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Summary

In self-pollinating populations, individuals are characterized by a high degree of inbreeding.
Additionally, phenotypic observations are highly influenced by genotype-by-environment interaction
effects. Usually, Bayesian approaches to predict breeding values (in self-pollinating crops) omit
genotype-by-environment interactions in the statistical model, which may result in biased estimates.
In our study, a Bayesian Gibbs sampling algorithm was developed that is adapted to the high degree
of inbreeding in self-pollinated crops and accounts for interaction effects between genotype and
environment. As related lines are supposed to show similar genotype-by-environment interaction
effects, an extended genetic relationship matrix is included in the Bayesian model. Additionally,
since the coefficient matrix C in the mixed model equations can be characterized by rank
deficiencies, the pseudoinverse of C was calculated by using the nullspace, which resulted in a faster
computation time. In this study, field data of spring barley lines and data of a ‘virtual ’ parental
population of self-pollinating crops, generated by computer simulation, were used. For comparison,
additional breeding values were predicted by a frequentist approach. In general, standard Bayesian
Gibbs sampling and a frequentist approach resulted in similar estimates if heritability of the
regarded trait was high. For low heritable traits, the modified Bayesian model, accounting for
relatedness between lines in genotype-by-environment interaction, was superior to the standard
model.

1. Introduction

The aim of breeding values is to describe the genetic
superiority of individuals and hence the capability
of individuals to transmit favourable alleles to their
progenies. Today the standard approach in animal
breeding is to predict breeding values using the mixed
model methodology of Best Linear Unbiased Predic-
tion (BLUP) (Henderson, 1984). When applying
BLUP, first genetic parameters (variances) are usually
estimated by using restricted maximum likelihood
(REML) (Patterson & Thompson, 1971). In plant
breeding, the prediction of breeding values was con-
sidered almost exclusively in research studies (for a

review, see Piepho et al., 2008). Recently, breeding
values have been predicted in self-pollinating crops
by accounting for the inbreeding among lines (Bauer
et al., 2006; Oakey et al., 2006; Bauer & Léon, 2008).
Selecting by breeding values outperforms commonly
used selection strategies, especially if datasets are un-
balanced, contain large pedigrees or heritability of the
regarded trait is low.

Breeding values are predicted either by a frequentist
BLUP approach or by applying Bayesian Gibbs sam-
pling. In general, a frequentist approach provides only
the point estimates for breeding values, but separate
accuracy estimates based on prediction error variance
can be derived afterwards. In a Bayesian framework,
by contrast, the whole posterior distribution of the
breeding values is estimated conditionally on the* Corresponding author. e-mail : a.bauer@uni-bonn.de
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data and by considering prior information. The Gibbs
sampling algorithm, developed by Geman & Geman
(1984), led to an increased use of Bayesian methods
in quantitative genetics (e.g. Thomas, 1992; Wang
et al., 1993; Sorensen et al., 1994). By computing
breeding values via Gibbs sampling, accuracy/interval
estimates can be obtained since the full marginal pos-
terior distribution of all the parameters of interest
is sampled.

In crops, the use of Bayesian Gibbs sampling to
predict breeding values is rare. Soria et al. (1998)
considered Gibbs sampling in a tree-breeding pro-
gram of Tasmanian bluegum (Eucalyptus globulus
Labill.) to get inferences about breeding values and
genetic parameters. Inferences about major genes and
polygenic effects (general and specific combining
ability) in a progeny population of Loblolly pine
(Pinus taeda L.) were obtained by using a parent
blocking Gibbs sampler (Zeng et al., 2004). In Scots
pine (Pinus sylvestris L.), Waldmann & Ericsson
(2006) computed a multi-trait individual tree model
for a diallele progeny dataset. In a following study,
Waldmann et al. (2008) developed a fast hybrid Gibbs
sampler, which accounted for additive and dominance
variances in a mixed model using the same Scots pine
dataset as above. Gwaze & Woolliams (2001) esti-
mated a quadrivariate tree model to obtain covariance
components for height across two sites and two
ages for the Loblolly pine (P. taeda L.). In this study,
the two sites and two ages were treated as different
traits.

Of all the previous quantitative genetics research
studies of plant science, Bayesian Gibbs sampling
has mainly been applied in forest tree breeding. It
seems that the Gibbs sampler has not yet been ap-
plied to predicting breeding values in annual crops,
especially if they are self-pollinated. Additionally,
there is no Gibbs sampling algorithm available for
statistical models where genotype-by-environment
interactions are included. Genotype-by-environment
interactions occur if lines react differently to
changing environmental conditions resulting often in
a different rank order of the lines in each environment
(Weber & Wricke, 1990). Therefore, plant breeders
are forced to evaluate the lines in several locations
and years for estimating the genetic performance. The
genotype-by-environment interactions can be ana-
lysed for example in a stability analysis (Becker &
Léon, 1988) or by an Additive Main Effects Multi-
plicative Interaction (AMMI) model (Gauch, 1988).
Note that the genotype-by-environment interactions
being commonly observed in breeding plants and,
to a lower extent in animals, are different to the
so-called genotype-by-environment correlations that
occur mainly in animal breeding. Genotype-by-
environment correlations can arise when elite animals
are kept in a more favourable environment than

weaker animals. In this case, the genotype and the
corresponding environmental conditions are corre-
lated among each other (Falconer & Mackay, 1996).
In plant breeding, usually genotype-by-environment
correlation is avoided by adequate experimental field
designs due to randomization of environments. As in
plant breeding the genotype-by-environment interac-
tions have much more importance, this interaction
effect should be accounted for in the Bayesian model
to predict breeding values. Up to now, considering
interaction effects in Bayesian Gibbs sampling is
scarce.

