# STOPPING PROBABILITIES FOR PATTERNS IN MARKOV CHAINS 

RENATO JACOB GAVA,* Universidade de São Paulo<br>DANILO SALOTTI,** Fundação Educacional Inaciana Padre Sabóia de Medeiros


#### Abstract

Consider a sequence of Markov-dependent trials where each trial produces a letter of a finite alphabet. Given a collection of patterns, we look at this sequence until one of these patterns appears as a run. We show how the method of gambling teams can be employed to compute the probability that a given pattern is the first pattern to occur.


Keywords: Stopping time; waiting time; gambling team; martingale; Markov chain; pattern; stopping probability
2010 Mathematics Subject Classification: Primary 60J 10
Secondary 60G42

## 1. Introduction

Let $\left\{Z_{n}\right\}_{n \geq 1}$ be a homogeneous Markov chain on a finite set $\Omega$, which we call an alphabet. Let us call a pattern a finite sequence of elements of $\Omega$. We then consider a finite collection $\mathcal{C}=\left\{A_{1}, A_{2}, \ldots, A_{K}\right\}$ of patterns, possibly with different lengths. Let $\tau_{A_{q}}$ be the waiting time until $A_{q}$ occurs as a run in the series $Z_{1}, Z_{2}, \ldots$. Define the stopping time

$$
\begin{equation*}
\tau=\min \left\{\tau_{A_{1}}, \ldots, \tau_{A_{K}}\right\} . \tag{1.1}
\end{equation*}
$$

Many authors have studied waiting time problems for specific and general choices of $\mathcal{C}$ and their probability generating functions. Several distinct techniques have been used to solve these problems for both independent or Markov-dependent trials; see [1], [2], [4], [5], [6], [7], [8], and the references therein. We are interested in computing the stopping probabilities

$$
\begin{equation*}
\mathbb{P}\left(\tau=\tau_{A_{q}}\right), \quad q=1, \ldots, K \tag{1.2}
\end{equation*}
$$

In order to well define (1.1) and avoid ties, we assume that no pattern from $\mathcal{C}$ contains another pattern as a subpattern. We shall show that the martingale methods introduced in [5] and [8], and further developed in [6], [9], and [10] may also be applied to compute stopping probabilities of a sequence of patterns for finite-state Markov chains.

Feller [3] studied the occurrence of patterns in independent Bernoulli trials using recurrent event theory. In a more general setting, when the trials are independent and identically distributed discrete random variables, Li [8] elegantly proposed the martingale approach to waiting time problems and provided a means of computing (1.2) and $\mathbb{E}(\tau)$ for any collection

[^0]$\mathcal{C}$ of patterns. In [1] the mean waiting time and stopping probabilities were obtained for a $\mathcal{C}$ whose patterns have the same length and trials are independent, identically distributed, uniform, $N$-state random variables. In [11] run probabilities were computed as a function of the number $n$ of trials for a collection of runs, but not as a function of the variable in (1.1) or (1.2). In this paper we bring together the methods developed for gambling teams in [6] and [9] to obtain the probabilities in (1.2). First, in Section 2 we use the procedure developed in [6] to get (1.2) for a two-state Markov chain. In Section 3 we apply the algorithm stated in [9] to get (1.2) for a multistate Markov chain. Both methods and their results are similar, but even when we consider only two-state Markov chains, these methods show us that the way we calculate the probabilities in (1.2) are different.

## 2. Stopping probabilities in a two-state Markov chain

Let $\Omega=\{S, F\}$ be our two-letter alphabet. Let $\left\{Z_{n}\right\}_{n \geq 1}$ be a time-homogeneous, two-state Markov chain in $\Omega$ with initial distributions $\mathbb{P}\left(Z_{1}=S\right)=p_{S}$ and $\mathbb{P}\left(Z_{1}=F\right)=p_{F}$, and transition matrix

$$
\left[\begin{array}{cc}
p_{S S} & p_{S F} \\
p_{F S} & p_{F F}
\end{array}\right]
$$

where $p_{S F}=\mathbb{P}\left(Z_{n+1}=F \mid Z_{n}=S\right)$. We also assume that

$$
\begin{equation*}
0<p_{S S}<1 \quad \text { and } \quad 0<p_{F F}<1 \tag{2.1}
\end{equation*}
$$

The assumptions in (2.1) imply that $\mathbb{P}\left(\tau_{A}<\infty\right)=1$ for any pattern $A$, which in turn implies that $\mathbb{E}(\tau)<\infty$.

