MAXIMAL DETERMINANTS IN
COMBINATORIAL INVESTIGATIONS

H. J. RYSER

1. Introduction. Let Q be a matrix of order v, all of whose entries are 0’s
and 1’s. Let the total number of 1's in Q be ¢, and let the absolute value of the
determinant of Q be denoted by |det Q|. In this paper we study the problem of
determining the maximum of |det Q| for fixed ¢ and ». It turns out that this
problem is closely related to the v, k, A problem, which has been extensively
studied of late.

A v, k, N\ configuration is defined as an arrangement of v elements xi, x,,

., X, into v sets Sy, Sy, . . ., S, such that each set contains exactly & distinct
elements and such that each pair of sets has exactly A elements in common
(0 < X < k < v). If element x; belongs to set .S;, let a;; = 1; and if x; does not
belong to S;, let a;; = 0. The v by » matrix 4 = [a;;] is called the incidence
matrix of the v, k, X configuration. These matrices have been very useful in
establishing the nonexistence of certain configurations (1; 2). A general sur-
vey of the literature pertaining to v, k, A configurations may be found in (4).
In particular one proves that in a v, k, A\ configuration,

E—X=Fk—N

and
AAT = AT4 = B.

Here AT denotes the transpose of the incidence matrix 4, and the matrix B
has k in the main diagonal and A in all other positions. It is easy to see that
det B = k2(k — \)*!, whence it follows that

ldet A] = k(k — N},

2. Theorems on maximal determinants.

THEOREM 1. Let Q be a 0, 1 matrix of order v, containing exactly t 1’s. Let k
denote a positive real, and set N\ =k(k — 1)/(v — 1). If t < kv and 0 < X
<k—Norift>kvand 0 <k — X <X, then

|det Q] < k(k — \)¥e-D,

Let E be a 0, 1 matrix. Let E(x, ¥) denote the matrix formed from E by
replacing each 1 of E by x and each 0 of E by y, where x and y are indetermin-
ates. Using this notation, we may write

Q1= Q(—(k —N/\ 1.
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Now set p = (B — \)/\, and define the matrix Q of order v + 1 by

1 ) = [1’ y ]
( ) Q ZT Ql
where z = (v/p, ..., V). By the Hadamard determinant theorem,
@) det Q| < \/p"’+vi>I_I1 VP + s,
where s; denotes the sum of the squares of the sth row of Q;. Now

2
p'+op = p(k—’;—t&) = ;%(k — N

Moreover,
sit ...t s, =+ (0 —t) =t(p — 1) + o2

By hypothesis, ¢t < kv and 2 > 1, or ¢ > kv and p% < 1. Hence we may
conclude

si4+ ...+ s, < kv(p? — 1) + 02

Now introduce quantities §; such that

§ > 8
and
3) S14+...+8 =vkp?+v— k).
By (3),
Z,l(p+st) =vkp’+v—k+p) =vkp’+ (W — Ne + & — \)/A]

Il

vkp(p + 1) = v(k — N)E*/N".

Since the geometric mean of v positive quantities is less than or equal to their
arithmetic mean, we may write

(4) g P +35)< (})g »+ s))
whence
(5) H (p +5) < (B — N)E/A.

i=1

Hence by (2),
(6) |det Q| < ';’\\/kTXiII Vb + 5

< gV - (vi=y) ™
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To evaluate det @, multiply row one by —1/+/p and add the resulting row to
each of the other rows. From (6) it follows that

9] |det Q| = pldet Q(—=&/X, 0)| < (B\E — A/N)™.
But
|det Q(—%/X, 0)| = (&/A)°|det Q|, whence

pldet Q] < < (\/k A+,

and
[det Q| < k(\/kE — X)L
Using the notation of Theorem 1, we have

TrEOREM 2. If |[det Q| = k(k — N}V, then Q is the incidence matrix of a
v, k, \ configuration.

If equality holds in Theorem 1, then
plaso(=4.0)| - (W5=2)"
and by (7),

® det Q| = (¢V/k — /M)

Equality in (6) implies equality in (5) and (4). But for equality to hold in (4),
we must have

P+ 5 = (B — NE/N
But then the equality in (6) implies

©) AR

where I is the identity matrix of order v + 1. Thus
k2
(10) 007 = 3z (B =N I-pS,

where Q; = Q( p, 1), and S is the v by v matrix of all 1's. Let e denote the
number of 1's in row 7 of Q. Then

2
Pet@—e)1=50-2 -2
and
k2
@'—De=5(k—2)—p -0

whence we conclude that e = k. Let f denote the inner product of rows r and
s of Q, where 7 # 5. Then
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=2k —flp+ov—2k+f= —p,
whence
f@*+2p+1) =2kp — p+ 2k — v,

and fk?/\? = k?/X\. Thus f = A, and Q is the incidence matrix of a v, k, A
configuration.
It is now clear that we have established the following:

THEOREM 3. Let Q be a 0, 1 matrix of order v, containing exactly t 1's. Let
=t/vand see N = k(k —1)/(v — 1), with0 < A < k < v. Then

|det Q] < k(B — N)¥C-D,
and equality holds if and only if Q is the incidence matrix of a v, k, X configuration.

Consider once again Theorem 1. Note that (¢ — X\)/A = (v — k)/(k — 1).
Thus the requirement A < 2 — A means £ < 3(v + 1), and 2 — A < X means
k > 3(v + 1). Suppose that & = (v + 1). Then if Q is a 0, 1 matrix with no
restriction on the number of 1’s, we must have

(0 4+ 1)}
2° ’

The incidence matrix associated with the case of equality has parameters

v =4\ — 1, B = 2\, A\ = \. These incidence matrices give rise to the Hada-

mard matrices of order 4\ (3). The determination of the maximum of |det Q|,

where Q is of arbitrary order v, is an unsolved problem of considerable diffi-

culty (5).

If we place no restriction on the number of 1’s in the 0, 1 matrix Q of order v
and assume that |det Q] = k(¢ — A\)}*—D, then we may not conclude in general
that Q is the incidence matrix of a v, k, A configuration. For example, let 4 be
an incidence matrix of a v, k, A configuration with ¥ — 2k > 0. Define its com-
plement C by A + C = S, where S is the matrix of all 1's. The complement of
A is again a v, k, A configuration with parameters # = v, k = v — k, and
X = v — 2k + \. Note that

ldet C| = (v — E)(k — N)}C-D,

(11) |det Q| <

It is easy to check that

. 1 : A
4 =(k——>T)<A _kS)’

where A~ denotes the inverse of 4. Thus in 4 = [a,], if a,s = 1, then the
cofactor of a,,,

1
A, = kdetA.

Similarly for the complement C = [c,,], if ¢,s = 1, then the cofactor of ¢,,,
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1
Cre = kdet C.

We are assuming that v — 2k > 0. Thus we may replace v — 2k of the 1's
in the first row of C by 0’s. The resulting matrix Q is a 0, 1 matrix satisfying

[det Q| = k(k — N)}ce-D,

but Q is not an incidence matrix of a v, k, A configuration.
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