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WEAKLY COMPACT MULTILINEAR MAPPINGS
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The notion of Arens regularity of a bilinear form on a Banach space E is extended to continuous m-linear
forms, in such a way that the natural associated linear mappings, £ ->• £(""'£) and (m — l)-linear mappings
E x ... x E -* E, are all weakly compact. Among other applications, polynomials whose first derivative is
weakly compact are characterized.

1991 Mathematics subject classification: Primary 46G20, Secondary 46B20

Let £ , , . . . , £m be Banach spaces over scalar field K = R or C, and let
£ ( " £ , , . . . , £m) be the space of continuous m-linear forms A : E, x . . . x Em -*• K. Each
A e £(mE, Em) generates in a natural way m linear mappings

A\ : E , , - * £ ( - ' £ „ . <?. , £ J , i = l m,

defined for x e £,, x;- e £,-, _/ = 1 , . . . , m, j ^ i according to the formula

4(*)(*i x,_,, x,+ , x j = A(x , , . . . . x,_,, x, x / + 1 , . . . , xm)

as well asm (m - l)-linear mappings

< . , : £ , x . « x £ m - > £ ; , i = l n

defined for x e E{, xt e £;, _/ = 1 , . . . , m, j ^ i according to the formula

4n-l (*1. • • • . *,-l - X,+l. • • • . *m)M = ^ ( ^ 1 , . . • , X,_,, X, Xj+1, . . . , Xm).

Note that whenever £, = £ for all i — 1 , . . . , m and A is symmetric, all mappings A\
(resp. /lln-i) coincide.

R. Arens [2] (see also Ulger [18]) was among the first to recognize the relationship
between extension to £" x F" of bilinear forms on £ x F and properties of the
associated linear mappings from £ to F'. Specifically, a continuous bilinear A form on
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182 RICHARD M. ARON AND PABLO GALINDO

E x F has a separately weak-* continuous extension to E" x F" if and only if the linear
mapping A\ (and hence A]) from E -*• F is weakly compact. (This property has also
been studied in recent years by Saab and Saab [16] among others.) This property, also
called Arens regularity, was exploited in [6] to examine the homomorphisms on the
Banach algebra H°°([/E), where UE is the closed unit ball of E, as well as in [8] in
connection with the Frechet algebra Hb(E) of all holomorphic functions on E which are
bounded on balls. (We refer to [11] for general background on holomorphic functions
on infinite dimensional spaces, and to [13] for background on locally convex
topologies.)

Here, we study the following generalized form of Arens regularity: An m-linear
mapping A e £ ( "£ , , . . . , Em) is said to be regular if every mapping A\ (i — 1 , . . . , m) is
weakly compact. (Recall that a mapping g is said to be weakly compact if every point
in the domain of g has a neighbourhood with relatively weakly compact image.) If
every A 6 £(m£) is regular, E is said to be m-regular. In this note, we study this
property, obtaining several equivalent conditions as well as some applications to
function theory on E. Among other things, we will obtain a non-linear version of the
factorization theorem of Davis, Figiel, Johnson and Pefczynski ([10, Lemma 3 p. 227])
for m-regular mappings.

In our discussion, we will have frequent occasion to use the notional convention
.('?. to mean that the ith coordinate is not involved. For example, we have already
employed this by writing £0"~'£,,.('?. , Em) to denote £(m~'£, , . . . , £,-_,, £,•+,,.... £ J .

It is trivial that every reflexive space is m-regular for every m e N. There are also
examples of non-reflexive m-regular spaces for every m e N: By a classical result of
Pelcyzriski (see [14]) for every m e N, every m-linear form A on c0 is weakly continuous
(on bounded sets). Then one can prove, in an analogous way to that used in [9] for
symmetric multilinear forms, that A\ is compact for all i = 1 m. Another (non-
reflexive) example of an m-regular space for every m e N is the James space, Tj,
modelled on the original Tsirelson's space T [7]. In fact, every A e £(m7}') is weakly
continuous on bounded sets: Indeed, no spreading model built on a normalised weakly
null sequence in 7}' has a lower ^-estimate for any q < oo [7]. Then the arguments of
Farmer ([12, 1.3 Thm.]) show that every multilinear form on 7}' is weakly sequentially
continuous at the origin and a standard induction argument leads to weak sequential
continuity at any point. Since Tj does not contain copies of €,, it follows that every
multilinear form on T3 is weakly continuous on bounded sets. Therefore, as in the case
of c0, A\ is compact for all i = 1 , . . . , m.