We apply here the same procedure and notation as given in [6]. We invite the reader to look at Sections 3.1 and 3.2 of that article to understand the construction that follows.

Let $X_{n}$ be the amount of money that the casino saves at the end of round $n$. Let $y_{j} W_{i j}$ be the amount of money that the $j$ th team earns when the $i$ th ending scenario occurs. By the rules of betting, it is clear that $X_{1}=0$. Moreover, it is not hard to see that $\left\{X_{n}\right\}_{n \geq 1}$ is a martingale with respect to the filtration $\left\{Z_{n}\right\}_{n \geq 1}$ and that at the moment $\tau$ we have

$$
\begin{equation*}
X_{\tau}=\sum_{j=1}^{L+2 M} y_{j}(\tau-1)-S\left(y_{1}, \ldots, y_{L+2 M}\right) \tag{2.2}
\end{equation*}
$$

with

$$
S\left(y_{1}, \ldots, y_{L+2 M}\right)=\sum_{i=1}^{K+L+2 M} \mathbf{1}_{E_{i}} \sum_{j=1}^{L+2 M} y_{j} W_{i j}
$$

where $E_{i}$ stands for the event that the $i$ th scenario occurs and $\mathbf{1}_{E_{i}}$ is its indicator function. A general method to compute the profit matrix $W=\left\{W_{i j}\right\}$ is given in Section 3.3 of [6].

For $i=1, \ldots, K+L+2 M$, let $\mu_{i}=\mathbb{P}\left(E_{i}\right)$ be the probability of occurrence of the $i$ th ending scenario. Suppose that $\left(y_{1}^{*}, \ldots, y_{L+2 M}^{*}\right)$ is a solution of the linear system

$$
\begin{equation*}
y_{1}^{*} W_{i, 1}+\cdots+y_{L+2 M}^{*} W_{i, L+2 M}=1 \quad \text { for } i \in\{K+1, \ldots, K+L+2 M\} . \tag{2.3}
\end{equation*}
$$

Theorem 2.1. ([6, Theorem 1].) If $\left(y_{1}^{*}, \ldots, y_{L+2 M}^{*}\right)$ solves the linear system (2.3) then

$$
\begin{equation*}
\mathbb{E}(\tau)=1+\frac{\sum_{i=1}^{K} \mu_{i} \sum_{j=1}^{L+2 M} y_{j}^{*} W_{i j}+\left(1-\sum_{i=1}^{K} \mu_{i}\right)}{\sum_{j=1}^{L+2 M} y_{j}^{*}} \tag{2.4}
\end{equation*}
$$

Observe that the expression in (2.4) depends on the $\mu_{i} \mathrm{~s}$ which are easily calculated and that $\mathbb{P}\left(\tau=\tau_{A_{q}}\right)=\mu_{q}+\mathbb{P}\left(B \in \mathbb{C}^{\prime \prime}\right.$ such that the game ends with $B$ and $B$ is associated to $\left.A_{q}\right)$.

