:

L = αLcontentþβLstyle, (2)
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where Lcontent represents the content loss, Lstyle represents the style loss and α, β are user-specified hyper-
parameters during the CNN training process.

Note that while the CycleGAN does not require a corresponding style image to generate stylized
images as it directly learns transferable representations from the content image, we observed that the
CycleGAN generated suboptimal results for our problem compared to the neural style transfer algorithm.
For our study, we used a combination of two different approaches for synthetic image generation with the
neural style transfer algorithm:

1. AVGG-19 model architecture (Simonyan and Zisserman, 2014; Kavitha et al., 2021), originally
pretrained with weights from ImageNet for image classification.

2. A pretrained fast style transfer model leveraging arbitrary image stylization (Ghiasi et al., 2017)
(no fine-tuning required).

We leveraged images from the source domain that represent the ice texture on the rotor blades as style
images. Note that the icing characteristics on wind turbine rotor blades are domain-invariant irrespective
of rotor blade designs in the different wind parks—we aimed to reproduce this characteristic in our study.
The goal is to modify the plain rotor blade images of the target domain (content images) with the icing
characteristics of the source domain, to improve the generalizability of the model.

We realized that directly modifying the content images led to distorted background as well. To
specifically modify the parts of the source imagewhich contain the rotor blade, we followed an overlaying
process—wherein, a mask is applied to the content image and a reverse mask is applied to the generated
stylized image. The overlayed images are preprocessed (as discussed in Section 5) and finally utilized for
training the CNN models for generalized ice detection. Figure 2 depicts the complete process of the
proposed approach. It is integral to highlight that with the above process, the source domain images are
only utilized for acquisition of the ice textures to modify the target domain plain rotor blade images. In
simple terms, we have cropped-out the ice textures from source domain images before using them as style

Figure 1.Framework for leveragingCycleGAN for translating plain rotor blade images (without ice) into
rotor blade images (with icing)—CycleGAN generic model architecture.
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images, which is based on the foundation that ice textures will be same in both the source as well as target
domains and are independent of wind park locations. Additionally, the above method ensures that we are
not modifying the whole target domain image, but only the segment of the plain rotor blade (without ice)
since the background is removed beforehand with the masking/overlaying process.

5. Experiments

Three CNN models—MobileNetV2, VGG-19, and Xception—were trained as these have achieved the
best results in a past study in this domain (Alvela Nieto et al., 2023). Before feeding the images to theCNN
models, the default preprocessing steps (e.g., reshaping the images) were followed. Two distinct strategies
were used to train the CNN models:

1. Unfrozen backbone: An output layer (dense layer, three classes) was appended to the model and all
model layers were trainable.

2. Frozen backbone: The generic model backbone was frozen and only the output layer (dense layer,
three classes) appended to the model was trainable.

For both unfrozen and frozen CNN backbone strategies, we used Stochastic Gradient Descent (SGD)
for optimization with an initial learning rate of 0.0015 andmomentum of 0.9, and a learning rate scheduler
that decreases the learning rate every 3 epochs by a factor of 0.94. The models were trained for 30 epochs
with a batch size of 16. We used a random seed value of 42 throughout all our experiments in this study.
Below, we describe the specific experimental details for the CycleGAN and the neural style transfer
algorithm respectively—which are the two different strategies for synthetic data generation in this study.

Figure 2. Framework for generalized ice detection with neural style transfer. Plain rotor blades in the
target domain (B) are styled with ice from the source domain (A).
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5.1. CycleGAN

For generating synthetic data with the CycleGAN, we experimented by considering three different
scenarios:

1. Training CycleGANwithwind park A plain rotor blade images as source domain,wind park A rotor
blade with ice images as target domain, wind park B plain rotor blade images as test data during
inference. The goal here is to transform the plain rotor blade images of wind park B to rotor blade
with ice images.

2. Training CycleGANwithwind park B plain rotor blade images as source domain,wind park B rotor
blade with ice images as target domain, wind park A plain rotor blade images as test data during
inference. The goal here is to transform the plain rotor blade images of wind park A to rotor blade
with ice images.