There are also non-regular spaces, £, being the typical example ([6, p. 83]).
Nevertheless, there are non-trivial regular bilinear forms on £u such as
A(x, y) = 53 Xjyj, where x = (x;) and y = (_y,) are in £,.

If £ is m-regular for some m > 2, then E is (m — l)-regular, and hence £ is regular.
This will follow easily from the next theorem. To see this, let A e £(m"'£). Pick cf> e £'
and z e £ such that </>(z)=l. Since B(x ,xm) = A(xl,...,xm_l)<j>(xm) defines an
element B e £(m£) which is regular by assumption, B satisfies condition (5) in
Theorem 1. Thus A(xt,.. .,xm_t) = B(xl,...,xm_l,z) also fulfills that condition.
However, the converse is false, as the following example in [5] (see also [8]) shows. Let
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WEAKLY COMPACT MULTILINEAR MAPPINGS 183

A : LM[0, 1] x LM[0, 1] x LJO, 1] -»• C be defined as

A(f, g, h) = £ ( 2> \ fdx) f grjdx f hrjdx,
y=l \ Jlj,.^ / ^to.ll ./[O.I]

where r; is the standard /th Rademacher function. Since A is not regular, L^fO, 1] is
not 3-regular; of course, Lx[0, 1] is regular since it is a C*-algebra. See [5] for
details.

The following argument shows that for every m>2, the space c0 x lm is m-regular
but not (m + 1)-regular. Since the dual of c0 x lm is £, x £m/m_i, it suffices to show that
every A e £(m~'c0 x lm, £,) is weakly compact. That A is weakly sequentially continuous
follows from ([1, 3.2 Cor. 5]) once one realizes that c0 x lm has property Pl/m (see [1]
for details). Moreover, by ([9, Cor. 2.5]) A maps weakly Cauchy sequences into norm
convergent ones and therefore A is compact because neither c0 nor im contains copies
of lt. So c0 x lm is w-regular. On the other hand, since the m-linear mapping
n : tm x . . . x lm - • £, given by n((x',), . . . , (xJJ) = (*', • • • xJJ,. is not weakly compact, it
follows that c0 x £m is not (m + l)-regular.

The following result gives a reasonably useful characterization of m-regularity. Note
that £,«g>£2 denotes the completed projective tensor product of £, and E2.

Theorem 1. Let A e £ ( m £ i , . . . , Em). Then the following are equivalent:

(1) A is regular, i.e., A\ : E, -»• £(m~'£,, .'P., Em) is a weakly compact linear operator
for all i = 1 , . . . , m.

(2) The bilinear form ffA : £, x (£,(£>.(?.®£m) -)• K defined by B'A(x, y, ® .(P. <8> ym) =
A(yi,..., x,..., ym) w Arens regular for all i = 1 , . . . , m.

(3) 77i£? /wear operator CA : £,(£>.(?.<g>£m ->• £J defined by CA(yx ® . (? .0 yj(x) =
/4(y,, . . . , x , . . . , yra) (x 6 £,) « weakly compact for all i = 1 , . . . , m.

(4) 77ie mapping A'm_{ : £, x .(?. x £ra -»• £J is weakly compact for all i = 1 , . . . , m.

(5) For each i = 1 , . . . , m, there is a weakly compact subset L, of E\ such that

\A(xt,...,xm)\<\\xl\\Lt...\\xJLm

for all x, e £ , , . . . , xm € £m.

