J. Appl. Prob. **51**, 287–292 (2014) Printed in England © Applied Probability Trust 2014

# STOPPING PROBABILITIES FOR PATTERNS IN MARKOV CHAINS

RENATO JACOB GAVA,<sup>\*</sup> Universidade de São Paulo DANILO SALOTTI,<sup>\*\*</sup> Fundação Educacional Inaciana Padre Sabóia de Medeiros

#### Abstract

Consider a sequence of Markov-dependent trials where each trial produces a letter of a finite alphabet. Given a collection of patterns, we look at this sequence until one of these patterns appears as a run. We show how the method of gambling teams can be employed to compute the probability that a given pattern is the first pattern to occur.

*Keywords:* Stopping time; waiting time; gambling team; martingale; Markov chain; pattern; stopping probability

2010 Mathematics Subject Classification: Primary 60J10 Secondary 60G42

#### 1. Introduction

Let  $\{Z_n\}_{n\geq 1}$  be a homogeneous Markov chain on a finite set  $\Omega$ , which we call an alphabet. Let us call a pattern a finite sequence of elements of  $\Omega$ . We then consider a finite collection  $\mathcal{C} = \{A_1, A_2, \ldots, A_K\}$  of patterns, possibly with different lengths. Let  $\tau_{A_q}$  be the waiting time until  $A_q$  occurs as a run in the series  $Z_1, Z_2, \ldots$ . Define the stopping time

$$\tau = \min\{\tau_{A_1}, \dots, \tau_{A_K}\}.$$
(1.1)

Many authors have studied waiting time problems for specific and general choices of C and their probability generating functions. Several distinct techniques have been used to solve these problems for both independent or Markov-dependent trials; see [1], [2], [4], [5], [6], [7], [8], and the references therein. We are interested in computing the stopping probabilities

$$\mathbb{P}(\tau = \tau_{A_a}), \qquad q = 1, \dots, K. \tag{1.2}$$

In order to well define (1.1) and avoid ties, we assume that no pattern from C contains another pattern as a subpattern. We shall show that the martingale methods introduced in [5] and [8], and further developed in [6], [9], and [10] may also be applied to compute stopping probabilities of a sequence of patterns for finite-state Markov chains.

Feller [3] studied the occurrence of patterns in independent Bernoulli trials using recurrent event theory. In a more general setting, when the trials are independent and identically distributed discrete random variables, Li [8] elegantly proposed the martingale approach to waiting time problems and provided a means of computing (1.2) and  $\mathbb{E}(\tau)$  for any collection

Research supported by FAPESP fellowship 2012/01432-9.

Received 12 December 2012; revision received 26 March 2013.

<sup>\*</sup> Postal address: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-090, São Paulo, SP, Brazil. Email address: gava@ime.usp.br

<sup>\*\*</sup> Postal address: Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco 3972, CEP 09850-901, São Bernardo do Campo, SP, Brazil. Email address: dsalotti@fei.edu.br

C of patterns. In [1] the mean waiting time and stopping probabilities were obtained for a C whose patterns have the same length and trials are independent, identically distributed, uniform, N-state random variables. In [11] run probabilities were computed as a function of the number n of trials for a collection of runs, but not as a function of the variable in (1.1) or (1.2). In this paper we bring together the methods developed for gambling teams in [6] and [9] to obtain the probabilities in (1.2). First, in Section 2 we use the procedure developed in [6] to get (1.2) for a two-state Markov chain. In Section 3 we apply the algorithm stated in [9] to get (1.2) for a multistate Markov chain. Both methods and their results are similar, but even when we consider only two-state Markov chains, these methods show us that the way we calculate the probabilities in (1.2) are different.

