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ERDŐS’ METHOD FOR DETERMINING THE
IRRATIONALITY OF PRODUCTS
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Abstract

This paper deals with a sufficient condition for the infinite product of rational numbers to be an irrational
number. The condition requires only some conditions for convergence and does not use other properties
like divisibility. The proof is based on an idea of Erdős.
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1. Introduction

Following Erdős [4] we prove the following theorem.

THEOREM 1.1. Let {an}
∞

n=1 be an increasing sequence of positive integers such that

limn→∞ a1/2n

n =∞. Then the number
∏
∞

n=1(1+ (1/an)) is irrational.

The authors do not know if the number
∏
∞

n=1(1+ (1/(2
2n
+ 1)an)) is irrational for

all sequences {an}
∞

n=1 of positive integers although we know from another theorem of
Erdős [4] that the number

∑
∞

n=1(1/2
2n

an) is irrational for every sequence {an}
∞

n=1
of positive integers. We are also not able to find a sequence {an}

∞

n=1 of positive

integers with limn→∞ a1/2n

n =∞ and such that the number
∏
∞

n=1(1+ (1/an)) is
algebraic. On the other side we know that

∏
∞

n=1(1+ (1/2
2n
))= 4/3. Erdős [5]

asked if the number
∑
∞

n=1(1/(2
2n
+ 1)an) is irrational for all sequences {an}

∞

n=1 of
positive integers. Duverney [3] partially answered this question when he proved that if
{an}

∞

n=1 is a nondecreasing sequence of positive integers such that log an = o(2n) then
the number

∑
∞

n=1(1/(2
2n
+ 1)an) is irrational. His result implies that the number∑

∞

n=1(1/(2
2n
+ 1)) is irrational. This can also be simply proved when we suppose

that there exist positive integers p and q such that
∑
∞

n=1(1/(2
2n
+ 1))= p/q , so the

The first author was supported by the grants no. ME09017 and MSM 6198898701.
c© 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 $16.00

414

https://doi.org/10.1017/S0004972711002309 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002309
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number

3q
∞∑

n=1

∏N
n=1(2

2n
+ 1)

22n
+ 1

= 3q
N∑

n=1

∏N
n=1(2

2n
+ 1)

22n
+ 1

+ q + q2−2N+2
+ o(2−2N+2

)

is an integer, which leads to a contradiction for a sufficiently large N .
Another partial solution was given by Badea [2] when he proved that if {an}

∞

n=1 is
a sequence of positive integers such that an+1 > 2a2

n for all large n then the number∑
∞

n=1(1/(2
2n
+ 1)an) is irrational.

There is a long history regarding the irrationality of infinite products. Badea [1]
proved that if {an}

∞

n=1 and {bn}
∞

n=1 are two sequences of positive integers such that

an+1 >
bn+1

bn
a2

n +
bn+1(bn − 1)

bn
an + 1− bn+1

holds for every sufficiently large n then the number
∏
∞

n=1(1+ (bn/an)) is irrational.
Using Brun’s criterion, Laohakosol and Kuhapatanakul [12–14] worked in the spirit
of Badea. Zhou and Lubinski [16] found some irrationality results regarding the
numbers

∏
∞

j=0(1± q− jr + q−2 j s). Zhou [15] proved the irrationality of certain
multivariable infinite products. All this shows that the irrationality of infinite products
is of substantial current interest.

Erdős [4] proved that if a = {an}
∞

n=1 is an increasing sequence of positive integers

such that limn→∞ a1/2n

n =∞ then the expressible set Ea = {
∑
∞

n=1(1/ancn) : cn ∈ N}
does not contain a rational number. Using this idea of Erdős, Hančl et al. [8] found
some necessary conditions for the Lebesgue measure of Ea to be equal to zero in
the p-adic case. For other applications of this method see, for instance, [6, 7, 9, 10]
or [11]. It seems that Erdős’ idea still has great potential.

Theorem 2.1 is the main result. Its proof is quite involved but does not require any
other knowledge beyond what has already been discussed. We denote the set of all
positive integers by Z+.

2. Main result

THEOREM 2.1. Let ε be a positive real number. Let {an}
∞

n=1 and {bn}
∞

n=1 be two
sequences of positive integers. Assume {an}

∞

n=1 is nondecreasing and

lim sup
n→∞

a1/2n

n =∞. (2.1)

Assume that for all sufficiently large n

n1+ε
≤ an (2.2)

and
bn ≤ a1/log1+ε log an

n . (2.3)

Then the number x =
∏
∞

n=1(1+ (bn/an)) is irrational.
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3. Proofs

Theorem 1.1 is an immediate consequence of Theorem 2.1.