Let $B_{l} \in \mathcal{C}^{\prime \prime}$ be a pattern associated to $A_{q}$. It corresponds to some ending scenario $E_{r}$, where $K<r \leq K+L+2 M$. In addition, let us write $\mathbb{P}\left(E_{r}\right)=\mu_{r}^{(q)}$ just to emphasize the link between $E_{r}$ and $A_{q}$. Next assume that $\left(z_{1}, \ldots, z_{L+2 M}\right)$ is a solution of the linear system

$$
\begin{gather*}
z_{1} W_{1,1}+\cdots+z_{L+2 M} W_{1, L+2 M}=1  \tag{2.5}\\
z_{1} W_{i, 1}+\cdots+z_{L+2 M} W_{i, L+2 M}=1 \quad \text { for } i \in\{K+1, \ldots, K+L+2 M\} \backslash\{r\} .
\end{gather*}
$$

Then

$$
S\left(z_{1}, \ldots, z_{L+2 M}\right)=1 \mathbf{1}_{E_{1}}+\sum_{i=2}^{K} \mathbf{1}_{E_{i}} \sum_{j=1}^{L+2 M} z_{j} W_{i j}+\sum_{i>K, i \neq r} \mathbf{1}_{E_{i}}+\mathbf{1}_{E_{r}} \sum_{j=1}^{L+2 M} z_{j} W_{r j}
$$

As $\mathbb{E}(\tau)<\infty$ and the sequence $\left\{X_{n}\right\}_{n \geq 1}$ has bounded increments, we can apply the optional stopping theorem (see [12, p. 100]) and take expectations of both sides of (2.2) for $S\left(z_{1}, \ldots, z_{L+2 M}\right)$. Since $0=\mathbb{E}\left(X_{1}\right)=\mathbb{E}\left(X_{\tau}\right)$,

$$
0=\sum_{j=1}^{L+2 M} z_{j}(\mathbb{E}(\tau)-1)-\sum_{i=2}^{K} \mu_{i} \sum_{j=1}^{L+2 M} z_{j} W_{i j}-\left(1-\sum_{i=2}^{K} \mu_{i}\right)+\mu_{r}^{(q)}\left(1-\sum_{j=1}^{L+2 M} z_{j} W_{r j}\right)
$$

which in turn implies that

$$
\begin{equation*}
\mu_{r}^{(q)}=\frac{\sum_{j=1}^{L+2 M} z_{j}(1-\mathbb{E}(\tau))-\sum_{i=2}^{K} \mu_{i}\left(1-\sum_{j=1}^{L+2 M} z_{j} W_{i j}\right)+1}{1-\sum_{j=1}^{L+2 M} z_{j} W_{r j}} \tag{2.6}
\end{equation*}
$$

Theorem 2.2. Let $\left\{Z_{n}\right\}_{n \geq 1}$ be a homogeneous Markov chain on $\{S, F\}$. Consider a pattern $A_{q}$.
(i) If $A_{q}$ is associated to an unmatched pattern $B_{l} \in \mathbb{C}^{\prime \prime}$ corresponding to the rth ending scenario of the game, $r>K$, then

$$
\mathbb{P}\left(\tau=\tau_{A_{q}}\right)=\mu_{q}+\frac{\sum_{j=1}^{L+2 M} z_{j}(1-\mathbb{E}(\tau))-\sum_{i=2}^{K} \mu_{i}\left(1-\sum_{j=1}^{L+2 M} z_{j} W_{i j}\right)+1}{1-\sum_{j=1}^{L+2 M} z_{j} W_{r j}},
$$

where $\left(z_{1}, \ldots, z_{L+2 M}\right)$ is a solution of (2.5).
(ii) If $A_{q}$ is associated to a pair of matched patterns $B_{m}, B_{p} \in \mathfrak{C}^{\prime \prime}$ respectively corresponding to the sth and th ending scenarios of the game, $s, t>K$, then

$$
\mathbb{P}\left(\tau=\tau_{A_{q}}\right)=\mu_{q}+\mu_{s}^{(i)}+\mu_{t}^{(i)}
$$

where $\left(x_{1}, \ldots, x_{L+2 M}\right)$ satisfies (2.5) and (2.6) with s rather than $r$ and $\left(w_{1}, \ldots, w_{L+2 M}\right)$ satisfies (2.5) and (2.6) with $t$ rather than $r$.