Thus, the objective of our research is to predict
Bayesian breeding values of spring barley (Hordeum
vulgare L.) lines and of a ‘virtual ’ parental population
of self-pollinating crops generated by computer simu-
lation. A Gibbs sampling algorithm was developed
that (i) is adapted to the high degree of inbreeding in
a parental population of self-pollinating crops and
(ii) accounts for genotype-by-environment interac-
tions. In addition, standard REML estimates from
a frequentist approach were also calculated for com-
parison.

2. Material and methods

(i) Simulation

Following Bauer & Léon (2008), a ‘virtual ’ popu-
lation of 100 parental inbred lines was generated
by Monte Carlo simulation using the Interactive
Matrix Language (IML) of SAS software (SAS
Institute, 2004). As the Bayesian prediction of breed-
ing values was computationally demanding, a multi-
environmental field trial for one year was generated.
All lines were cultivated at three locations with three
blocks and two replications each. The phenotypic
value of a line consisted of a genotypic value, and of
random location, genotype-by-location interaction,
block and residual effects. The genotypic value of a
line was obtained by first generating random addi-
tive-genetic effects for each of the 150 loci from a
standard normal distribution following the one-locus
model and then summing these additive-genetic ef-
fects over all 150 loci. In addition, for 10% of the
parental lines a random measurement error was
computed as systematic noise to make the data
simulation more realistic. This heterogeneity leads to
an increase of the residual for some genotypes. All
simulated effects, except of genotype-by-location in-
teraction and residual effects, were normally dis-
tributed with a mean of zero and a standard deviation
of one [N(0, 1)].

The genotype-by-location interaction effect was
simulated by assigning in a first step a normally dis-
tributed random number [N(0, 0.5)] to each possible
combination of location and allele (B or b) at a
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locus as related lines are assumed to have a similar
genotype-by-location interaction. Then, for all lines
the interaction effects are added over all loci at each
location separately. Thus, the more alleles that two
lines have in common, the more similar their geno-
type-by-environment interactions will appear.

In the simulation, all parental lines were measured
for a high and a low heritable trait. To obtain traits
with a different heritability, the residual effects were
generated from a normal distribution with a mean of
zero but a varying standard deviation. The high (low)
heritable trait was computed from a residual effect
with a standard deviation of 17 (56).

The population of parental lines was divided into a
base and a progeny population. The base population
comprised 30 lines that were randomly crossed with
each other to produce 70 progeny lines. The progeny
lines were self-pollinated until they reached homo-
zygosity. Hence, all lines in the population were
assumed to be homozygous with an inbreeding co-
efficient of 0.99. For the whole population, pedigree
information was available.

The simulation procedure of the parental popu-
lation was repeated 100 times. The SEEDGEN
macro, written by Fan et al. (2002), was used to avoid
overlapping streams in the generation of random
numbers.

(ii) Field data

Field data of 82 spring barley (H. vulgare L.)
lines originating from the German North Rhine–
Westphalia core collection (Bauer et al., 2006, 2008)
were used. The lines were cultivated in a randomized
complete-block design at the Research Station
‘Dikopshof’ of University of Bonn near to Cologne
(Germany) in two different years (2002 and 2003) with
three replications each. The lines were measured for
the trait ‘ thousand kernel mass ’. Pedigree infor-
mation was available for all lines.

(iii) Data analysis

Breeding values were predicted by a frequentist ap-
proach using the software package ASReml 2.0
(Gilmour et al., 2005) as well as by the Bayesian
blocked Gibbs sampling algorithm of Garcı́a-Cortés
& Sorensen (1996), which was implemented in Matlab
7 (2007). Both approaches were computed for 100
simulation replicates of the ‘virtual ’ population of
parental lines and for the spring barley lines.

Pedigree information was accounted for in the
genetic relationship matrix A, which considers the
additive-genetic variances and covariances among the
lines. Henderson (1976) and Quaas (1976) developed
a recursive algorithm to calculate this matrix ef-
ficiently. There, the authors assumed that the base

population is not inbred. Considering self-pollinating
crops, however, usually the base population is highly
inbred. Ignoring this degree of inbreeding in the base
population would lead to biased breeding values of
these lines. Thus, following Bauer & Léon (2008) the
coefficient of inbreeding of the lines was accounted for
not only for the progenies but also for their parents in
the base population by obtaining all diagonal el-
ements of the A-matrix from 1+Fi (where Fi equals
the coefficient of inbreeding). This is in contrast to
Henderson (1976), who did not consider the coef-
ficient of inbreeding in computing the diagonal el-
ements of parental individuals.

(a) Frequentist approach

In a frequentist approach, all effects were assumed to
be random, so that the X matrix includes only the
overall population mean. Therefore, the correspond-
ing linear model of the ‘virtual ’ parental population
can be written in matrix notation as

y=Xb+Zu+Ps+Qt+Fh+e,

where y is the vector of phenotypic observations ; b is
the vector of the fixed effect ; u is the vector of the
random genotypic effect of the lines ; s is the vector of
the random location effect ; t is the vector of the ran-
dom block effect ; h is the vector of the random
genotype-by-location interaction effect ; and e is the
vector of residual effect. X, Z, P, Q and F represent
the corresponding design matrices.

Similarly, the statistical model of the spring barley
lines follows from:

y=Xb+Zu+Vl+Fh+e,

where l is the vector of the random year effect ; h is the
vector of the random genotype-by-year interaction
effect ; V and F are design matrices.

For simplification, in the following, the genotype-
by-location interaction in the ‘virtual ’ population and
the genotype-by-year interaction of the spring barley
lines will be summarized as genotype-by-environment
interaction.