(6) For each i— \,...,m, there is a reflexive Banach space Yh a continuous linear
mapping Tt : £, -> Yt and an m-linear mapping D € C(mYu ... ,Ym) such that

A(x , x J = D(7I(x1),...ITm(xJ)

for all x, € £ , , . . . , xm e Em.
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184 RICHARD M. ARON AND PABLO GALINDO

Proof. Since the dual of £,<§>.'P. <8>£m is £(""'£,,.(?., £ J , the equivalence of
conditions (1), (2) and (3) follows from ([18, Th. 2.2]) applied to each B'A for all
i = 1 , . . . , m. That (3) implies (4) is immediate and the proof of (4) =>• (3) follows easily
since the closed unit ball of £,<§>.(?.<8>£m is the closure of the absolutely convex hull
of UEl ®.°?.<8>UEm.

(4) => (5). Set Kt = ^i(UEt x .(.°. x UEJ. Kt is a relatively weakly compact set in

£•. Moreover, given x e £, and u, e £,, . 9 . , um e Em, all of norm < 1, we have

| ^ ( M 1 , . . . , X , . . . , U J I = l ^ - i ( " i - - - . " J W I < supx,6K(|(x', x)| = ||x||K. for all i=l,...,m.

Consequently \A(u{ x,..., um)\ < ||x||K(||Ml||.«. | | u j | for all i = l m. By
enlarging K, we may assume that /C, is absolutely convex and weakly compact.
Therefore if ||MJ| <j for all k ^ i, we have

\A(ult..., x,..., um)\ <;—'||x||K| for all i = 1 m.

We denote by M° the polar of any set M in the dual pair (£;, £,) and by T(M) the
absolutely convex hull of M. Consider

We apply Grothendieck's lemma ([10, Lemma 2 p. 227]) to show that L, c £J is weakly
compact. Indeed, given e > 0 and jeN such that 1 <je, we have Li<z{jm'iKi\J
UeJiT = cl^^nr'K, U UeJj) C cl^^W-'K, + UE,/j) = (jm-xK,+ UE,/j), the last
equality being true because the sum of two weak* compact sets is weak* closed.

Now,

f / E] F
jo r\ r i u 0 0 / i1""1 K 11 — I ri rJi i00 / ;"•"' K I I +L> ~CUEIX) I u ; = i ^ ' j ) J " ^ " i ^ 1 {UJ=>[J ' j

the last equality being true because of the convexity of r{U~,(;"""'Kt U UE,Jj)°).
Suppose x, e L° for all i = 1 , . . . , m. We will show that \A(xlt..., xm)| < 1. Since A

is continuous, it suffices to prove that \A(xt,..., xm)\ < 1 just for x, e r(U~1(;""l/C,U
UE'/j)°), i= 1, . . . , m . Adding zeros if necessary, we may suppose without loss of
generality that x, = EJ=, a..,}',., where yQ e (y"1"'^, U UeJj)° and ^ , |a,y| < 1 for all
j — 1 , . . . , m. Then

,, . . . , X J = A
/
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so it is enough to check that | .4(y M l , . . . , ymJn)\ < 1 for any choice of ( l ,y , ) , . . . , (m,jm).
Since ||y,;|| <j for all i and j , we may assume without loss of generality that
Ik.,, II <L for all i = 1 , . . . , m, and so \A(y1Jr..., ymJm)\ < (jm)m~l\\ymJJK < 1 because

(5) =$• (4). We may suppose that L, is also absolutely convex for all i=\,... ,m.
Since the L,'s are weakly compact, there is a constant / > 0 such that for all i, jL,- is
contained in the unit ball of E\, i.e. ||x||L. < A||x|| for all x e £,. We will check that,
for any i— \,...,m, the set A'm_t(UEl x .'?. x UEm) is relatively weakly compact by
proving that / 1 L I ( ^ E , X -• x UEJ C />.""'L,. Let z e E? belong to the polar set of L,
with respect to the dual pair (EJ, £•') and let {xt}fc6A be a net in E, converging to z in the
Mackey topology n(E", £|) (such a net exists because £, is a w(£", £j)-dense convex
subset which is of the same dual pair as the //(£", £|)-topology) ([13, 8.2.5]). Now if
u, e UEl,.