## 2. Stopping probabilities in a two-state Markov chain

Let  $\Omega = \{S, F\}$  be our two-letter alphabet. Let  $\{Z_n\}_{n\geq 1}$  be a time-homogeneous, two-state Markov chain in  $\Omega$  with initial distributions  $\mathbb{P}(Z_1 = S) = p_S$  and  $\mathbb{P}(Z_1 = F) = p_F$ , and transition matrix

$$\begin{bmatrix} p_{SS} & p_{SF} \\ p_{FS} & p_{FF} \end{bmatrix},$$

where  $p_{SF} = \mathbb{P}(Z_{n+1} = F \mid Z_n = S)$ . We also assume that

$$0 < p_{SS} < 1$$
 and  $0 < p_{FF} < 1$ . (2.1)

The assumptions in (2.1) imply that  $\mathbb{P}(\tau_A < \infty) = 1$  for any pattern *A*, which in turn implies that  $\mathbb{E}(\tau) < \infty$ .

We apply here the same procedure and notation as given in [6]. We invite the reader to look at Sections 3.1 and 3.2 of that article to understand the construction that follows.

Let  $X_n$  be the amount of money that the casino saves at the end of round *n*. Let  $y_j W_{ij}$  be the amount of money that the *j*th team earns when the *i*th ending scenario occurs. By the rules of betting, it is clear that  $X_1 = 0$ . Moreover, it is not hard to see that  $\{X_n\}_{n\geq 1}$  is a martingale with respect to the filtration  $\{Z_n\}_{n\geq 1}$  and that at the moment  $\tau$  we have

$$X_{\tau} = \sum_{j=1}^{L+2M} y_j(\tau - 1) - S(y_1, \dots, y_{L+2M})$$
(2.2)

with

$$S(y_1, \ldots, y_{L+2M}) = \sum_{i=1}^{K+L+2M} \mathbf{1}_{E_i} \sum_{j=1}^{L+2M} y_j W_{ij},$$

where  $E_i$  stands for the event that the *i*th scenario occurs and  $\mathbf{1}_{E_i}$  is its indicator function. A general method to compute the profit matrix  $W = \{W_{ij}\}$  is given in Section 3.3 of [6].

For i = 1, ..., K + L + 2M, let  $\mu_i = \mathbb{P}(E_i)$  be the probability of occurrence of the *i*th ending scenario. Suppose that  $(y_1^*, ..., y_{L+2M}^*)$  is a solution of the linear system

$$y_1^* W_{i,1} + \dots + y_{L+2M}^* W_{i,L+2M} = 1$$
 for  $i \in \{K+1, \dots, K+L+2M\}$ . (2.3)

**Theorem 2.1.** ([6, Theorem 1].) If  $(y_1^*, \ldots, y_{L+2M}^*)$  solves the linear system (2.3) then

$$\mathbb{E}(\tau) = 1 + \frac{\sum_{i=1}^{K} \mu_i \sum_{j=1}^{L+2M} y_j^* W_{ij} + (1 - \sum_{i=1}^{K} \mu_i)}{\sum_{j=1}^{L+2M} y_j^*}.$$
(2.4)

Observe that the expression in (2.4) depends on the  $\mu_i$ s which are easily calculated and that

 $\mathbb{P}(\tau = \tau_{A_q}) = \mu_q + \mathbb{P}(B \in \mathcal{C}'' \text{ such that the game ends with } B \text{ and } B \text{ is associated to } A_q).$ 

Let  $B_l \in \mathcal{C}''$  be a pattern associated to  $A_q$ . It corresponds to some ending scenario  $E_r$ , where  $K < r \leq K + L + 2M$ . In addition, let us write  $\mathbb{P}(E_r) = \mu_r^{(q)}$  just to emphasize the link between  $E_r$  and  $A_q$ . Next assume that  $(z_1, \ldots, z_{L+2M})$  is a solution of the linear system

$$z_1 W_{1,1} + \dots + z_{L+2M} W_{1,L+2M} = 1,$$
  

$$z_1 W_{i,1} + \dots + z_{L+2M} W_{i,L+2M} = 1 \quad \text{for } i \in \{K+1,\dots,K+L+2M\} \setminus \{r\}.$$
(2.5)

Then

$$S(z_1,\ldots,z_{L+2M}) = \mathbf{1} \mathbf{1}_{E_1} + \sum_{i=2}^{K} \mathbf{1}_{E_i} \sum_{j=1}^{L+2M} z_j W_{ij} + \sum_{i>K, i\neq r} \mathbf{1}_{E_i} + \mathbf{1}_{E_r} \sum_{j=1}^{L+2M} z_j W_{rj}.$$