3. Using a pretrained Summer2Winter Yosemite model,1 with (a) wind park A and (b) wind park B
plain rotor blade images as test data during inference.

For CycleGAN modeling strategies (1) and (2), we used 200 images for the background class and
400 images for every other class to train the models. An initial learning rate of 0.0002 was used for the
CycleGAN. The number of training samples was the same for both wind parks.While forWind park A the
remaining 200 images per class were used as a test set, forwind park B the remaining 800 images per class
were incorporated as a test set. The class containing plain rotor blades that were modified to show ice
characteristics in the training set consisted of 50 unique modified plain rotor blade images that were
augmented using random rotation to an amount of 400 images.

We used CycleGAN’s resize and crop method for preprocessing the images for all three strategies—
with a load size of 256 and crop size of 256 to prevent losing out on the original image segments
(particularly the rotor blade) during training. For all strategies, the models were trained for a total of
200 epochs (100 epochs with the initial learning rate þ 100 epochs with a step-based decay in learning
rate). A batch size of 16was used during training. For all other hyper-parameters, default values were used
as in Zhu et al. (2017). Note that the same train-test splits of the dataset are used in both the CycleGAN and
the neural style transfer algorithm (described below) for fair comparison.

5.2. Neural style transfer algorithm

For neural style transfer, we leveraged the intermediate layers (without the classification head) of the
VGG-19 model and applied the Adam optimizer with the following hyper-parameters: a learning rate of
0.02, beta_1= 0.99 and epsilon= 0.1 to train themodel for 40 epochswith 100 steps per epoch andmodify
the contentwith the style from our preprocessed images. As the generation of the images at this stage leads
to high-frequency artifacts and significant variation loss, a denoising process for further optimization of
the images over 40 epochs with 100 steps per epoch and a total variation weight of 30 was used. Default
hyperparameter values for the fast style transfer model (Ghiasi et al., 2017) were applied. Fifty rotor blade
images of the target domain are style-transferred to generate 200 additional synthetic images for the ice
class with the previously described techniques.

6. Results

In this section, we present the experimental results obtained from leveraging the CycleGAN and neural
style transfer algorithm as generative AI models for synthetic data augmentation. Note that our goal is to
evaluate the feasibility and potential of the two techniques in facilitating domain-invariant learning—that
is, to make effective predictions for the target domain when the models are only trained with images from
the source domain.

1 Summer2Winter Yosemite Dataset: https://people.eecs.berkeley.edu/taesung_park/CycleGAN/datasets/.
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6.1. CycleGAN

Table 1 outlines the experimental results obtained by training three different CNNmodels for generalized
ice detection, both with and without leveraging the synthetic data generated by the CycleGAN. Two
different modeling strategies (unfrozen and frozen backbones) were used as previously described in
Section 5. Note that we also used two distinct target datasets for evaluating the models—wind park A and
wind park B. The baseline models were trained without the synthetic images, while using the synthetic
data ensures that the model makes predictions for the target dataset when only trained with images from
the source domain. We observed that using the pretrained Summer2Winter Yosemite model for our
problem in generating synthetic images led to poor results.

Based on the strategies of training the CycleGAN from scratch—as evident from the F1 scores, the
Xception model obtains the best performance (accuracy of up to 67.5%, F1 score of 0.604) when wind
park A is used as the target dataset—showcasing an accuracy gain of 3.4% compared to the baselinemodel
(without synthetic data). When wind park B is used as the target dataset, the VGG-19 model arises as the
best performer (accuracy of up to 43.1%, F1 score of 0.355)—achieving an accuracy gain of 3.5%.
Figure 4 shows the confusion matrices for the results obtained before (best baseline model is Xception)
and after synthetic data augmentation (best model is also Xception) withwind park A as the target dataset.
There is a negligible reduction in the number of misclassifications for the ice class.