(?., um e UEm we have

<^L-i(" " J . z> = lim</lLi("i, • • •, um), xk) = lim A(u, xk,..., um).
k k

Therefore, since \A(ut xk,..., um_,)l < I M t , . . . | |x®|| t l . . . ||um||Lm < Am-'||xJ|L,. and
lim, llJCfcHi., = ||z||L( < 1, we have ! « _ , ( « , . . ? . , u j , z)| < A""1.

Thus according to the bipolar theorem we have proved that A'm_l(UEl x .(?. x UEm)
is contained in the w(£j, £")-closure of Am~'L,, which is itself.

(5) => (6). The next part of the proof relies on the following: If for some absolutely
convex closed set L c X the Banach space XL generated by L is reflexive and if denotes
the polar in the dual pair (X1, X"), then the completion of X^ = {X'/\\ • HZ'(O), || • ||t) is a
reflexive Banach space. To see this, observe that since L is weakly closed and absolutely
convex, we have L" = L and X"L = XL. Moreover, (X'/\\ • \\lx(0), || • | | t ) ' = X"L.. (see [13,
8.3.4]), so it follows that the dual of the completion of XJL>) is reflexive. Hence the
completion of ATJL.), which we denote as usual by X'^, is reflexive.

The assumption on A guarantees that A is uniformly continuous on bounded
subsets of £, x . . . x £m when each space £, is endowed with the topology of uniform
convergence on weakly compact sets in E\. Moreover, since the points in the bidual
are in the weak*-closure of multiples of the unit ball and the n(E", Enclosure of any
convex set coincides with its w(£", £-)-closure, it follows that every point in
{E'[, n(E'[, £',)) x . . . x (E"m, n(El, E'J) is the limit of a bounded net in £, x . . . x Em.
Therefore A can be uniquely extended to (£", n(E"u £',)) x . . . x {E"m,n(E"m, E'm)) by
uniform continuity on bounded sets. Let A be this extension. It is easy to check that
A is m-linear and that the estimates in (5) are preserved, i.e.,

Let q, : (£", n(E", E'J) -»• (£"/| | • HZ!(O), || • | | t i) be the canonical quotient mapping. It is
a routine calculation to verify that the mapping
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186 RICHARD M. ARON AND PABLO GALINDO

i : (£i'/ll • IIZ!(0). II • lit,) x . . . x ( O | | • | |^(0), || • | | L J -* K

defined by

is well-defined, wi-linear and continuous. Once again, A is uniformly continuous on
bounded sets, and hence it can be extended to a mapping D on the product of the
completions of (£;/1| • ||Z,'(0), || • ||Li).

By the classical result of Davis, Figiel, Johnson and Petczynski ([10, Lemma 3
p. 227]), we may choose the weakly compact sets L, such that the Banach spaces {E'i)L.
are reflexive and the L,'s are absolutely convex. To complete the argument, it suffices
to apply the observation stated above.

(6) =» (5). \A{xx x j | = |D(7i(x,),..., Tm(xJ)| < ||D|| • ||7Xx,)||... l|Tm(xm)|| and

for each i = 1 m, ||7;(x,.)|| = s u p ^ \(y, T,(x,))\ = supy6l/y, \(T*y, x,)| = ||x, !!,.<„,,,.
Since Yt is reflexive, T*(UY;) is a weakly compact set in E\. D

Theorem 1 yields the following factorization result.