As  $\mathbb{E}(\tau) < \infty$  and the sequence  $\{X_n\}_{n \ge 1}$  has bounded increments, we can apply the optional stopping theorem (see [12, p. 100]) and take expectations of both sides of (2.2) for  $S(z_1, \ldots, z_{L+2M})$ . Since  $0 = \mathbb{E}(X_1) = \mathbb{E}(X_{\tau})$ ,

$$0 = \sum_{j=1}^{L+2M} z_j(\mathbb{E}(\tau) - 1) - \sum_{i=2}^{K} \mu_i \sum_{j=1}^{L+2M} z_j W_{ij} - \left(1 - \sum_{i=2}^{K} \mu_i\right) + \mu_r^{(q)} \left(1 - \sum_{j=1}^{L+2M} z_j W_{rj}\right),$$

which in turn implies that

$$\mu_r^{(q)} = \frac{\sum_{j=1}^{L+2M} z_j (1 - \mathbb{E}(\tau)) - \sum_{i=2}^{K} \mu_i (1 - \sum_{j=1}^{L+2M} z_j W_{ij}) + 1}{1 - \sum_{j=1}^{L+2M} z_j W_{rj}}.$$
 (2.6)

**Theorem 2.2.** Let  $\{Z_n\}_{n\geq 1}$  be a homogeneous Markov chain on  $\{S, F\}$ . Consider a pattern  $A_q$ .

(i) If  $A_q$  is associated to an unmatched pattern  $B_l \in \mathbb{C}''$  corresponding to the rth ending scenario of the game, r > K, then

$$\mathbb{P}(\tau = \tau_{A_q}) = \mu_q + \frac{\sum_{j=1}^{L+2M} z_j (1 - \mathbb{E}(\tau)) - \sum_{i=2}^{K} \mu_i (1 - \sum_{j=1}^{L+2M} z_j W_{ij}) + 1}{1 - \sum_{j=1}^{L+2M} z_j W_{rj}},$$

where  $(z_1, \ldots, z_{L+2M})$  is a solution of (2.5).

(ii) If  $A_q$  is associated to a pair of matched patterns  $B_m$ ,  $B_p \in \mathbb{C}''$  respectively corresponding to the sth and th ending scenarios of the game, s, t > K, then

$$\mathbb{P}(\tau = \tau_{A_q}) = \mu_q + \mu_s^{(i)} + \mu_t^{(i)}$$

where  $(x_1, \ldots, x_{L+2M})$  satisfies (2.5) and (2.6) with s rather than r and  $(w_1, \ldots, w_{L+2M})$  satisfies (2.5) and (2.6) with t rather than r.

**Remark 2.1.** We could readily apply Theorems 2.1 and 2.2 for instance to the well-known problem of Feller [3] in which  $A_1$  is a run of  $\alpha$  consecutive successes and  $A_2$  is a run of  $\beta$  failures. The formulae for  $\mathbb{P}(\tau = \tau_{A_1})$  and  $\mathbb{E}(\tau)$  are too long and so we do not present them here. However, when  $\{Z_n\}_{n\geq 1}$  is a sequence of independent Bernoulli random variables with  $\mathbb{P}(Z_n = S) = p$  and  $\mathbb{P}(Z_n = F) = q$ , the omitted formulae reduce to the expressions found in Chapters VIII.1 and XIII.8 of [3]:

$$\mathbb{P}(\tau = \tau_{A_1}) = \frac{p^{\alpha - 1}(1 - q^{\beta})}{p^{\alpha - 1} + q^{\beta - 1} - p^{\alpha - 1}q^{\beta - 1}} \quad \text{and} \quad \mathbb{E}(\tau) = \frac{(1 - p^{\alpha})(1 - q^{\beta})}{p^{\alpha}q + pq^{\beta} - p^{\alpha}q^{\beta}}.$$

## 3. Stopping probabilities in a multistate Markov chain

In this section the state space is  $\Omega = \{1, ..., N\}$ . Let  $\{Z_n\}_{n \ge 1}$  be a homogeneous Markov chain on  $\Omega$ . The initial distribution is  $\mathbb{P}(Z_1 = i) = p_i$  and the transition matrix is  $\{p_{ij}\}$ , where  $p_{ij} = \mathbb{P}(Z_{n+1} = j \mid Z_n = i)$ . Since we do not impose assumptions on the transition probabilities as in (2.1), we need to make the following assumptions on  $\tau$ .