LEMMA 3.1. Let the sequence {an}
∞

n=1 satisfy all conditions stated in Theorem 2.1.
Then for every sufficiently large n

∞∑
j=0

a
1/(log1+ε log an+ j )−1
n+ j < a−ε/2(1+ε)n . (3.1)

PROOF. From (2.2) and the fact that the sequence {an}
∞

n=1 is nondecreasing we obtain
∞∑
j=0

a
1/(log1+ε log an+ j )−1
n+ j

=

∑
n+ j<a1/(1+ε)

n

a
1/(log1+ε log an+ j )−1
n+ j +

∑
n+ j≥a1/(1+ε)

n

a
1/(log1+ε log an+ j )−1
n+ j

≤ a1/(log1+ε log an)−1
n a1/(1+ε)

n +

∑
n+ j≥a1/(1+ε)

n

a
1/(log1+ε log an+ j )−1
n+ j

≤ a1/(log1+ε log an)−1
n a1/(1+ε)

n +

∑
n+ j≥a1/(1+ε)

n

(n + j)(1+ε)(1/(log1+ε log(n+ j)1+ε)−1)

≤ a1/(log1+ε log an)−1
n a1/(1+ε)

n +

∑
n+ j≥a1/(1+ε)

n

(n + j)−(1+(2ε/3)) ≤ a−ε/2(1+ε)n .

This concludes the proof. 2

LEMMA 3.2. Let the sequence {an}
∞

n=1 satisfy all conditions stated in Theorem 2.1
and instead of (2.2) require

2n < an (3.2)

for every sufficiently large n. Then
∞∑
j=0

a
1/(log1+ε log an+ j )−1
n+ j < a1/(log1+(ε/2) log an)−1

n (3.3)

holds for every sufficiently large n.

PROOF. From (3.2) and the fact that the sequence {an}
∞

n=1 is nondecreasing we obtain
∞∑
j=0

a
1/(log1+ε log an+ j )−1
n+ j

=

∑
n+ j<log an

a
1/(log1+ε log an+ j )−1
n+ j +

∑
n+ j≥log an

a
1/(log1+ε log an+ j )−1
n+ j

≤ a1/(log1+ε log an)−1
n log an +

∑
n+ j≥log an

a
1/(log1+ε log an+ j )−1
n+ j
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≤ a1/(log1+ε log an)−1
n log an +

∑
n+ j≥log an

2(n+ j)(1/(log1+ε log 2(n+ j))−1)

≤ a1/(log1+ε log an)−1
n log an +

∫
∞

log an

2u(1/(log1+(2ε/3) log 2u)−1) du

≤ a1/(log1+ε/(2) log an)−1
n .

This concludes the proof. 2

LEMMA 3.3. Let ε∗ and δ be two real numbers with 0≤ δ < 1 and 0< ε∗. Let
{an}

∞

n=1 be a nondecreasing sequence of positive real numbers such that

lim sup
n→∞

a1/nδ2n

n =∞. (3.4)

Then for infinitely many N

a1/(N+1)δ2N+1

N+1 >

(
1+

1

N 1+(ε∗/4)

)
max

k=1,...,N
a1/kδ2k

k (3.5)

and

aN+1 >

(
1+

1

N 1+(ε∗/4)

)(N+1)δ2N+1( N∏
n=1

an

)( N∏
n=1

a1/n
n

)δ/2
. (3.6)

PROOF. From (3.4) we obtain that there exist infinitely many N such that (3.5) holds.
Otherwise there exists N0 such that for each N > N0

a1/N δ2N

N ≤

(
1+

1

(N − 1)1+(ε∗/4)

)
max

k=1,...,N−1
a1/kδ2k

k

≤

(
1+

1

(N − 1)1+(ε∗/4)

)(
1+

1

(N − 2)1+(ε∗/4)

)
max

k=1,...,N−2
a1/kδ2k

k

≤ · · · ≤

(
1+

1

(N − 1)1+(ε∗/4)

)(
1+

1

(N − 2)1+(ε∗/4)

)
· · ·

×

(
1+

1

N 1+(ε∗/4)
0

)
max

k=1,...,N0−1
a1/kδ2k

k ≤ ε∗ max
k=1,...,N0−1

a1/kδ2k

k ,

a contradiction with (3.4). From (3.5) we obtain that for infinitely many N

aN+1 >

(
1+

1

N 1+(ε∗/4)

)(N+1)δ2N+1(
max

k=1,...,N
a1/kδ2k

k

)(N+1)δ2N+1

>

(
1+

1

N 1+(ε∗/4)

)(N+1)δ2N+1(
max

k=1,...,N
a1/kδ2k

k

)(N+1)δ(2N
+2N−1

+···+2+1)

>

(
1+

1

N 1+(ε∗/4)

)(N+1)δ2N+1( N∏
n=1

an

)( N∏
n=1

a1/n
n

)δ/2
.