Corollary 2. Let P : E -*• K be a continuous m-homogeneous polynomial. If the
derivative dP : E —*• E' is weakly compact, then P is continuous for the topology on E of
uniform convergence on weakly compact sets in E'. Moreover there is a reflexive Banach
space Y, a continuous linear mapping T : E -*• Y and a polynomial Q : Y —> K such that

Proof. Let A be the symmetric w-linear mapping associated to P. Since
dP(x)(u) — mA(u, x , . . . , x) for x, u e E, it follows that the unique (m — l)-linear
symmetric form associated to the polynomial dP : E - • £' is mAl

m_}. By the polarization
formula (see e.g. [11, 1.1.5]) the weak compactness of dP leads to the weak
compactness of w/4^_,, so A is regular. A glance at condition (5) in the above theorem
suffices to prove the continuity statement. The factorization result follows from the
fact that in this case all the spaces Yt constructed in the proof of (5) =» (6) coincide. •

Corollary 3. (1) Let A e C(mEt,..., Em). Then A is weakly uniformly continuous on
bounded subsets of £, x . . . x Em if and only if there are compact sets C, C E\ such that
\A(xt x j | < | |x, ||Ci . . . | |xm \\Cm for all x , 6 £ , , . . . , x m e Em.

(2) Let P : E -> K be a continuous m-homogeneous polynomial. Then P is weakly
uniformly continuous on bounded subsets of E if and only if there is a compact set C C E'
such that |P(x)| < ||x||c for all x € E.

The proof of this result, due originally to E. Toma [17], is a straightforward
modification of the arguments used to prove Theorem 1. We note that the space of
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polynomials which are weakly uniformly continuous on bounded sets has proved useful
in several situations (e.g. [6] and [9]).

The following will be useful in the proof of Theorem 5, below.

Remark 4. (1) If A is the symmetric m-linear mapping associated to a polynomial
P : E -*• K, then the sets K{ considered in the proof of (4) =» (5) in Theorem 1 are
actually r(/4l_,([/£ x . . . x UE)), which is contained in [(m - 1)""'/(»» - l)\m\r(dP(UE)).

(2) In the proof of (4) => (5) in Theorem 1, replacing K, by ccKt leads to a weakly
compact set L,(a) = n"iO""~'a^, u Ugjj)00 such that \A(xu . . . . x j | < a if x, e L,(<x)°
for all i = 1, . . . , m.

Theorem 5. Suppose E is a complex Banach space. Let f e Hb(E). The following are
equivalent:

(1) df : E -*• E' is weakly compact.

(2) There is a reflexive Banach space Y, a continuous linear mapping T : E —*• Y and
a holomorphic function f e Hb{Y) such thatf — f o T.

(3) f is continuous for the topology on E of uniform convergence on weakly compact
sets in E'.

(4) / is uniformly continuous on bounded sets for the topology on E of uniform
convergence on weakly compact sets in E'.

Proof. (1) =» (2). First of all, observe that df is also of bounded type. For, by
Cauchy's inequality, \\df(x)\\ = supuel/£ \df(x)(u)\ < supuet,£ \f[x + u)\ for all x e E.
Arguing as in Thm. 3.2 of [15], it follows that df maps bounded sets into relatively
weakly compact sets in E'.

Let £.Pm be the Taylor series expansion of/ around 0 and recall that £]dPm is the
Taylor series expansion of df around 0. Applying Thm. 3.2 of [15], it follows that dPm

is weakly compact for all m e N. For each Pm we construct the weakly compact set
Lm = n~,(r"'c/u<£.£0{r(dPm(t/£)} U Ue/fl)". As we mentioned in Remark 4, if x e L°m,
\Pm(x)\ < [(m- l)m~l/(m- l)\m]. On the other hand, for any m,j e N, we have
j"-lr{dPm{UE)) C r{dPm(jUE)} c cl^TdfijUi)} by [15]. Then if

S is also a weakly compact set in E' and Lm c S. Thus if x e (3S)° then
l̂ mWI < [(»»- l)m"'/(w- !)!»»] l/3m, so / is locally bounded at 0. Furthermore, the
arguments used in Theorem 1 to prove the factorization condition (6) lead to the
reflexive Banach space E'^ through which every Pm factors. A routine calculation
(see [11, Th. 2. 21]) shows t h a t / factors through^',.) as a holomorphic mapping of
bounded type which has a natural extension/ to E'^.
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(2) =>• (3). Since Y is reflexive, the double adjoint of T, T" : (E",ji(E", £')) -> Y is
continuous. On the other hand, / is continuous on Y. Hence / = / o T satisfies the
requirements in (3).