- 1. For q = 1, ..., K,  $\mathbb{P}(\tau = \tau_{A_q}) > 0$ .
- 2.  $\tau < \infty$  almost surely.

Remarks on these assumptions can be found in Section 2 of [9]. We just add the remark that assumptions 1 and 2 together ensure that  $\sum_{q} \mathbb{P}(\tau = \tau_{A_q}) = 1$ .

We now use the method of gambling teams given in [9]. Before continuing, we suggest that the reader view the details of Section 3 of [9] to understand what follows. Once more we work with  $\mathcal{C} = \{A_q\}_{q=1}^{K}$ , but we need to introduce notation not used in [9]. Define the sets

$$\mathcal{D}' = \{lA_q; l = 1, \dots, N\}_{q=1}^K$$
 and  $\mathcal{C}' = \{lmA_q; l, m = 1, \dots, N\}_{q=1}^K$ 

Denote by  $\mathcal{D}''$  and  $\mathcal{C}''$  the list of patterns after excluding from  $\mathcal{D}'$  and from  $\mathcal{C}'$ , respectively, the patterns which can occur only after the waiting time  $\tau$ .

Let  $K' := K + |\mathcal{D}''|$  and  $M' := |\mathcal{C}''|$ . Note that here M' plays the role of N' in [9]. Let  $X_n$  be the amount of money that the casino saves at the end of round n. Let  $y_j W_{ij}$  be the amount of money that the *j*th team earns when the *i*th ending scenario occurs. As before, we have  $X_1 = 0$ , and  $\{X_n\}_{n \ge 1}$  is a martingale with respect to the filtration  $\{Z_n\}_{n \ge 1}$ . At the moment  $\tau$  we have

$$X_{\tau} = \sum_{j=1}^{M'} y_j(\tau - 1) - S(y_1, \dots, y_{M'})$$
(3.1)

with

$$S(y_1, \ldots, y_{M'}) = \sum_{i=1}^{K'+M'} \mathbf{1}_{E_i} \sum_{j=1}^{M'} y_j W_{ij},$$

where  $E_i$  stands for the event that the *i*th scenario occurs and  $\mathbf{1}_{E_i}$  is its indicator function. See Section 3 of [9] for a general explanation of how to calculate the profit matrix  $W = \{W_{ij}\}$ .

For i = 1, ..., K' + M', let  $\mu_i = \mathbb{P}(E_i)$  be the probability of occurrence of the *i*th ending scenario. Suppose that  $(y_1^*, ..., y_{M'}^*)$  is a solution of the linear system

$$y_1^* W_{i,1} + \dots + y_{M'}^* W_{i,M'} = 1 \quad \text{for } i \in \{K'+1, \dots, K'+M'\}.$$
 (3.2)

**Theorem 3.1.** ([9, Theorem 1].) If  $(y_1^*, \ldots, y_{M'}^*)$  solves the linear system (3.2) then

$$\mathbb{E}(\tau) = 1 + \frac{\sum_{i=1}^{K'} \mu_i \sum_{j=1}^{M'} y_j^* W_{ij} + (1 - \sum_{i=1}^{K'} \mu_i)}{\sum_{j=1}^{M'} y_j^*}.$$