This conlcudes the proof. 2

https://doi.org/10.1017/S0004972711002309 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002309
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PROOF OF THEOREM 2.1. Assume that the number x is a rational number. Then
there exists (p, q) ∈ Z+ × Z+ such that x = p/q . So for each (P, Q) ∈ Z+ × Z+
the number ∣∣∣∣q Q

(
x −

P

Q

)∣∣∣∣= ∣∣∣∣q Q

(
p

q
−

P

Q

)∣∣∣∣= |pQ − Pq|

is an integer. To prove our theorem it is enough to find (P, Q) ∈ Z+ × Z+ such
that

0< H =

∣∣∣∣q Q

(
x −

P

Q

)∣∣∣∣< 1. (3.7)

Conditions (2.2) and (2.3) yield that the infinite product defining x is convergent. Let
N be a sufficiently large positive integer. Set QN =

∏N
n=1 an and

PN =

( N∏
n=1

an

) N∏
n=1

(
1+

N∑
n=1

bn

an

)
.

Then

0< HN =

∣∣∣∣q QN

(
x −

PN

QN

)∣∣∣∣
=

∣∣∣∣q( N∏
n=1

an

)( ∞∏
n=1

(
1+

bn

an

)
−

N∏
n=1

(
1+

bn

an

))∣∣∣∣
= q PN

( ∞∏
n=N+1

(
1+

bn

an

))
− 1

)
.

From this and the fact that x ≥ PN/QN we obtain that

HN ≤ q QN x

(( ∞∏
n=N+1

(
1+

bn

an

))
− 1

)
.

This and the fact that the series
∑
∞

n=1 bn/an is absolutely convergent imply that there
exists a positive real number K which does not depend on N and such that

HN ≤ q QN x

(( ∞∏
n=N+1

(
1+

bn

an

))
− 1

)
≤ K q QN x

∞∑
n=N+1

bn

an
.

From this, (2.3) and the definition of QN we obtain that

HN ≤ K q QN x
∞∑

n=N+1

bn

an
≤ K qx

( N∏
n=1

an

) ∞∑
n=N+1

a1/(log1+ε log an)−1
n . (3.8)

Now the proof falls into four cases.
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(1) Let us assume that (3.2) holds for every sufficiently large n and there is a δ with
0< δ < 1 and such that

lim sup
n→∞

a1/nδ2n

n =∞. (3.9)

This and Lemma 3.3 imply that there exist infinitely many N such that

aN+1 >

(
1+

1

N 1+(ε/4)

)(N+1)δ2N+1( N∏
n=1

an

)( N∏
n=1

a1/n
n

)δ/2
.

From this, Lemma 3.2 and (3.8) we obtain that for infinitely many sufficiently large N

0 < HN < K qx

( N∏
n=1

an

) ∞∑
n=N+1

a1/(log1+ε log an)−1
n

≤ K qx

( N∏
n=1

an

)
a1/(log1+(ε/2) log aN+1)−1

N+1

≤ K qx

( N∏
n=1

an

)
a

1/(log1+(ε/2) log((1+(1/N 1+(ε/4)))(N+1)δ2N+1
(
∏N

n=1 an)(
∏N

n=1 a1/n
n )δ/2))−1

N+1

≤

( N∏
n=1

an

)
a(1/N 1+(ε/3))−1

N+1

≤

( N∏
n=1

an

)((
1+

1

N 1+(ε/4)

)(N+1)δ2N+1( N∏
n=1

an

)( N∏
n=1

a1/n
n

)δ/2)(1/N 1+(ε/3))−1

≤

( N∏
n=1

a((1+(δ/2n))/N 1+(ε/3))−δ/2
n

)
< 1.

So (3.7) holds when we set P = PN , Q = QN and H = HN .
(2) Let us assume that (3.2) holds for every sufficiently large n and there is not a δ

with 1> δ > 0 and such that (3.9) holds. From this we see that for every δ > 0

an < 2nδ2n
(3.10)

holds for every sufficiently large n. Let δ be sufficiently small. Lemma 3.3 and (2.1)
imply that for infinitely many N

aN+1 >

(
1+

1

N 1+(ε/4)

)2N+1( N∏
n=1

an

)
.