Remark 2.1. We could readily apply Theorems 2.1 and 2.2 for instance to the well-known problem of Feller [3] in which $A_{1}$ is a run of $\alpha$ consecutive successes and $A_{2}$ is a run of $\beta$ failures. The formulae for $\mathbb{P}\left(\tau=\tau_{A_{1}}\right)$ and $\mathbb{E}(\tau)$ are too long and so we do not present them here. However, when $\left\{Z_{n}\right\}_{n \geq 1}$ is a sequence of independent Bernoulli random variables with $\mathbb{P}\left(Z_{n}=S\right)=p$ and $\mathbb{P}\left(Z_{n}=F\right)=q$, the omitted formulae reduce to the expressions found in Chapters VIII. 1 and XIII. 8 of [3]:

$$
\mathbb{P}\left(\tau=\tau_{A_{1}}\right)=\frac{p^{\alpha-1}\left(1-q^{\beta}\right)}{p^{\alpha-1}+q^{\beta-1}-p^{\alpha-1} q^{\beta-1}} \quad \text { and } \quad \mathbb{E}(\tau)=\frac{\left(1-p^{\alpha}\right)\left(1-q^{\beta}\right)}{p^{\alpha} q+p q^{\beta}-p^{\alpha} q^{\beta}}
$$

## 3. Stopping probabilities in a multistate Markov chain

In this section the state space is $\Omega=\{1, \ldots, N\}$. Let $\left\{Z_{n}\right\}_{n \geq 1}$ be a homogeneous Markov chain on $\Omega$. The initial distribution is $\mathbb{P}\left(Z_{1}=i\right)=p_{i}$ and the transition matrix is $\left\{p_{i j}\right\}$, where $p_{i j}=\mathbb{P}\left(Z_{n+1}=j \mid Z_{n}=i\right)$. Since we do not impose assumptions on the transition probabilities as in (2.1), we need to make the following assumptions on $\tau$.

1. For $q=1, \ldots, K, \mathbb{P}\left(\tau=\tau_{A_{q}}\right)>0$.
2. $\tau<\infty$ almost surely.

Remarks on these assumptions can be found in Section 2 of [9]. We just add the remark that assumptions 1 and 2 together ensure that $\sum_{q} \mathbb{P}\left(\tau=\tau_{A_{q}}\right)=1$.

We now use the method of gambling teams given in [9]. Before continuing, we suggest that the reader view the details of Section 3 of [9] to understand what follows. Once more we work with $\mathcal{C}=\left\{A_{q}\right\}_{q=1}^{K}$, but we need to introduce notation not used in [9]. Define the sets

$$
\mathscr{D}^{\prime}=\left\{l A_{q} ; l=1, \ldots, N\right\}_{q=1}^{K} \quad \text { and } \quad \mathcal{C}^{\prime}=\left\{l m A_{q} ; l, m=1, \ldots, N\right\}_{q=1}^{K} .
$$

Denote by $\mathscr{D}^{\prime \prime}$ and $\mathcal{C}^{\prime \prime}$ the list of patterns after excluding from $\mathscr{D}^{\prime}$ and from $\mathfrak{C}^{\prime}$, respectively, the patterns which can occur only after the waiting time $\tau$.

Let $K^{\prime}:=K+\left|\mathscr{D}^{\prime \prime}\right|$ and $M^{\prime}:=\left|\mathcal{C}^{\prime \prime}\right|$. Note that here $M^{\prime}$ plays the role of $N^{\prime}$ in [9]. Let $X_{n}$ be the amount of money that the casino saves at the end of round $n$. Let $y_{j} W_{i j}$ be the amount of money that the $j$ th team earns when the $i$ th ending scenario occurs. As before, we have $X_{1}=0$, and $\left\{X_{n}\right\}_{n \geq 1}$ is a martingale with respect to the filtration $\left\{Z_{n}\right\}_{n \geq 1}$. At the moment $\tau$ we have