The resulting covariance structures of the estimated
effects are: Var(u)=Asg

2, Var(s)=Iss
2, Var(t)=Ist

2,
Var(l)=Isl

2, Var(h)=Ish
2, Var(e)=Ise

2=R (with A=
genetic relationship matrix ; R=matrix of variances
and covariances of residual effects ; I=identity ma-
trix ; sg

2=variance of genotypic effects ; ss
2=variance

of location effects ; st
2=variance of block effects ; sl

2=
variance of year effects ; sh

2=variance of genotype-by-
environment interaction effects ; se

2=residual vari-
ance).

The corresponding Mixed Model Equations
(MME) to the statistical model of the ‘virtual ’
population, which are obtained in a frequentist
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approach, are :

XkX XkZ XkP XkQ XkF
ZkX ZkZ+Ax1a1 ZkP ZkQ ZkF
PkX PkZ PkP+Ia2 PkQ PkF
QkX QkZ QkP QkQ+Ia3 QkF
FkX FkZ FkP FkQ FkF+Ia4

0
BBBB@

1
CCCCA*

b
u
s
t
h

0
BBBB@

1
CCCCA=

Xky
Zky
Pky
Qky
Fky

0
BBBB@

1
CCCCA,

where a1=se
2/sg

2, a2=se
2/ss

2, a3=se
2/st

2 and a4=
se

2/sh
2.

(b) Bayesian block Gibbs sampling

In a Bayesian framework, all unknown parameters
are sampled from distributions and are therefore
treated as random. In this study, the overall mean and
the effects for location, block (‘virtual ’ population)
and year (field data) were considered in the X-matrix.
Thus, the statistical model is displayed as

y=Xb+Zu+Fh+e:

To compute a Bayesian analysis, prior distributions
are assigned to b, u, h, sg

2, sh
2 and se

2. For b, we
assumed an improper prior distribution with
p(b)/ constant. The prior distributions of u and h
were equal to u|sg2yN(0, Asg

2) and h|sh2yN(0, Ish
2),

respectively. For genotype-by-environment and re-
sidual variance, uninformative priors were used. The
prior specifications for the variance components were
supposed to be scaled inverted chi-square distribu-
tions (Gianola & Sorensen, 2002) :

P(s2
i jvi,S2

i ) / (s2
i )

x(vi=2+1) exp x
viS

2
i

2s2
i

� �
,

i=u, h, e,

where si
2 is the variance component of factor i, vi is

the degree of belief parameter and Si
2 is the prior value.

In the Bayesian analysis, two approaches were
applied that differ in the way the genotype-by-
environment interaction is modelled. In the first ap-
proach, the variance of the genotype-by-environment
interaction was considered similarly to the frequentist
approach (REML), where the variance of the geno-
type-by-environment interaction sh

2 is assumed to be
independently and identically normally distributed
as h|sh2yN(0, Ish

2). This strategy is referred to as
Bayes_ID. In a second approach, we replaced the
identity matrix I with an extended relationship matrix
Aext (=A�I) as related lines often show a similar
genotype-by-environment interaction (Bayes_Aext).

In the Gibbs sampler, the unknown parameters
can be updated and drawn either elementwise (single-
site Gibbs sampler) or blockwise (blocked Gibbs
sampler). Using the single-site Gibbs sampler, par-
ameters are updated element by element (see e.g.
Thomas, 1992; Lin, 1999; Gianola & Sorensen, 2002).

As convergence can be very slow, the blocked Gibbs
sampler (Garcı́a-Cortés & Sorensen, 1996) was applied
in this study, which drew all parameters as a single
block. The disadvantage of this grouped Gibbs sam-
pling is that each iteration needs the inverse of the co-
efficient matrixC, which can slow down the algorithm.

The coefficient matrix C of the MME equals

C=
XkX XkZ XkF
ZkX ZkZ+Ax1a1 ZkF
FkX FkZ FkF+Ia4

0
@

1
A:

The vector of the right-hand side of the MME is Wky,
with W=(X Z F). All unknown parameters are sum-
marized in the vector h. Then according to Gianola &
Sorensen (2002) h can be obtained from

h=
0
u
h

0
@

1
A+Cx1Wk(yxz),

where z is a random vector of pseudo-observations
with [z|m, u, h, se2]yN(Xm+Zu+Fh, Ise

2). Original
idea in the Garcı́a-Cortés & Sorensen (1996) algor-
ithm was to calculate the inverse of the large Cmatrix
using iterative methods. However, in the present
study, due to relatively small size ofC, the inverse ofC
was calculated using direct methods. The inverse of C
is not defined if the C-matrix is characterized by rank
deficiencies, which occurs if the number of linearly
independent rows or columns is smaller than the total
number of rows and columns of this matrix. In this
case, we calculated the pseudoinverse of C using the
nullspace U2 of the C-matrix, because this procedure
is computationally more efficient than computing
simply the pseudoinverse (see Appendix for the deri-
vation). Therefore, h is calculated from

h=
0
u
h

0
@

1
A+(C+U2Uk2)

x1
*Wk(yxz)xU2Uk2 *Wk(yxz):

The variance components are sampled from

s2
gjb, u, h, s2

h, s
2
e, y � ~vvu ~SS

2
ux

2
~vvu
,

s2
hjb, u, h, s2

g, s
2
e, y � ~vvh ~SS

2
hx

2
~vvh
, and

s2
ejb, u, h, s2

g, s
2
h, y � ~vve ~SS

2
ex

2
~vve

with ~vvu=n+vu, ~vvh=q+vh and ~vve=N+ve degrees of
freedom of a scaled inverted chi-square distribution
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(n=number of lines ; q=number of genotype-by-
environment interaction levels ; N=number of ob-
servations; vu, vh, ve=degree of belief parameter),
~SS 2
u=(ukAx1u)=~vvu, ~SS 2

h=(hkIh)=~vvh and ~SS 2
e=[(yxWh)k

(yxWh)]=~vve. To obtain flat priors, vu, vh, ve were cho-
sen to bex2, and Su

2, Sh
2, Se

2 being equal to 0.
The algorithm of the blocked Gibbs sampler is as

follows:

1. Initialize the parameters a1, a4, sg
2, sh

2 and se
2. In

this study, the starting value for all parameters was
equal to 1.