We next note that

 $\mathbb{P}(\tau = \tau_{A_q}) = \mu_q + \mathbb{P}(B \in \mathcal{D}'' \cup \mathcal{C}'' \text{ such that game ends with } B \text{ and } B \text{ is associated to } A_q),$ 

where  $\mathcal{D}'' \cap \mathcal{C}'' = \emptyset$ . For  $r \in \{K+1, \ldots, K', \ldots, K'+M'\}$ , write  $\mathbb{P}(E_r) = \mu_r^{(q)}$  to emphasize the link between the *r*th ending scenario  $E_r$  and its associated pattern  $A_q$ ,  $q = 1, \ldots, K$ . Observe also that if a pattern  $B_k \in \mathcal{D}''$  is generated by  $A_q$  and corresponds to the ending scenario *u*, with  $K < u \leq K'$ , then  $\mu_u^{(q)}$  is readily computable. In turn, let  $B_l \in \mathcal{C}''$  be a pattern generated by  $A_q$ . It corresponds to some ending scenario  $E_r$ , where  $K' < r \leq K' + M'$ . Next assume that  $(z_1, \ldots, z_{M'})$  is a solution of the linear system

$$z_1 W_{1,1} + \dots + z_{M'} W_{1,M'} = 1,$$

$$z_1 W_{i,1} + \dots + z_{M'} W_{i,M'} = 1 \quad \text{for } i \in \{K' + 1, \dots, K' + M'\} \setminus \{r\}.$$
(3.3)

Then

$$S(z_1,\ldots,z_{M'}) = 1 \mathbf{1}_{E_1} + \sum_{i=2}^{K'} \mathbf{1}_{E_i} \sum_{j=1}^{M'} z_j W_{ij} + \sum_{i>K'; i\neq r} \mathbf{1}_{E_i} + \mathbf{1}_{E_r} \sum_{j=1}^{M'} z_j W_{rj}.$$

Again, we apply the optional stopping theorem (see [12, p. 100]), and take the expectations of both sides of (3.1) for  $S(z_1, \ldots, z_{M'})$  to obtain

$$0 = \mathbb{E}(X_{\tau}) = \sum_{j=1}^{M'} z_j(\mathbb{E}(\tau) - 1) - \sum_{i=2}^{K'} \mu_i \sum_{j=1}^{M'} z_j W_{ij} - \left(1 - \sum_{i=2}^{K'} \mu_i\right) + \mu_r^{(q)} \left(1 - \sum_{j=1}^{M'} z_j W_{rj}\right),$$

which in turn implies that

$$\mu_r^{(q)} = \frac{\sum_{j=1}^{M'} z_j (1 - \mathbb{E}(\tau)) - \sum_{i=2}^{K'} \mu_i (1 - \sum_{j=1}^{M'} z_j W_{ij}) + 1}{1 - \sum_{j=1}^{M'} z_j W_{rj}}.$$
(3.4)

**Theorem 3.2.** Let  $\{Z_n\}_{n\geq 1}$  be a homogeneous Markov chain on  $\{1, \ldots, N\}$ . For  $A_q$ ,  $q = 1, \ldots, K$ , suppose that the patterns  $B_k, \ldots, B_{k+\nu} \in \mathcal{D}''$  are associated to  $A_q$  and that they correspond to the ending scenarios  $u, u+1, \ldots, u+\nu$ . Also, suppose that  $B_l, B_{l+1}, \ldots, B_{l+s} \in \mathcal{C}''$  are associated to  $A_q$  and that they correspond to the ending scenarios  $r, r+1, \ldots, r+s$ . Then

$$\mathbb{P}(\tau = \tau_{A_q}) = \mu_q + \mu_u^{(q)} + \dots + \mu_{u+v}^{(q)} + \mu_r^{(q)} + \dots + \mu_{r+s}^{(q)},$$

where each  $\mu_l^{(q)}$ ,  $l = r, \ldots, r + s$ , demands a solution  $(z_1^l, \ldots, z_{M'}^l)$  for (3.3) with j rather than r and has the form given by (3.4).

We now apply Theorem 3.2 to Example 1 of [9].

**Example 3.1.** Let  $\Omega = \{1, 2, 3\}$ , and let  $C = \{323, 313, 33\}$ . Suppose that the initial distribution is  $p_1 = p_2 = p_3 = \frac{1}{3}$  and that the transition matrix is

$$\begin{bmatrix} \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}.$$

Then  $\mathcal{D}'' = \{1323, 2323, 1313, 2313, 133, 233\}$  and  $\mathcal{C}'' = \{11323, 22323, 11313, 22313, 1133, 2233\}$ . Note that patterns such as 12323, 21323  $\notin \mathcal{C}''$  are due to the absence of transitions  $1 \rightarrow 2$  and  $2 \rightarrow 1$ .

