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Abstract

Consider a sequence of Markov-dependent trials where each trial produces a letter of a
finite alphabet. Given a collection of patterns, we look at this sequence until one of these
patterns appears as a run. We show how the method of gambling teams can be employed
to compute the probability that a given pattern is the first pattern to occur.
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1. Introduction

Let {Zn}n≥1 be a homogeneous Markov chain on a finite set �, which we call an alphabet.
Let us call a pattern a finite sequence of elements of �. We then consider a finite collection
C = {A1, A2, . . . , AK} of patterns, possibly with different lengths. Let τAq be the waiting time
until Aq occurs as a run in the series Z1, Z2, . . .. Define the stopping time

τ = min{τA1 , . . . , τAK
}. (1.1)

Many authors have studied waiting time problems for specific and general choices of C and
their probability generating functions. Several distinct techniques have been used to solve these
problems for both independent or Markov-dependent trials; see [1], [2], [4], [5], [6], [7], [8],
and the references therein. We are interested in computing the stopping probabilities

P(τ = τAq ), q = 1, . . . , K. (1.2)

In order to well define (1.1) and avoid ties, we assume that no pattern from C contains another
pattern as a subpattern. We shall show that the martingale methods introduced in [5] and [8],
and further developed in [6], [9], and [10] may also be applied to compute stopping probabilities
of a sequence of patterns for finite-state Markov chains.

Feller [3] studied the occurrence of patterns in independent Bernoulli trials using recurrent
event theory. In a more general setting, when the trials are independent and identically
distributed discrete random variables, Li [8] elegantly proposed the martingale approach to
waiting time problems and provided a means of computing (1.2) and E(τ ) for any collection
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C of patterns. In [1] the mean waiting time and stopping probabilities were obtained for a C
whose patterns have the same length and trials are independent, identically distributed, uniform,
N -state random variables. In [11] run probabilities were computed as a function of the number
n of trials for a collection of runs, but not as a function of the variable in (1.1) or (1.2). In this
paper we bring together the methods developed for gambling teams in [6] and [9] to obtain the
probabilities in (1.2). First, in Section 2 we use the procedure developed in [6] to get (1.2)
for a two-state Markov chain. In Section 3 we apply the algorithm stated in [9] to get (1.2)
for a multistate Markov chain. Both methods and their results are similar, but even when we
consider only two-state Markov chains, these methods show us that the way we calculate the
probabilities in (1.2) are different.

2. Stopping probabilities in a two-state Markov chain

Let � = {S, F } be our two-letter alphabet. Let {Zn}n≥1 be a time-homogeneous, two-state
Markov chain in � with initial distributions P(Z1 = S) = pS and P(Z1 = F) = pF , and
transition matrix [

pSS pSF

pFS pFF

]
,

where pSF = P(Zn+1 = F | Zn = S). We also assume that

0 < pSS < 1 and 0 < pFF < 1. (2.1)

The assumptions in (2.1) imply that P(τA < ∞) = 1 for any pattern A, which in turn implies
that E(τ ) < ∞.

We apply here the same procedure and notation as given in [6]. We invite the reader to look
at Sections 3.1 and 3.2 of that article to understand the construction that follows.

Let Xn be the amount of money that the casino saves at the end of round n. Let yjWij be
the amount of money that the j th team earns when the ith ending scenario occurs. By the rules
of betting, it is clear that X1 = 0. Moreover, it is not hard to see that {Xn}n≥1 is a martingale
with respect to the filtration {Zn}n≥1 and that at the moment τ we have

Xτ =
L+2M∑
j=1

yj (τ − 1) − S(y1, . . . , yL+2M) (2.2)

with

S(y1, . . . , yL+2M) =
K+L+2M∑

i=1

1Ei

L+2M∑
j=1

yjWij ,

where Ei stands for the event that the ith scenario occurs and 1Ei
is its indicator function.