2. Generate u* from N(0, Asg
2).

3. Generate h* from N(0, Ish
2).

4. Generate z* from N(Zu*+Fh*, Ise
2).

5. Compute Wk (yxz*).

6. Calculate h as h=
0
u*
h*

0
@

1
A+Cx1Wk(yxz*) if C has

full rank. Otherwise, if a rank deficiency of C oc-
curs, calculate h as

h=

0

u*

h*

0
B@

1
CA+(C+U2U2k)

x1
*Wk(yxz*)

xU2U2k*Wk(yxz*):

7. Calculate ~SS 2
u,

~SS 2
h and

~SS 2
e.

8. Sample ~xxx2
i from 1=~xxx2

i , where i=u, h, e.
9. Compute the variance components from ~ss2

i=
~xxx2
i

~SS 2
i with i=u, h, e.

10. Calculate the variance ratios a1=~ss2
e=~ss

2
g and

a4=~ss2
e=~ss

2
h.

11. Update the coefficient matrix C.
12. Repeat steps 1 to 11 until the MCMC chain con-

verges.

As related lines are supposed to have a similar
genotype-by-environment interaction, we modified
the Gibbs sampler by including an extended genetic
relationship matrix Aext in a second run. The extend-
ed Aext-matrix was obtained by calculating the Kro-
necker product of the genetic relationship matrix A
with an identity matrix with a size depending on the
number of locations (cf. Smith et al., 2001). This ex-
tended Aext-matrix then has a block structure. Here,
the dataset has to be sorted by location, because it
would not otherwise be possible to invert Aext.

Using the extended relationship matrix Aext,
instead of the identity matrix, to account for
the genotype-by-environment interaction in Gibbs
sampling, the coefficient matrix C in the MME is ob-
tained from

C=
XkX XkZ XkF
ZkX ZkZ+Ax1a1 ZkF
FkX FkZ FkF+Aextx1

a4

0
@

1
A:

The prior distribution of h equals h|sh2yN(0,
Aextsh

2). So, in the Gibbs sampling, h* is generated
from N(0, Aext sh

2). The variance component for
genotype-by-environment interaction is sampled
from s2

hjb, u, h, s2
g, s

2
e, y � ~vvh ~SS

2
hx

x2
~vvh
, where ~SS 2

h=
(hkAextx1

h)=~vvh.
Accounting for relationship information in the

REML variance component estimation of genotype-
by-environment interaction variance by using the
matrix Aext was not possible due to singularities in
the Average Information matrix that is considered
in the ASReml program. In Bayesian Gibbs sampling,
the problem of singularities in a matrix was solved by
accounting for the nullspace of this matrix in the
computation of the pseudoinverse.

The Gibbs sampler was run for 50 000 iterations
with a ‘burn-in’ period of 20 000 iterations, although,
to save storage capacity, only every 10th sample
was considered. The computing time on a Pentium
2.66 GHz dual core processor was a couple of minutes
for the frequentist approach and one week for the
Bayesian analyses of all simulation replicates.

(iv) Evaluating results from frequentist approach and
Bayesian analyses

For each simulation replicate and for the spring
barley lines, in the Bayesian analyses, point (mean,
median and mode) and interval (95% highest pos-
terior density region) estimates of posterior distribu-
tion of variance components were calculated using
Matlab 7 (2007). Following Hoti et al. (2002), a kernel
smoothing approach was used to summarize the
posterior distribution for mode estimation. Also, the
standard deviations of the posterior variance compo-
nent distributions were derived.

To obtain Bayesian breeding values, point esti-
mates (mean, median and kernel-density-based
mode) of the posterior distributions of the estimated
genetic line effects were computed. Then, for each
analysis (frequentist approach, Bayes_ID and Bayes_
Aext) of the ‘virtual ’ population, Spearman’s rank
correlation coefficient, between estimated breeding
values and true genotypic values of the lines, was
calculated using the software package SAS 9.1 (SAS
Institute, 2004). Spearman’s correlation coefficient is
derived by first ranking the data and then using the
ranks in the formula of Pearson’s correlation coef-
ficient. In addition, prediction error variance was de-
rived by computing the variance of the difference
between estimated breeding values and true genotypic
values.

To summarize the results of the ‘virtual ’ popu-
lation, the arithmetic means and standard deviations
of the REML estimated variance components,
Bayesian point and interval estimates, standard
deviations of posterior distributions and true
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(simulated) variance components were computed over
all simulation replicates.

The heritability h2 was calculated for all traits based
on true (simulated) variance components (in the ‘vir-
tual ’ population) and on estimated values of variance
components given by the frequentist approach,
Bayes_ID and Bayes_Aext analyses. To compute the
heritability of traits measured in plant breeding trials,
one has to account for the fact that in contrast to
animals where the heritability usually is based on the
individual itself as reference unit, the same (homo-
zygous) plant genotype can be cultivated in replicated
field plots in several environments. In the milk pro-
duction of cows at different days in lactation, a related
situation can occur where multiple observations on
the same animal were obtained, which give rise to
permanent environmental variance. To choose the
plant genotype as reference unit for computing the
heritability, the fraction of the phenotypic variance
being transmitted to the progenies has to be con-
sidered. Thus, in the present case, the variances of
genotype-by-environment and residual have to be
divided by the number of locations, blocks and rep-
lications as follows (Hanson, 1963):

h2=
s2
g

s2
g+(s2

h=j)+(s2
e=j*k* l)

,

where sg
2 is the variance of genotypic effects ; sh

2 is the
variance of genotype-by-environment interaction ef-
fects ; se

2 is the residual variance; j is the number of
locations ; k is the number of blocks ; and l is the
number of replications within each block and lo-
cation.