(3) => (4). Since continuous polynomials are uniformly continuous on bounded sets
and/ , as a function of bounded type, is the uniform limit on bounded sets of its Taylor
series expansion around 0, it follows that / is \i{E"', £')|£-uniformly continuous on
bounded sets.

(4) =>• (1). We begin by proving the result in the case that / = P : E ->• C, an
m-homogeneous polynomial, m e N. Let A be the symmetric m-linear mapping
associated to P. By the polarization formula

Since P is fi(E", £')IE uniformly continuous on bounded sets, given n e N, there is a
weakly compact set Kn c E' such that \A(xu ..., xm)\ < 1 if ||x, || < n,..., | |x j | < n and
x, e K°n. Now let us see that P is continuous for the topology on E of uniform
convergence on weakly compact sets in E'. This will follow a very similar pattern to
the proof of (4) => (5) in Theorem 1. Consider the weakly compact subset of £', given
by K = fXi(Kn

 u UE,/n)°°. Suppose x e K°. We will see that \P(x)\ < 1, and to do this
it suffices to prove that |P(x)| < 1 only for all x e r{U~,(/CB U C/^/n)0}. Let
x = Ej-i W where y} e (Kn. U [/£,/n/ and £J=] \<xt\ < 1. For every j , y; e (Knj)° and
yje(Up/nj)0, i.e. ||y,|| < n;. Then P{x) = £>, , . . .<XjmA(yh,..., yjm), so it is enough to
check that \A(yh yjm)\ < 1 for any choice of j , ;m. We may suppose that
Il̂ -H < «;m for all i = l , ." . ,w. Since ^ e (K.n.J°, we have ^ (y , , , . . . , yjm)\ < 1. Thus P
is M(£", £'),£-continuous, so A is also ^(£",£ ^-continuous. Hence A is regular. Now
apply Theorem 1 to see that dP is weakly compact.

Finally, note that, according to Cauchy's formula, each of the Taylor polynomials
of/ at 0 satisfies the assumption. Therefore, each has weakly compact derivative, and
so we may apply Thm 3.2 of [15] to conclude that df is weakly compact. •

Remark 6. The assumption that the holomorphic function / be of bounded type
(i.e. / 6 Hb(E)) cannot be avoided in general. For instance, i f / : c0 -> C is defined by
/ ( (x j ) = Y17=i x"> t nen / is not continuous with respect to the topology on c0 of
uniform convergence on (weakly) compact sets in £t, as can be easily noticed by
considering the unit basis sequence [en] and the Banach-Dieudonne theorem. On
the other hand, df: c0 -*• £t is weakly compact. To see this, observe that
df((xn)) = (nx"n~

1), and so each of the Taylor polynomials of df at 0,
Pm[df] ((yj) = wy™~' is weakly compact since each takes values in a 1-dimensional
subspace of £, [15].
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. The last part of this note is devoted to the relationship between the regularity and
the canonical extension to the bidual of holomorphic mappings of bounded type. We
refer to [4] and [6] for details about the canonical extension.

Corollary 7. / / 4 e £ f E | , . . . , £ J is regular, then its canonical extension, A, is
/*(£", E')-continuous and regular.

Proof. Let a,,..., am_, e E and z e E". As in the proof of Theorem 1, there is a
net {x,}j6, in E converging to z in the /i(£", £')-topology. In particular,
lim, ||x,||K = ||z||K. Then for the canonical extension A of A,

l im ||a, ||K... ||am_, HJIx, ||K = Ha, ||K... \\am_t | | K | | z | | K .

Repeating the argument backwards, we are led to

|i(z,, . . . , z j | < ||z,||K... ||zJ|K (z,, . . . , zm g £").

So A is n(E", £')-continuous and therefore A is continuous for the topology on E" of
uniform convergence on weakly compact sets in £'". Thus we can apply Theorem 1 to
see that A is regular. •

We need the following lemma for the proof of our final result.