$$
\begin{equation*}
X_{\tau}=\sum_{j=1}^{M^{\prime}} y_{j}(\tau-1)-S\left(y_{1}, \ldots, y_{M^{\prime}}\right) \tag{3.1}
\end{equation*}
$$

with

$$
S\left(y_{1}, \ldots, y_{M^{\prime}}\right)=\sum_{i=1}^{K^{\prime}+M^{\prime}} \mathbf{1}_{E_{i}} \sum_{j=1}^{M^{\prime}} y_{j} W_{i j}
$$

where $E_{i}$ stands for the event that the $i$ th scenario occurs and $\mathbf{1}_{E_{i}}$ is its indicator function. See Section 3 of [9] for a general explanation of how to calculate the profit matrix $W=\left\{W_{i j}\right\}$.

For $i=1, \ldots, K^{\prime}+M^{\prime}$, let $\mu_{i}=\mathbb{P}\left(E_{i}\right)$ be the probability of occurrence of the $i$ th ending scenario. Suppose that $\left(y_{1}^{*}, \ldots, y_{M^{\prime}}^{*}\right)$ is a solution of the linear system

$$
\begin{equation*}
y_{1}^{*} W_{i, 1}+\cdots+y_{M^{\prime}}^{*} W_{i, M^{\prime}}=1 \quad \text { for } i \in\left\{K^{\prime}+1, \ldots, K^{\prime}+M^{\prime}\right\} \tag{3.2}
\end{equation*}
$$

Theorem 3.1. ([9, Theorem 1].) If $\left(y_{1}^{*}, \ldots, y_{M^{\prime}}^{*}\right)$ solves the linear system (3.2) then

$$
\mathbb{E}(\tau)=1+\frac{\sum_{i=1}^{K^{\prime}} \mu_{i} \sum_{j=1}^{M^{\prime}} y_{j}^{*} W_{i j}+\left(1-\sum_{i=1}^{K^{\prime}} \mu_{i}\right)}{\sum_{j=1}^{M^{\prime}} y_{j}^{*}}
$$

We next note that
$\mathbb{P}\left(\tau=\tau_{A_{q}}\right)=\mu_{q}+\mathbb{P}\left(B \in \mathscr{D}^{\prime \prime} \cup \mathfrak{C}^{\prime \prime}\right.$ such that game ends with $B$ and $B$ is associated to $\left.A_{q}\right)$, where $\mathscr{D}^{\prime \prime} \cap \mathcal{C}^{\prime \prime}=\varnothing$. For $r \in\left\{K+1, \ldots, K^{\prime}, \ldots, K^{\prime}+M^{\prime}\right\}$, write $\mathbb{P}\left(E_{r}\right)=\mu_{r}^{(q)}$ to emphasize the link between the $r$ th ending scenario $E_{r}$ and its associated pattern $A_{q}, q=1, \ldots, K$. Observe also that if a pattern $B_{k} \in \mathscr{D}^{\prime \prime}$ is generated by $A_{q}$ and corresponds to the ending scenario $u$, with $K<u \leq K^{\prime}$, then $\mu_{u}^{(q)}$ is readily computable. In turn, let $B_{l} \in \mathcal{C}^{\prime \prime}$ be a pattern generated by $A_{q}$. It corresponds to some ending scenario $E_{r}$, where $K^{\prime}<r \leq K^{\prime}+M^{\prime}$. Next assume that $\left(z_{1}, \ldots, z_{M^{\prime}}\right)$ is a solution of the linear system

$$
\begin{gather*}
z_{1} W_{1,1}+\cdots+z_{M^{\prime}} W_{1, M^{\prime}}=1 \\
z_{1} W_{i, 1}+\cdots+z_{M^{\prime}} W_{i, M^{\prime}}=1 \quad \text { for } i \in\left\{K^{\prime}+1, \ldots, K^{\prime}+M^{\prime}\right\} \backslash\{r\} . \tag{3.3}
\end{gather*}
$$