This, Lemma 3.2, (3.8) and (3.10) imply that for infinitely many N

0 < HN ≤ K qx

( N∏
n=1

an

) ∞∑
n=N+1

a1/(log1+ε log an)−1
n

≤ K qx

( N∏
n=1

an

)
a1/(log1+(ε/2) log aN+1)−1

N+1 ≤

( N∏
n=1

an

)
a(1/N 1+(ε/3))−1

N+1
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≤

( N∏
n=1

an

)((
1+

1

N 1+(ε∗/4)

)2N+1( N∏
n=1

an

))(1/N 1+(ε/3))−1

≤

(
1+

1

N 1+(ε∗/4)

)((1/N 1+(ε/3))−1)2N+1( N∏
n=1

an

)1/N 1+(ε/3)

≤

(
1+

1

N 1+(ε∗/4)

)((1/N 1+(ε/3))−1)2N+1( N∏
n=1

2nδ2n
)1/N 1+(ε/3)

< 1.

So (3.7) holds when we set P = PN , Q = QN and H = HN .
(3) Now let us assume that for infinitely many n

an ≤ 2n (3.11)

and there is a δ with 0< δ < 1 such that (3.9) holds. Let A be a sufficiently large
positive integer and δ sufficiently small. From (3.9) we see that there exists n
such that

a1/nδ2n

n > A. (3.12)

Let k be the least positive integer satisfying (3.12) and s be the greatest positive integer
less than k such that (3.11) holds. Then

ak > Akδ2k
= 2(log2 A)kδ2k

. (3.13)

Hence there is a positive integer n such that

a1/nδ2n

n ≥ 2. (3.14)

Let t be the least positive integer greater than s such that (3.14) holds. It follows that
for every r = s, s + 1, . . . , t − 1

ar < 2rδ2r
(3.15)

and

at ≥ 2tδ2t
. (3.16)

Let us note that k, s and t depend on A and if A tends to infinity then also k, s and t tend
to infinity. From (3.11), (3.15) and the fact that the sequence {an}

∞

n=1 is nondecreasing
we obtain that

t−1∏
n=1

an =

( s∏
n=1

an

)( t−1∏
n=s+1

an

)
≤

( s∏
n=1

2s
)( t−1∏

n=s+1

2nδ2n
)

≤ 2s2
2tδ2t (1−(δ/2t))−2s

≤ 2tδ2t (1−(δ/2t)).

(3.17)
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Lemmas 3.1, 3.2 and (3.16) imply

∞∑
n=t

a1/(log1+ε log an)−1
n =

k−1∑
n=t

a1/(log1+ε log an)−1
n +

∞∑
n=k

a1/(log1+ε log an)−1
n

≤ a1/(log1+(ε/2) log at )−1
t + a−ε/2(1+ε)k

≤ 2tδ2t (1/(log1+(ε/2) log 2tδ2t
)−1)
+ a−ε/2(1+ε)k,1

≤ 2tδ2t ((1/t1+(ε/3))−1)
+ a−ε/2(1+ε)k,1 .

From this, (3.8), (3.13) and (3.17) we obtain

0 < Ht−1 ≤ K qx

( t−1∏
n=1

an

) ∞∑
n=t

a1/(log1+ε log an)−1
n

≤ K qx2tδ2t (1−(δ/2t))(2tδ2t ((1/t1+(ε/3))−1)
+ a−ε/2(1+ε)k,1 )

≤ K qx2tδ2t (1−(δ/2t))(2tδ2t ((1/t1+(ε/3))−1)
+ 2−(ε/2(1+ε))(log2 A)kδ2k

) < 1.

So (3.7) holds when we set P = Pt−1, Q = Qt−1 and H = Ht−1.
(4) Finally let us assume that for infinitely many n inequality (3.11) holds and there

is no δ > 0 with 1> δ > 0 and such that (3.9) holds. This implies that for every δ > 0
and sufficiently large n inequality (3.10) holds. Let δ be sufficiently small and A
sufficiently large. From (2.1) we obtain

a1/2n

n > A (3.18)

for infinitely many n. Let k be the least positive integer satisfying (3.18). Then

ak > A2k
= 2(log2 A)2k

. (3.19)

Let s be the greatest positive integer less than k such that (3.11) holds. From (2.1) and
Lemma 3.3 we obtain that (3.5), with δ = 0, holds for infinitely many N . Let t be the
least positive integer greater than s such that

a1/2t

t >

(
1+

1

t1+(ε/4)