For the Bayesian analyses, first based on the esti-
mated variance components the posterior distribu-
tions of heritabilities were computed. Then, the
posterior mean, median, mode, standard deviation
and 95% highest posterior density interval of the
heritabilities were obtained.

3. Results

In this study, genetic effects were predicted by a fre-
quentist approach and two variants of Bayesian
methods (Bayes_ID and Bayes_Aext). In Bayesian
analyses, the mean, median and mode were calculated
as point estimates of the posterior distributions. For
comparison, in the ‘virtual ’ population true (simu-
lated) values were also given. The results of the vari-
ance component and breeding value estimation of the
‘virtual ’ population and of the spring barley lines will
be presented below.

(i) ‘Virtual ’ parental population

In general, with increasing heritability, the estimated
variance components correspond to the true values to

a greater extent, the standard deviation of posterior
distributions is smaller and the posterior distribu-
tion is less skewed (Table 1, Fig. 1). In addition, for
the genotype-by-environment interaction variance (a
small variance component), the posterior distribution
is more skewed than for the residual variance (a large
variance component) (Fig. 1). In comparing the
Bayesian point estimates, except for the case of the
Bayes_ID analysis of a low heritable trait, the mean,
median and mode were estimated close together and
located within the 95% highest posterior density re-
gion. If the Bayes_ID method is used for a trait with
low heritability, the mean is the only estimate that
gives reasonable results (Table 1).

For both traits, the additive-genetic variance is
overestimated by the Bayes_Aext method, whereas the
Bayes_ID values correspond well to the REML and
true (simulated) values. If the heritability of the
regarded trait is high, the genotype-by-environment
interaction variance is underestimated when the
Bayes_Aext analysis is performed, but is estimated
accurately with the Bayes_ID and frequentist ap-
proaches. With low heritability, erroneous interaction
variance components were obtained using the Bayes_
ID method. Using the Bayes_Aext or frequentist ap-
proaches, however, an estimation of the genotype-
by-environment interaction was possible, resulting in
overestimated variance components. The estimation
of residual variance components yielded slightly
overestimated values for Bayesian analyses for both
traits (Table 1, Fig. 1). Independently, if the Bayes_ID
or Bayes_Aext method is computed, the differences
between the estimated and true variance components
are higher for additive and genotype-by-environment
interaction variances than for the residual variance
components.

Heritability was estimated from variance compo-
nents obtained from REML, Bayes_ID and Bayes_
Aext. Similar heritability estimates were found for
Bayes_ID and REML, which correspond to the true
(simulated) heritability. In contrast, when using
Bayes_Aext, slightly overestimated heritability esti-
mates were observed.

To determine how accurate the breeding values
were predicted by the frequentist, Bayes_ID and
Bayes_Aext approaches, Spearman’s rank correlation
coefficient between estimated breeding value and true
(simulated) genotypic value of the lines and the pre-
diction error variance were calculated for each
analysis (Tables 2 and 3). In general, the rank corre-
lation coefficient is higher and the prediction error
variance is lower for a high heritable trait than for
a trait with low heritability. If we consider a high
heritable trait, similar rank correlation coefficients
and prediction error variances are obtained for all
analyses. By contrast for a low heritable trait, the
rank correlation coefficient is maximized and the
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prediction error variance is minimized for the fre-
quentist approach and the Bayes_Aext analysis. The
lowest rank correlation and the largest prediction
error variance were obtained with the Bayes_ID
method.

Considering the standard deviation over the 100
simulation replicates in the ‘virtual ’ population, the
standard deviation of the variance components of
genotype-by-environment interaction is similar to
that of the true genotype-by-environment interaction
variance if the Bayes_Aext method was used (Table 4).
In contrast, the standard deviation of the variance
components of genotype-by-environment interaction
obtained by Bayes_ID or a frequentist approach is
increased greatly over the simulation replicates for
both traits. For a low heritable trait, the Bayes_Aext

method and a frequentist approach result in lower
standard deviations of Spearman’s rank correlation
coefficient and prediction error variance over all
simulation replicates than Bayes_ID analysis.

(ii) Spring barley lines

The genetic parameters of the spring barley lines were
predicted by Bayes_ID, Bayes_Aext and a frequentist
approach. For all analyses, similar variance compo-
nents were observed (Table 5). In addition, the trait
heritability, the highest posterior density regions and
the standard deviation of the posterior distributions
of all variance components are in the same range for
the Bayes_ID and the Bayes_Aext method. By com-
paring the point estimates of the posterior distribu-
tions, as in the ‘virtual ’ parental population, the
mode estimate is smaller than the median that is
smaller than the mean (Table 5, Fig. 2).