Then

$$
S\left(z_{1}, \ldots, z_{M^{\prime}}\right)=1 \mathbf{1}_{E_{1}}+\sum_{i=2}^{K^{\prime}} \mathbf{1}_{E_{i}} \sum_{j=1}^{M^{\prime}} z_{j} W_{i j}+\sum_{i>K^{\prime} ; i \neq r} \mathbf{1}_{E_{i}}+\mathbf{1}_{E_{r}} \sum_{j=1}^{M^{\prime}} z_{j} W_{r j}
$$

Again, we apply the optional stopping theorem (see [12, p. 100]), and take the expectations of both sides of (3.1) for $S\left(z_{1}, \ldots, z_{M^{\prime}}\right)$ to obtain
$0=\mathbb{E}\left(X_{\tau}\right)=\sum_{j=1}^{M^{\prime}} z_{j}(\mathbb{E}(\tau)-1)-\sum_{i=2}^{K^{\prime}} \mu_{i} \sum_{j=1}^{M^{\prime}} z_{j} W_{i j}-\left(1-\sum_{i=2}^{K^{\prime}} \mu_{i}\right)+\mu_{r}^{(q)}\left(1-\sum_{j=1}^{M^{\prime}} z_{j} W_{r j}\right)$,
which in turn implies that

$$
\begin{equation*}
\mu_{r}^{(q)}=\frac{\sum_{j=1}^{M^{\prime}} z_{j}(1-\mathbb{E}(\tau))-\sum_{i=2}^{K^{\prime}} \mu_{i}\left(1-\sum_{j=1}^{M^{\prime}} z_{j} W_{i j}\right)+1}{1-\sum_{j=1}^{M^{\prime}} z_{j} W_{r j}} \tag{3.4}
\end{equation*}
$$

Theorem 3.2. Let $\left\{Z_{n}\right\}_{n \geq 1}$ be a homogeneous Markov chain on $\{1, \ldots, N\}$. For $A_{q}, q=$ $1, \ldots, K$, suppose that the patterns $B_{k}, \ldots, B_{k+v} \in \mathscr{D}^{\prime \prime}$ are associated to $A_{q}$ and that they correspond to the ending scenarios $u, u+1, \ldots, u+v$. Also, suppose that $B_{l}, B_{l+1}, \ldots, B_{l+s} \in$ $\mathcal{C}^{\prime \prime}$ are associated to $A_{q}$ and that they correspond to the ending scenarios $r, r+1, \ldots, r+s$. Then

$$
\mathbb{P}\left(\tau=\tau_{A_{q}}\right)=\mu_{q}+\mu_{u}^{(q)}+\cdots+\mu_{u+v}^{(q)}+\mu_{r}^{(q)}+\cdots+\mu_{r+s}^{(q)},
$$

where each $\mu_{l}^{(q)}, l=r, \ldots, r+s$, demands a solution $\left(z_{1}^{l}, \ldots, z_{M^{\prime}}^{l}\right)$ for (3.3) with $j$ rather than $r$ and has the form given by (3.4).

We now apply Theorem 3.2 to Example 1 of [9].

Example 3.1. Let $\Omega=\{1,2,3\}$, and let $\mathcal{C}=\{323,313,33\}$. Suppose that the initial distribution is $p_{1}=p_{2}=p_{3}=\frac{1}{3}$ and that the transition matrix is

$$
\left[\begin{array}{ccc}
\frac{3}{4} & 0 & \frac{1}{4} \\
0 & \frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]
$$

Then $\mathscr{D}^{\prime \prime}=\{1323,2323,1313,2313,133,233\}$ and $\mathcal{C}^{\prime \prime}=\{11323,22323,11313,22313$, $1133,2233\}$. Note that patterns such as $12323,21323 \notin \mathcal{C}^{\prime \prime}$ are due to the absence of transitions $1 \rightarrow 2$ and $2 \rightarrow 1$.