Clearly, the accuracy gain for both target datasets is marginal and negligible.While the results are more
plausible forwind park A, the predictions are extremely poorwhenwind park B is used as the target dataset
(which may primarily be due to the lower quality of images in wind park B compared to wind park A).
These results clearly demonstrate that synthetic data augmentation with CycleGAN as the generative AI
model fails to show any promise for our problem task in facilitating domain-invariant icing prediction.

Table 1. Experimental results for ice detection before and after synthetic data augmentation with the frozen and unfrozen backbones
of the CNNs for both wind parks images used as target datasets—performance with synthetic data generated with both CycleGAN
and neural style transfer algorithm are compared.

Model
Target
dataset

Baseline (no synthetic data)

Experiment—
Model Backbone

CycleGAN (synthetic
data)

Neural style transfer
(synthetic data)

% Accuracy F1-score % Accuracy F1-score % Accuracy F1-score

MobileNetV2 Wind park A 63.3 0.528 1—Unfrozen 60.7 0.508 68.5 0.652

2—Frozen 63.3 0.535 69.6 0.664

Wind park B 39.4 0.289 3—Unfrozen 38.2 0.261 41.2 0.307

4—Frozen 40.5 0.304 46.2 0.400

VGG-19 Wind park A 60.2 0.488 5—Unfrozen 59.7 0.514 66.2 0.622

6—Frozen 65.9 0.573 83.6 0.831

Wind park B 39.6 0.284 7—Unfrozen 37.7 0.265 43.5 0.389

8—Frozen 43.1 0.355 45.8 0.402

Xception Wind park A 64.1 0.513 9—Unfrozen 67.5 0.604 70.9 0.666

10—Frozen 59.1 0.498 68.8 0.666

Wind park B 43.1 0.332 11—Unfrozen 39.4 0.286 42.1 0.336

12—Frozen 40.2 0.314 45.0 0.394

Note.With CycleGAN, there is negligible improvement in the model performance compared to the baseline while there is substantial performance gain with
the neural style transfer algorithm. The best F1 scores for each method (CycleGAN and neural style transfer) are highlighted in bold.
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6.2. Neural style transfer algorithm

Table 1 also describes the experimental results obtained when leveraging the neural style transfer for
synthetic data augmentation and provides a comparison with the CycleGAN results discussed previously.
The unfrozen and frozen backbone strategies and target datasets are the same—as previously described in
Section 6.1. Based on the F1 score, clearly, the VGG-19 model achieves the best performance in
generalized ice detection with synthetic images (see Table 1). Additionally, this model achieves an
accuracy of up to 83.6% and an F1 score of 0.831 for wind park A as the target dataset, representing an
accuracy gain of 19.5% compared to the best baseline model for wind park A (Xception with 64.1%
accuracy and F1 score of 0.516).

While the prediction results are not as promising whenwind park B is used as the target dataset (which
may primarily be due to the lower quality of images in wind park B compared to wind park A), the
proposed approach still showcases a noticeable performance gain compared to the baselinemodels. These
results highlight that synthetic data augmentation with neural style transfer as the generative AI model
yields improved predictions for the target domain, representing a significant boost in domain-invariant
predictive capability of the standalone CNN models.

To further clearly enunciate the differences in the performances of the two discussed methods, we
provide a comparative plot in Figure 3 that visually outlines the differences in performances for the CNN
models to perform ice detection based on synthetic data generated by CycleGAN against synthetic data