4. Discussion and conclusions

In this study, a Bayesian model was used to account
for genotype-by-environment interaction in two dif-
ferent ways. In the first Bayesian analysis (Bayes_ID),
the interaction effect was modelled and treated exactly
as in the frequentist approach. However, as related
lines are assumed to have a similar genotype-by-
environment interaction, we modified the model by
including an extended genetic relationship matrix
Aext, in a second Bayesian analysis (Bayes_Aext). The
objective of the current study was to determine if
Bayes_Aext leads to more accurate breeding values
than Bayes_ID. For comparison, breeding values
were also predicted using a frequentist approach. To
estimate the genetic parameters, multi-environmental
data of a ‘virtual ’ parental population were con-
sidered. To verify the results obtained by Bayesian
analyses and a frequentist approach in the ‘virtual ’
population, additionally field data of spring barley
lines were used.T
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In the frequentist approach using ASReml software
(Gilmour et al., 2005), the estimation is divided into
two steps. First, the variance components are esti-
mated by REML (Patterson & Thompson, 1971), by
applying the Average Information algorithm of
Gilmour et al. (1995). Next, the estimated REML
variance components are used in the MME to predict
breeding values. The disadvantage of this strategy is
that the uncertainty of the estimated variance com-
ponents is underestimated because it is not incor-
porated in the BLUP estimates. By contrast in the
Bayesian analyses, it is possible to estimate the vari-
ance components and breeding values simultaneously

by Gibbs sampling. Thus, the uncertainty of estimated
variance components can be accounted for. Getting
accurate estimates of the variance components is
important because biased estimates can lead to in-
creased prediction errors of breeding values (van
Tassell et al., 1995). Due to the mentioned differences
between a Bayesian and a frequentist framework, one
should have in mind that the methods are not fully
comparable, although in this study the general model
is the same in Bayesian and frequentist approaches.

In our study, in the ‘virtual ’ parental population,
with increasing heritability of the trait, the differences
between the estimated variance components and true

Bayes_ID Bayes_Aext

Bayes_ID Bayes_Aext

Bayes_ID Bayes_Aext

Posterior estimates Posterior estimates 

Posterior estimates Posterior estimates 

Posterior estimates Posterior estimates 

(a)

(b)

(c)

Fig. 1. Continued.
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(simulated) values decreased, and the standard devi-
ation of posterior distribution was lowered. Pheno-
typic observations of a high heritable trait are mainly
influenced by genetic effects, rather than environ-
mental effects, which leads to an increased prediction
accuracy. For additive-genetic and genotype-by-
environment interaction variance components, slightly

skewed posterior distributions were obtained (Figs 1
and 2). This skewness occurs especially for small vari-
ance components (van Tassell et al., 1995), which
could be due to the fact that variance components are
allowed to only take positive values (Hazelton &
Gurrin, 2003). Skewed posterior distributions can
result in biased point estimates, such as the mean,

Bayes_ID Bayes_Aext

Bayes_ID Bayes_Aext

Bayes_ID Bayes_Aext

Posterior estimates Posterior estimates 

Posterior estimates Posterior estimates 

Posterior estimates Posterior estimates 

(d )

(e)

( f )

× 10–3 × 10–3

Fig. 1. Frequency distribution of the posterior variance components obtained by Bayes_ID and Bayes_Aext for two traits
in the ‘virtual ’ population. Additionally, point estimates and the 95% highest posterior density regions are given (straight
line=posterior mean; dashed line=posterior median; dotted line=posterior mode). In this figure, the results of one
simulation replicate are displayed. (a) Additive genetic variance of a low heritable trait. (b) Additive genetic variance of a
high heritable trait. (c) Genotype-by-environment interaction variance of a low heritable trait. (d) Genotype-by-
environment interaction variance of a high heritable trait. (e) Residual variance of a low heritable trait. (f) Residual
variance of a high heritable trait.
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median andmode (Zeger &Karim, 1991; Burton et al.,
1999), which differ highly among each other (Hazelton
& Gurrin, 2003). In our study, the differences between
the estimated variance components and true (simu-
lated) values were higher for additive-genetic and
genotype-by-environment interactions than for re-
sidual variance (Table 1, Fig. 1). This is because
of the skewed additive-genetic and genotype-by-
environment interaction posterior distributions,
whereas the residual posterior variance was closer to a
normal distribution. Waldmann & Ericsson (2006)
and Waldmann et al. (2008) also stated that the Scots
pine (P. sylvestris L.) estimates of genetic variance
components were more biased due to the posterior
distributions being more skewed than the residual
variance. In our field data example of spring barley
lines, similar variance components were obtained by
all prediction strategies (Table 5). For all variance
components, we found similar values for the mean,
median and mode (Tables 1 and 5). Van Tassell et al.
(1995) stated that the mean is more appropriate for
estimating the variance components than the mode.
Additionally, with decreasing heritability of the re-
garded traits, the differences between the estimates
increased, which is also in accordance withWaldmann
& Ericsson (2006).

For estimating the mode of a posterior distribution,
the mode is usually computed based on a histogram
of the MCMC samples. However, this approach de-
pends on the bin width and the sideway shift of the
bin grids of the histogram leading to biased mode
estimates. Hoti et al. (2002) introduced a kernel den-
sity estimation to smooth the shape of the posterior
distribution. The use of kernel smoothing can

improve the localization of the mode estimate signifi-
cantly.

Heritability estimates provided by REML and
Bayes_ID in the ‘virtual ’ population were found to be
quite similar to heritability estimates from simulated
data (Table 1). In contrast, heritability estimates of
the Bayes_Aext variance components were slightly
overestimated, since, in this analysis, the additive-
genetic variance was positively biased. This could be
due to the fact that the genetic relationship matrix was
accounted for twice in the Bayes_Aext model. Gwaze
& Woolliams (2001) also found a larger heritability
when computed with a Bayesian analysis, rather than
a REML analysis. In contrast, in the spring barley
population Bayes_ID method resulted in a larger
heritability estimate than REML, but the lowest
heritability estimate was found using Bayes_Aext

analysis.
In self-pollinated crops, breeding values are esti-

mates of the true genotypic value of the lines. To
predict breeding values having BLUP characteristics,
a frequentist approach or a Bayesian method can be
used. All strategies should maximize the correlation
between true and estimated breeding values and
minimize the prediction error variance. Thus, in this
study for each analysis, Spearman’s rank correlation
coefficient between breeding value and true genotypic
value (Table 2) and the prediction error variance of
estimated breeding values (Table 3) were computed.
The higher the rank correlation and the lower the
prediction error variance, the more accurate the cor-
responding prediction method. In general, with de-
creasing heritability the rank correlation between
estimated breeding value and true genotypic value will
be lower because of the larger environmental influ-
ence on the phenotype, and hence the prediction error
variance will be higher. Especially for a low heritable