Consider $A_{1}=323, A_{2}=313$, and $A_{3}=33$. In order to use Theorem 3.2, we need to compute the profit matrix $W$, the details of which we omit. After solving (3.2) and applying Theorem 3.1, we obtain $\mathbb{E}(\tau)=8+\frac{7}{15}=8.466667$. With the profit matrix and $\mathbb{E}(\tau)$ determined, and having ordered the ending scenarios in the order that we have shown the sets $\mathfrak{C}, \mathscr{D}^{\prime \prime}, \mathfrak{C}^{\prime \prime}$, we use Theorem 3.2 to compute $\mu_{i}, i=10, \ldots, 15$, and obtain the stopping probabilities

$$
\begin{aligned}
& \mathbb{P}\left(\tau=\tau_{A_{1}}\right)=\mu_{1}+\mu_{4}^{(1)}+\mu_{5}^{(1)}+\mu_{10}^{(1)}+\mu_{11}^{(1)}=\frac{1}{48}+2 \times \frac{1}{192}+2 \times 0.034375=\frac{1}{10}, \\
& \mathbb{P}\left(\tau=\tau_{A_{2}}\right)=\mu_{2}+\mu_{6}^{(2)}+\mu_{7}^{(2)}+\mu_{12}^{(2)}+\mu_{13}^{(2)}=\frac{1}{48}+2 \times \frac{1}{192}+2 \times 0.034375=\frac{1}{10}, \\
& \mathbb{P}\left(\tau=\tau_{A_{3}}\right)=\mu_{3}+\mu_{8}^{(3)}+\mu_{9}^{(3)}+\mu_{14}^{(3)}+\mu_{15}^{(3)}=\frac{1}{6}+2 \times \frac{1}{24}+2 \times 0.275=\frac{8}{10} .
\end{aligned}
$$

## References

[1] Blom, G. and Thorburn, D. (1982). How many random digits are required until given sequences are obtained? J. Appl. Prob. 19, 518-531.
[2] Chrysaphinou, O. and Papastavridis, S. (1990). The occurrence of sequence patterns in repeated dependent experiments. Theory Prob. Appl. 35, 145-152.
[3] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd edn. John Wiley, New York.
[4] Fu, J. S. and Chang, Y. M. (2002). On probability generating functions for waiting time distributions of compound patterns in a sequence of multistate trials. J. Appl. Prob. 39, 70-80.
[5] Gerber, H. U. and Li, S.-Y. R. (1981). The occurrence of sequence patterns in repeated experiments and hitting times in a Markov chain. Stoch. Process. Appl. 11, 101-1086.
[6] Glaz, J., Kulldorff, M., Pozdnyakov, V. and Steele, J. M. (2006). Gambling teams and waiting times for patterns in two-state Markov chains. J. Appl. Prob. 43, 127-140.
[7] HAN, Q. and Aki, S. (2000). Waiting time problems in a two-state Markov chain. Ann. Inst. Statist. Math. 52, 778-789.
[8] Li, S.-Y. R. (1980). A martigale approach to the study of occurrence of sequence patterns in repeated experiments. Ann. Prob. 8, 1171-1176.
[9] Pozdnyakov, V. (2008). On occurrence of patterns in Markov chain: method of gambling teams. Statist. Prob. Lett. 78, 2762-2767.
[10] Pozdnyakov, V. and Kulldorff, M. (2006). Waiting times for patterns and a method of gambling teams. Amer. Math. Monthly 113, 134-143.
[11] Schwager, S. J. (1983). Run probabilities in sequences of Markov-dependent trials. J. Amer. Statist. Assoc. 78, 168-180.
[12] Williams, D. (1991). Probability and Martigales. Cambridge University Press.


[^0]:    Received 12 December 2012; revision received 26 March 2013.

    * Postal address: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508090, São Paulo, SP, Brazil. Email address: gava@ime.usp.br Research supported by FAPESP fellowship 2012/01432-9.
    ** Postal address: Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco 3972, CEP 09850-901, São Bernardo do Campo, SP, Brazil. Email address: dsalotti@fei.edu.br