Figure 3. Comparative plot between the achieved F1-scores by models using the CycleGAN or neural
style transfer methods to create synthetic data. Each point is representing one experimental setup and the
corresponding number refers to the “Experiment” column in Table 1. The crosses represent the best
baseline for each windpark without synthetic data. If both methods would perform equally in all
experiments, all points would lay on the separating line. Clearly, synthetic data generated with style
transfer outperforms the CycleGAN over all experiments and the baseline in all but two experiments (nos.
3 and 11).
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generated by the neural style transfer algorithm. This is basically based on the number of experiments
highlighted in Table 1 and visually depicts the representative F1 score across all 12 experiments that are
conducted (for each model—two experiments per wind park summarized across the three different
models: MobileNetV2, VGG-19, and Xception as previously discussed in the paper). Clearly, the best
results for ice detection in wind park A are obtained in experiment 6 (VGG-19 with frozen backbone) in
case of neural style transfer, with the CNNmodel reaching a F1 score of 0.831.Whereas, for the very same
experiment 6, with the CycleGAN, the F1 score is only 0.573. Likewise, for wind park B, experiment
8 (VGG-19 with frozen backbone) achieves the best F1 score with the neural style transfer technique,
reaching 0.402. For the same experiment, the CycleGAN showcases amarginally lower F1 score of 0.355.
Notably, the CNN models trained with neural style transfer generated synthetic data outperform their
CycleGAN counterpart over all experiments and the baseline in all but two experiments (nos. 3 and 11).

7. Discussion

Our experiments show that the neural style transfer algorithm performs superiorly in comparison to the
CycleGAN for generating realistic synthetic images to train existing CNN models to facilitate domain-
invariant detection of icing. While the CycleGAN is a recent state-of-the-art model that is able to
automatically identify low-level features in the data for unpaired image-to-image translation, it performs
poorly in our problem task. This can be attributed to the small size and the high-class imbalance prevalent in
the data—an inadvertent real-world challenge in the wind industry. We also noticed significant noise in the
images generated by the CycleGAN owing to checkerboard artifacts due to deconvolution (Odena et al.,
2016)—a major limitation of synthetic images generated by most GANs. As the neural style transfer
algorithm performs very effectively in the experiments for our problem task, we did not consider other
methods for, for example, eliminating the checkerboard artifacts prevalent in past literature. As a limitation
of our proposed approach, it is important to emphasize that the neural style transfer algorithm relies on
significant manual efforts for data annotation in the source and target domains and masking, while the
CycleGAN can perform automated image-to-image translation in an unsupervised manner. This may form
an interesting path for future research on the optimization of synthetic images generated by the CycleGAN.

8. Conclusion

The study shows that synthetic data augmentation through neural style transfer improves the generaliza-
tion of AI models used for ice detection. We have compared our proposed approach to the state-of-the-art

Figure 4.Confusionmatrices for the results based on test set of wind park A as target dataset: (a) Baseline
models, no synthetic data augmentation); (b) With synthetic data augmentation through CycleGAN; and
(c) With synthetic data augmentation through neural style transfer algorithm. The Xception model
performed the best with both CycleGAN as well as neural style transfer. Also, neural style transfer clearly
has significantly lower number of icing missclassifications compared to CycleGAN.
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CycleGAN model as a baseline and outlined the superiority of the proposed method in facilitating
improved predictions in new domains. This is evidenced by the substantial improvement in F1 score and
accuracy metrics for icing prediction across different wind parks compared to standalone ice detection
techniques. Even though our results are mainly significant for ice detection in one target wind park (wind
park A) in North America, the method shows the ability to generalize to another wind park (wind park B)
in Northern Europe as well. To the best of our knowledge, this is the first study to propose generalized
detection of ice accretion on rotor blades and can be useful in making more effective icing predictions, for
example, in newwind parks that theDLmodels have not been previously trained on. This can help prevent
unexpected downtimes and failures in wind turbines due to icing, making wind energy a more promising
source of renewable energy. Despite its promise, our study has the limitation of only being able to
demonstrate high accuracy in generalized ice detection when the target dataset has high-quality images
(in wind park A), while with lower-quality images the performance gain is marginal (in wind park B).
Another limitation may be the hand-labeling of data in our study. Although two different humans
annotated the datasets, models trained with such data may be affected by the inherent bias of the
annotators. Future work aims to automatically create segmentation masks using U-Net, to feed them to
paired image-to-image translation models like Pix2Pix toward improving the characteristics of synthetic
images. In addition, future research may use regression models for quantifying the ice accumulation and
the fusion of data from sensor-based methods (e.g., SCADA data) may further improve the performance
of ice detection models.
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