A general method to compute the profit matrix W = {Wij } is given in Section 3.3 of [6].
For i = 1, . . . , K + L + 2M , let μi = P(Ei) be the probability of occurrence of the ith

ending scenario. Suppose that (y∗
1 , . . . , y∗

L+2M) is a solution of the linear system

y∗
1Wi,1 + · · · + y∗

L+2MWi,L+2M = 1 for i ∈ {K + 1, . . . , K + L + 2M}. (2.3)

Theorem 2.1. ([6, Theorem 1].) If (y∗
1 , . . . , y∗

L+2M) solves the linear system (2.3) then

E(τ ) = 1 +
∑K

i=1 μi

∑L+2M
j=1 y∗

j Wij + (1 − ∑K
i=1 μi)∑L+2M

j=1 y∗
j

. (2.4)
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Observe that the expression in (2.4) depends on the μis which are easily calculated and that

P(τ = τAq ) = μq + P(B ∈ C′′ such that the game ends with B and B is associated to Aq).

Let Bl ∈ C′′ be a pattern associated to Aq . It corresponds to some ending scenario Er , where
K < r ≤ K + L + 2M . In addition, let us write P(Er) = μ

(q)
r just to emphasize the link

between Er and Aq . Next assume that (z1, . . . , zL+2M) is a solution of the linear system

z1W1,1 + · · · + zL+2MW1,L+2M = 1,

z1Wi,1 + · · · + zL+2MWi,L+2M = 1 for i ∈ {K + 1, . . . , K + L + 2M} \ {r}. (2.5)

Then

S(z1, . . . , zL+2M) = 1 1E1 +
K∑

i=2

1Ei

L+2M∑
j=1

zjWij +
∑

i>K, i �=r

1Ei
+ 1Er

L+2M∑
j=1

zjWrj .

As E(τ ) < ∞ and the sequence {Xn}n≥1 has bounded increments, we can apply the opt-
ional stopping theorem (see [12, p. 100]) and take expectations of both sides of (2.2) for
S(z1, . . . , zL+2M). Since 0 = E(X1) = E(Xτ ),

0 =
L+2M∑
j=1

zj (E(τ ) − 1) −
K∑

i=2

μi

L+2M∑
j=1

zjWij −
(

1 −
K∑

i=2

μi

)
+ μ

(q)
r

(
1 −

L+2M∑
j=1

zjWrj

)
,

which in turn implies that

μ
(q)
r =

∑L+2M
j=1 zj (1 − E(τ )) − ∑K

i=2 μi(1 − ∑L+2M
j=1 zjWij ) + 1

1 − ∑L+2M
j=1 zjWrj

. (2.6)

Theorem 2.2. Let {Zn}n≥1 be a homogeneous Markov chain on {S, F }. Consider a
pattern Aq .

(i) If Aq is associated to an unmatched pattern Bl ∈ C′′ corresponding to the rth ending
scenario of the game, r > K , then

P(τ = τAq ) = μq +
∑L+2M

j=1 zj (1 − E(τ )) − ∑K
i=2 μi(1 − ∑L+2M

j=1 zjWij ) + 1

1 − ∑L+2M
j=1 zjWrj

,

where (z1, . . . , zL+2M) is a solution of (2.5).

(ii) If Aq is associated to a pair of matched patterns Bm, Bp ∈ C′′ respectively corresponding
to the sth and t th ending scenarios of the game, s, t > K , then

P(τ = τAq ) = μq + μ(i)
s + μ

(i)
t ,

where (x1, . . . , xL+2M) satisfies (2.5) and (2.6) with s rather than r and (w1, . . . ,wL+2M)

satisfies (2.5) and (2.6) with t rather than r .
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Remark 2.1. We could readily apply Theorems 2.1 and 2.2 for instance to the well-known
problem of Feller [3] in which A1 is a run of α consecutive successes and A2 is a run of β

failures. The formulae for P(τ = τA1) and E(τ ) are too long and so we do not present them
here. However, when {Zn}n≥1 is a sequence of independent Bernoulli random variables with
P(Zn = S) = p and P(Zn = F) = q, the omitted formulae reduce to the expressions found in
Chapters VIII.1 and XIII.8 of [3]:

P(τ = τA1) = pα−1(1 − qβ)

pα−1 + qβ−1 − pα−1qβ−1 and E(τ ) = (1 − pα)(1 − qβ)

pαq + pqβ − pαqβ
.