Table 2. Spearman’s rank correlation coefficient
between true genotypic values and point estimates of
breeding values obtained by a frequentist approach
and Bayesian analyses of a high and a low heritable
trait in the ‘virtual ’ population. The rank correlation
coefficients were averaged over all simulation
replicates

High heritable
trait

Low heritable
trait

Frequentist 0.90 0.67

Bayes_ID
Mean 0.90 0.65
Median 0.90 0.64
Mode 0.90 0.64

Bayes_Aext

Mean 0.90 0.67
Median 0.90 0.66
Mode 0.90 0.66

Table 3. Prediction error variance of breeding values
obtained by a frequentist approach and Bayesian point
estimates of a high and a low heritable trait in the
‘virtual ’ population. The prediction error variances
were averaged over all simulation replicates

High heritable
trait

Low heritable
trait

Frequentist 23.02 74.76

Bayes_ID
Mean 23.05 78.79
Median 23.05 81.05
Mode 23.12 82.04

Bayes_Aext

Mean 23.42 74.66
Median 23.42 74.98
Mode 23.50 75.65
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trait, the prediction strategy Bayes_Aext is superior to
Bayes_ID (Tables 2 and 3). Predicting breeding values
by using the Bayes_Aext method or a frequentist ap-
proach, the estimated breeding values correspond to
the true genotypic value to a greater extent than using
the Bayes_ID method. Thus, it seems to be important
to account for the relationship information between
lines not only in predicting the genetic line effect but
also in computing genotype-by-environment interac-
tions (Bayes_Aext), if a Bayesian prediction strategy is
applied considering genotype-by-environment inter-
actions in the statistical model. In contrast, in a
frequentist approach (REML), the integration of

relationship information in the calculation of geno-
type-by-environment interaction variance resulted in
singularities in the Average Information matrix. In
animal breeding, Schenkel et al. (2002) did not find
any differences between the rank correlations of a
Bayesian or a frequentist approach to simulated
breeding values. Also, Robinson (1991) and Harville
& Carriquirry (1992) stated that the differences
between breeding values predicted by a frequentist
or a Bayesian approach are minimal. The superiority
of Bayes_Aext analysis for a low heritable trait is
supported by considering the standard deviations
of estimated genotype-by-environment interaction

Table 5. Posterior mean, median, mode, standard deviation and 95% highest posterior density (HPD) obtained
from Bayes_ID and Bayes_Aext methods, and estimates from the frequentist approach (REML) for the trait
‘thousand kernel mass ’ of the spring barley lines (with additive genetic variance sg

2, genotype-by-environment
interaction variance sh

2, residual variance se
2). In addition, heritability (h2) estimates are displayed

Bayes_ID Bayes_Aext

REMLMean Median Mode Std HPD 2.5 HPD 97.5 Mean Median Mode Std HPD 2.5 HPD 97.5

sg
2 7.73 7.47 7.24 2.09 4.11 12.28 7.93 7.72 7.29 2.14 4.40 12.63 7.18

sh
2 1.87 1.72 1.63 1.60 0 5.34 3.86 3.62 3.32 1.54 1.63 7.45 2.75

se
2 15.37 15.29 15.13 1.33 12.92 18.19 14.92 14.87 14.76 1.20 12.74 17.36 14.67

h2 0.69 0.69 0.68 0.64 0.64 0.64 0.65

Table 4. Standard deviation over simulation replicates of posterior mean, median, mode, standard deviation
(post. std) and 95% highest posterior density (HPD) obtained from Bayes_ID and Bayes_Aext methods, and
estimates from the frequentist approach (REML) for variance component estimates, Spearman’s rank correlation
coefficient and prediction error variance of two traits having a high and a low heritability h2 in the ‘virtual ’
population (with additive genetic variance sg

2, genotype-by-environment interaction variance sh
2, residual

variance se
2)

Variance components Spearman’s rank correlation Prediction error variance

High heritability h2 Low heritability h2 High h2 Low h2 High h2 Low h2

sg
2 sh

2 se
2 sg

2 sh
2 se

2

Frequentist 15.29 10.40 11.05 31.63 61.07 131.39 0.03 0.08 3.43 15.33

Bayes_ID
Mean 15.71 11.77 11.23 38.97 44.68 135.27 0.03 0.14 3.42 17.84
Median 15.49 11.85 11.24 39.02 43.48 135.19 0.03 0.16 3.43 20.85
Mode 15.24 11.98 11.21 37.15 27.77 132.04 0.03 0.15 3.41 20.62
Post. std 2.47 0.99 0.51 9.92 33.55 7.92 – – – –
HPD 2.5 11.77 9.68 10.33 23.32 9.90 126.84 – – – –
HPD 97.5 21.09 13.52 12.19 58.46 115.89 143.97 – – – –

Bayes_Aext

Mean 14.96 4.51 11.84 33.80 8.37 131.71 0.03 0.08 3.59 15.46
Median 14.77 4.16 11.87 33.84 7.90 131.34 0.03 0.08 3.60 16.07
Mode 14.03 3.38 12.34 31.24 7.85 130.01 0.03 0.08 3.62 15.53
Post. std 2.37 2.06 0.67 6.96 2.92 5.99 – – – –
HPD 2.5 11.07 1.71 11.00 21.82 4.25 121.61 – – – –
HPD 97.5 20.04 9.38 12.79 47.24 15.21 143.32 – – – –

True 16.29 3.23 10.45 16.29 3.23 106.75 – – – –
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variances, Spearman’s rank correlation coefficients
and prediction error variances over all simulation rep-
licates (Table 4). Especially for a low heritable trait, a
lower standard deviation over the simulation rep-
licates was obtained by the Bayes_Aext method being
similar to that of true (simulated) values than with
Bayes_ID analysis.