Lemma 8. Suppose that E is a complex Banach space. If M c Hb(E) is a relatively
compact set and df is weakly compact for every f e M, then M is equicontinuous with
respect to the topology on E of uniform convergence on weakly compact sets in £'.

Proof. As in the proof of Theorem 5, for every / 6 M, df maps bounded sets in £
into relatively weakly compact sets in £ ' . By compactness for each n e N there is a
finite number of elements / , , . . . ,/„,„ e M such that for every feM, there is
i e { 1 , . . . ,mn) with \\f — fi\\nuE+uE 5 Vw- Therefore for any x e £ with ||x|| < n we
have

||d/(x) - 4/Xx)|| = sup \df{x){u) - df,{x){u)\ = sup \d(J - / J ) ( x ) ( u ) | < | | / -f,\\Mls+Ut < -
ueUE ueUE

 n

as a consequence of Cauchy's inequality. If we put Cn = VfeMdf(nUE) we have

Cn C cl^EI)r{dfx{nVF)U .. . U dfJinVE)} + ^ .
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By our assumption, the set clW(EE.)T{df{nUE)^J.. .\JdfmJjiUE)} is weakly compact, and
so we may again apply Grothendieck's lemma to conclude that the set

C =

is weakly compact. As in Theorem 5 the functions in M are uniformly bounded on
C, from which the result follows. •

Proposition 9. Suppose that E is a complex Banach space and let fe Hb(E). Then
the following are equivalent:

(1) df : E -*• E' is weakly compact.

(2) The canonical extension f of f to E" is n{E",E') uniformly continuous on bounded
sets.

(3) The derivative df : E" —*• E'" of the canonical extension of f is weakly compact.

Proof. (3) => (1) is trivial and (2) =• (1) has been shown in the proof of (4) => (1)
of Theorem 5.

(1) =>• (3). By [15], the Taylor polynomials Pm of / at 0 have weakly compact
derivatives. It then follows from Corollary 7 that the canonical extensions Pm also have
weakly compact derivatives. Hence, again applying [15], / has a weakly compact
derivative.

(1) => (2). The set M = [Pm : m e N} of Taylor polynomials of/ at zero is a relatively
compact subset of Hb(E). By Lemma 8, there is a weakly compact set C c E' such that
l̂ mMI < llxllc for all x 6 £ and m e N. The argument used in Corollary 7 involving
the associated multilinear forms shows that \Pm(z)\ < mm/m\\\z\Q for all_ z e £"_and
meN, from which it follows that the canonical extension of/, given by / — ^2,Pm, is
locally bounded at 0 6 E" for the /*(£", £')-topology. Now, if z0 e E" is an arbitrary
point, let g : E" ->• C be given by g(z) =f(z — z0). Our assumption forces the Mackey
continuity of the canonical extension, Am, of every multilinear mapping Am associated
to Pm, and consequently, g^E = g. Since we know already that df is weakly compact,
d(gk) is weakly compact. Thus, as we have just seen, gfE — g is locally bounded at 0,
hence / is locally bounded at z0 for the n(E", £')-t0P°l°gy- Therefore, / is n{E", E')-
holomorphic ([11, 2.2.10]) and since it is bounded on bounded sets, it turns out to be
/i(E", E') uniformly continuous on bounded sets. •

Remark 10. (a) In the proof of (1) => (2) in Proposition 9 we have shown that every
holomorphic function / : E —y C which is uniformly continuous for the topology on E
of uniform convergence on weakly compact sets in £' is also continuous for this
topology. Also, any of the conditions in Proposition 9 imply that, in fact, the derivative
df has its range in £'.
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(b) Our former results show that if the derivative of every polynomial is weakly
compact, then the topology on E of uniform convergence on weakly compact sets of
E' is finer than the weak polynomial topology (i.e. convergence against polynomials).
In fact, it is strictly finer in general. As an example, for the (reflexive) Tsirelson space
T, all polynomials are weakly sequentially continuous (see [3]) and the unit vector
basis is a weakly null sequence, hence weak polynomially null, which is not null.
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