3. Stopping probabilities in a multistate Markov chain

In this section the state space is � = {1, . . . , N}. Let {Zn}n≥1 be a homogeneous Markov
chain on �. The initial distribution is P(Z1 = i) = pi and the transition matrix is {pij },
where pij = P(Zn+1 = j | Zn = i). Since we do not impose assumptions on the transition
probabilities as in (2.1), we need to make the following assumptions on τ .

1. For q = 1, . . . , K, P(τ = τAq ) > 0.

2. τ < ∞ almost surely.

Remarks on these assumptions can be found in Section 2 of [9]. We just add the remark that
assumptions 1 and 2 together ensure that

∑
q P(τ = τAq ) = 1.

We now use the method of gambling teams given in [9]. Before continuing, we suggest that
the reader view the details of Section 3 of [9] to understand what follows. Once more we work
with C = {Aq}Kq=1, but we need to introduce notation not used in [9]. Define the sets

D ′ = {lAq; l = 1, . . . , N}Kq=1 and C′ = {lmAq; l, m = 1, . . . , N}Kq=1.

Denote by D ′′ and C′′ the list of patterns after excluding from D ′ and from C′, respectively,
the patterns which can occur only after the waiting time τ .

Let K ′ := K + |D ′′| and M ′ := |C′′|. Note that here M ′ plays the role of N ′ in [9]. Let Xn

be the amount of money that the casino saves at the end of round n. Let yjWij be the amount
of money that the j th team earns when the ith ending scenario occurs. As before, we have
X1 = 0, and {Xn}n≥1 is a martingale with respect to the filtration {Zn}n≥1. At the moment τ

we have

Xτ =
M ′∑
j=1

yj (τ − 1) − S(y1, . . . , yM ′) (3.1)

with

S(y1, . . . , yM ′) =
K ′+M ′∑

i=1

1Ei

M ′∑
j=1

yjWij ,

where Ei stands for the event that the ith scenario occurs and 1Ei
is its indicator function. See

Section 3 of [9] for a general explanation of how to calculate the profit matrix W = {Wij }.
For i = 1, . . . , K ′ + M ′, let μi = P(Ei) be the probability of occurrence of the ith ending

scenario. Suppose that (y∗
1 , . . . , y∗

M ′) is a solution of the linear system

y∗
1Wi,1 + · · · + y∗

M ′Wi,M ′ = 1 for i ∈ {K ′ + 1, . . . , K ′ + M ′}. (3.2)
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Theorem 3.1. ([9, Theorem 1].) If (y∗
1 , . . . , y∗

M ′) solves the linear system (3.2) then

E(τ ) = 1 +
∑K ′

i=1 μi

∑M ′
j=1 y∗

j Wij + (1 − ∑K ′
i=1 μi)∑M ′

j=1 y∗
j

.

We next note that

P(τ = τAq ) = μq + P(B ∈ D ′′∪ C′′ such that game ends with B and B is associated to Aq),

where D ′′∩C′′ = ∅. For r ∈ {K+1, . . . , K ′, . . . , K ′+M ′}, write P(Er) = μ
(q)
r to emphasize

the link between the rth ending scenario Er and its associated pattern Aq, q = 1, . . . , K .
Observe also that if a pattern Bk ∈ D ′′ is generated by Aq and corresponds to the ending
scenario u, with K < u ≤ K ′, then μ

(q)
u is readily computable. In turn, let Bl ∈ C′′ be a pattern

generated by Aq . It corresponds to some ending scenario Er , where K ′ < r ≤ K ′ + M ′. Next
assume that (z1, . . . , zM ′) is a solution of the linear system

z1W1,1 + · · · + zM ′W1,M ′ = 1,

z1Wi,1 + · · · + zM ′Wi,M ′ = 1 for i ∈ {K ′ + 1, . . . , K ′ + M ′} \ {r}. (3.3)

Then

S(z1, . . . , zM ′) = 1 1E1 +
K ′∑
i=2

1Ei

M ′∑
j=1

zjWij +
∑

i>K ′;i �=r

1Ei
+ 1Er

M ′∑
j=1

zjWrj .