Consider  $A_1 = 323$ ,  $A_2 = 313$ , and  $A_3 = 33$ . In order to use Theorem 3.2, we need to compute the profit matrix W, the details of which we omit. After solving (3.2) and applying Theorem 3.1, we obtain  $\mathbb{E}(\tau) = 8 + \frac{7}{15} = 8.466667$ . With the profit matrix and  $\mathbb{E}(\tau)$  determined, and having ordered the ending scenarios in the order that we have shown the sets  $\mathcal{C}, \mathcal{D}'', \mathcal{C}''$ , we use Theorem 3.2 to compute  $\mu_i, i = 10, \ldots, 15$ , and obtain the stopping probabilities

$$\begin{split} \mathbb{P}(\tau = \tau_{A_1}) &= \mu_1 + \mu_4^{(1)} + \mu_5^{(1)} + \mu_{10}^{(1)} + \mu_{11}^{(1)} = \frac{1}{48} + 2 \times \frac{1}{192} + 2 \times 0.034\,375 = \frac{1}{10}, \\ \mathbb{P}(\tau = \tau_{A_2}) &= \mu_2 + \mu_6^{(2)} + \mu_7^{(2)} + \mu_{12}^{(2)} + \mu_{13}^{(2)} = \frac{1}{48} + 2 \times \frac{1}{192} + 2 \times 0.034\,375 = \frac{1}{10}, \\ \mathbb{P}(\tau = \tau_{A_3}) &= \mu_3 + \mu_8^{(3)} + \mu_9^{(3)} + \mu_{14}^{(3)} + \mu_{15}^{(3)} = \frac{1}{6} + 2 \times \frac{1}{24} + 2 \times 0.275 = \frac{8}{10}. \end{split}$$

#### References

- BLOM, G. AND THORBURN, D. (1982). How many random digits are required until given sequences are obtained? J. Appl. Prob. 19, 518–531.
- [2] CHRYSAPHINOU, O. AND PAPASTAVRIDIS, S. (1990). The occurrence of sequence patterns in repeated dependent experiments. *Theory Prob. Appl.* 35, 145–152.
- [3] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd edn. John Wiley, New York.
- [4] FU, J. S. AND CHANG, Y. M. (2002). On probability generating functions for waiting time distributions of compound patterns in a sequence of multistate trials. J. Appl. Prob. 39, 70–80.
- [5] GERBER, H. U. AND LI, S.-Y. R. (1981). The occurrence of sequence patterns in repeated experiments and hitting times in a Markov chain. *Stoch. Process. Appl.* 11, 101–1086.
- [6] GLAZ, J., KULLDORFF, M., POZDNYAKOV, V. AND STEELE, J. M. (2006). Gambling teams and waiting times for patterns in two-state Markov chains. J. Appl. Prob. 43, 127–140.
- [7] HAN, Q. AND AKI, S. (2000). Waiting time problems in a two-state Markov chain. Ann. Inst. Statist. Math. 52, 778–789.
- [8] LI, S.-Y. R. (1980). A martigale approach to the study of occurrence of sequence patterns in repeated experiments. Ann. Prob. 8, 1171–1176.
- [9] POZDNYAKOV, V. (2008). On occurrence of patterns in Markov chain: method of gambling teams. *Statist. Prob. Lett.* 78, 2762–2767.
- [10] POZDNYAKOV, V. AND KULLDORFF, M. (2006). Waiting times for patterns and a method of gambling teams. Amer. Math. Monthly 113, 134–143.
- [11] SCHWAGER, S. J. (1983). Run probabilities in sequences of Markov-dependent trials. J. Amer. Statist. Assoc. 78, 168–180.
- [12] WILLIAMS, D. (1991). Probability and Martigales. Cambridge University Press.