)
max

j=s,...,t−1
a1/2 j

j (3.20)

and

a1/2r

r ≤

(
1+

1

r1+(ε/4)

)
max

j=s,...,r−1
a1/2 j

j (3.21)

for every r = s + 1, . . . , t − 1. Inequality (3.20) and the fact that ar ≤ 2s for
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all r = 1, 2, . . . , s yield

at >

((
1+

1

t1+(ε/4)

)
max

j=s,...,t−1
a1/2 j

j

)2t

=

(
1+

1

t1+(ε/4)

)2t(
max

j=s,...,t−1
a1/2 j

j

)2t

≥

(
1+

1

t1+(ε/4)

)2t(
max

j=s,...,t−1
a1/2 j

j

)2t−1
+2t−2

+···+2s+1

≥

(
1+

1

t1+(ε/4)

)2t(t−1∏
r=1

ar

)

≥

(
1+

1

t1+(ε/4)

)2t−1(t−1∏
r=1

ar

)
.

(3.22)

From (3.21) we obtain

a1/2r

r ≤

(
1+

1

r1+(ε/4)

)
max

j=s,...,r−1
a1/2 j

j

≤

(
1+

1

r1+(ε/4)

)(
1+

1

(r − 1)1+(ε/4)

)
max

j=s,...,r−2
a1/2 j

j

≤ · · · ≤

r∏
j=s+1

(
1+

1

j1+(ε/4)

)
a1/2s

s ≤ D,

where 1< D < 2
∏
∞

j=1(1+ (1/j1+(ε/4))) is a positive real constant which does not
depend on A and k. It follows that

ar ≤ D2r
= 2(log2 D)2r

(3.23)

for every r = s + 1, . . . , t − 1. From this together with as < 2s and the fact that the
sequence {an}

∞

n=1 is nondecreasing, we obtain

t−1∏
r=1

ar =

( s∏
r=1

ar

)( t−1∏
r=s+1

ar

)
≤

( s∏
r=1

2s
)( t−1∏

r=s+1

2(log2 D)2r
)

≤ 2s2
2(log2 D)(2t

−2s)
≤ 2(log2 D)2t

.

(3.24)

Lemmas 3.1, 3.2, (3.22) and (3.24) imply

∞∑
n=t

a1/(log1+ε log an)−1
n =

k−1∑
n=t

a1/(log1+ε log an)−1
n +

∞∑
n=k

a1/(log1+ε log an)−1
n

≤ a1/(log1+(ε/2) log at )−1
t + a−ε/2(1+ε)k
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≤

((
1+

1

t1+(ε/4)

)2t−1(t−1∏
r=1

ar

))1/(log1+(ε/2) log((1+(1/t1+(ε/4)))2
t−1

(
∏t−1

r=1 ar )))−1

+ a−ε/2(1+ε)k

≤

((
1+

1

t1+(ε/4)

)2t−1(t−1∏
r=1

ar

))(1/t1+(ε/3))−1

+ a−ε/2(1+ε)k

=

(
1+

1

t1+(ε/4)

)2t−1((1/t1+(ε/3))−1)(t−1∏
r=1

ar

)1/t1+(ε/3)(t−1∏
r=1

ar

)−1

+ a−ε/2(1+ε)k

≤

(
1+

1

t1+(ε/4)

)2t−1((1/t1+(ε/3))−1)

2(log2 D)2t (1/t1+(ε/3))

(t−1∏
r=1

ar

)−1

+ a−ε/2(1+ε)k

≤ 2−(1/t1+(ε/3))2t
(t−1∏

r=1

ar

)−1

+ a−ε/2(1+ε)k .

From this, (3.8), (3.19) and (3.24) we obtain

0< Ht ≤ K qx

( t−1∏
n=1

an

) ∞∑
n=t

a1/(log1+ε log an)−1
n

≤ K qx

( t−1∏
n=1

an

)(
2−(1/t1+(ε/3))2t

(t−1∏
r=1

ar

)−1

+ a−ε/2(1+ε)k

)

= K qx

(
2−(1/t1+(ε/3))2t

+

( t−1∏
n=1

an

)
a−ε/2(1+ε)k

)
≤ K qx(2−(1/t1+(ε/3))2t

+ 2(log2 D)2t
2−(ε/2(1+ε))(log2 A)2k

) < 1.

So (3.7) holds when we set P = Pt , Q = Qt and H = Ht . 2
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