Again, we apply the optional stopping theorem (see [12, p. 100]), and take the expectations of
both sides of (3.1) for S(z1, . . . , zM ′) to obtain

0 = E(Xτ ) =
M ′∑
j=1

zj (E(τ ) − 1) −
K ′∑
i=2

μi

M ′∑
j=1

zjWij −
(

1 −
K ′∑
i=2

μi

)
+ μ

(q)
r

(
1 −

M ′∑
j=1

zjWrj

)
,

which in turn implies that

μ
(q)
r =

∑M ′
j=1 zj (1 − E(τ )) − ∑K ′

i=2 μi(1 − ∑M ′
j=1 zjWij ) + 1

1 − ∑M ′
j=1 zjWrj

. (3.4)

Theorem 3.2. Let {Zn}n≥1 be a homogeneous Markov chain on {1, . . . , N}. For Aq, q =
1, . . . , K , suppose that the patterns Bk, . . . , Bk+v ∈ D ′′ are associated to Aq and that they
correspond to the ending scenarios u, u+1, . . . , u+v. Also, suppose that Bl, Bl+1, . . . , Bl+s ∈
C′′ are associated to Aq and that they correspond to the ending scenarios r, r + 1, . . . , r + s.
Then

P(τ = τAq ) = μq + μ
(q)
u + · · · + μ

(q)
u+v + μ

(q)
r + · · · + μ

(q)
r+s ,

where each μ
(q)
l , l = r, . . . , r + s, demands a solution (zl

1, . . . , z
l
M ′) for (3.3) with j rather

than r and has the form given by (3.4).

We now apply Theorem 3.2 to Example 1 of [9].
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Example 3.1. Let � = {1, 2, 3}, and let C = {323, 313, 33}. Suppose that the initial
distribution is p1 = p2 = p3 = 1

3 and that the transition matrix is

⎡
⎢⎣

3
4 0 1

4

0 3
4

1
4

1
4

1
4

1
2

⎤
⎥⎦ .

Then D ′′ = {1323, 2323, 1313, 2313, 133, 233} and C′′ = {11323, 22323, 11313, 22313,
1133, 2233}. Note that patterns such as 12323, 21323 /∈ C′′ are due to the absence of transitions
1 → 2 and 2 → 1.

Consider A1 = 323, A2 = 313, and A3 = 33. In order to use Theorem 3.2, we need to
compute the profit matrix W , the details of which we omit. After solving (3.2) and applying
Theorem 3.1, we obtain E(τ ) = 8 + 7

15 = 8.466 667. With the profit matrix and E(τ )

determined, and having ordered the ending scenarios in the order that we have shown the sets
C, D ′′, C′′, we use Theorem 3.2 to compute μi, i = 10, . . . , 15, and obtain the stopping
probabilities

P(τ = τA1) = μ1 + μ
(1)
4 + μ

(1)
5 + μ

(1)
10 + μ

(1)
11 = 1

48 + 2 × 1
192 + 2 × 0.034 375 = 1

10 ,

P(τ = τA2) = μ2 + μ
(2)
6 + μ

(2)
7 + μ

(2)
12 + μ

(2)
13 = 1

48 + 2 × 1
192 + 2 × 0.034 375 = 1

10 ,

P(τ = τA3) = μ3 + μ
(3)
8 + μ

(3)
9 + μ

(3)
14 + μ

(3)
15 = 1

6 + 2 × 1
24 + 2 × 0.275 = 8

10 .
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