If genotype and environment are correlated among
each other as it often occurs in animal breeding,
heterogeneity of the residual variance can be found.

In such situations, for each environment an own
residual could be considered in the model (Fernando
et al., 1984) to avoid occurrence of erroneous geno-
type-by-environment interaction variance due to het-
erogeneity of variances. In plant breeding, however,
due to the fact that the lines are completely homo-
zygous (pure inbred lines), it is possible to cultivate
the same genotype on several locations in different
years. Thus, by choosing an appropriate field design,
the heterogeneity of the residual variance can be

Bayes_ID Bayes_Aext

Bayes_ID Bayes_Aext

Bayes_ID Bayes_Aext

Posterior estimates Posterior estimates 

Posterior estimates Posterior estimates 

Posterior estimates Posterior estimates 

(a)

(b)

(c)

Fig. 2. Frequency distribution of the posterior variance components obtained by Bayes_ID and Bayes_Aext for the
trait ‘ thousand kernel mass’ of the spring barley lines. Additionally, point estimates and the 95% highest posterior
density regions are given (straight line=posterior mean; dashed line=posterior median; dotted line=posterior mode).
(a) Additive genetic variance. (b) Genotype-by-environment interaction variance. (c) Residual variance.
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greatly reduced. Therefore, in this study, the hetero-
geneity of the residual variance is not accounted for in
the statistical models.

A further increase in prediction accuracy is ex-
pected by taking information of molecular markers
in the estimation of breeding values into account.
One option would be to include genetic similarities
calculated based on molecular marker data in the
prediction instead of the commonly used genetic re-
lationship matrix (Bauer et al., 2006, 2008). This ap-
proach is advantageous if pedigree information
among the lines is missing or unavailable. Another
strategy is to predict genome-wide breeding values
considering the marker scans of the whole genome
(Meuwissen et al., 2001).

In self-pollinating populations, the parental lines
are characterized by a high degree of inbreeding.
In computing the genetic relationship matrix
A, Henderson (1976) assumed that the parental
base population is not inbred and unrelated. If
Henderson’s recursive algorithm is also used for
parental inbred lines, the resulting breeding values
will be underestimated. Hence, in this study the degree
of inbreeding of parental lines was taken into account
by calculating all diagonal elements of A-matrix by
1+Fi (where Fi=coefficient of inbreeding).

A Bayesian approach can be advantageous if the
population size is large or the model structure is
complex, because it may be easier to compute the
sampling of the marginal posterior distributions
(Blasco, 2001; Duangjinda et al., 2001) than the fre-
quentist analysis with its two-stage approach. The
disadvantage of the Bayesian prediction of breeding
value is its high computing costs. Therefore, it is im-
portant to sample the marginal posterior distribution
efficiently. In general, the Gibbs sampler developed
by Geman & Geman (1984) is used. The single-site
Gibbs sampler (Gianola & Sorensen, 2002) updates
each parameter consecutively, yielding a random
sample of the marginal posterior distribution. To
obtain a faster convergence rate, Garcı́a-Cortés &
Sorensen (1996) developed a blocked Gibbs sampling
algorithm, which we also have used in our study.
In this algorithm, the conditional distribution of
all parameters is updated in a blockwise manner.
However, in a population with large pedigree size the
blocked sampler can be slow as solutions to the huge
equation systems of the MME are still required.
Thus, it could be more efficient to use a hybrid Gibbs
sampler, such as that developed by Waldmann et al.
(2008). In the hybrid sampler, the fast but slow mix-
ing single-site sampler is combined with the slow but
fast mixing block updating. Another approach to
speed up the blocked Gibbs sampler is to account
for rank deficiencies of the coefficient matrix C
during matrix inversion. If the C-matrix does not
have full rank, a pseudoinverse has to be calculated,

which is also computationally demanding. Thus, by
considering the nullspace of the C-matrix in the cal-
culation of the pseudoinverse of C, the computing
time of sampling the posterior distribution can be
shortened, because the nullspace does not change
during the MCMC sampling and must therefore be
computed only once.

In conclusion, considering the degree of inbreeding
in Bayesian analysis was possible without any prob-
lems. If genotype-by-environment interactions occur
in the data, standard Bayesian Gibbs sampling and a
frequentist approach resulted in similar estimates if
the trait has a high heritability. For such traits,
Bayesian as well as frequentist methods can be re-
commended although a Bayesian approach could
be more appropriate if the statistical model is
more complicated. For low heritable traits, however,
the standard Gibbs sampling approach is not a suit-
able strategy to account for genotype-by-environment
interactions. Therefore, as related lines are supposed
to show similar interactions, an extended genetic re-
lationship matrix was included in the term of geno-
type-by-environment interaction in the model used
to estimate breeding values. This strategy was found
to be superior to the commonly used Bayesian
model.

Appendix

Assume a symmetric nrnmatrix C having full rank r.
In this case, the calculation of Cx1, the inverse of
C-matrix can be represented by an eigenvalue de-
composition of C as

Cx1=(UDUk)x1,

where D denotes a diagonal matrix with the eigen-
values li as diagonal coefficients and U symbolizes an
orthonormal matrix with Uk=Ux1 and UkU=I (with
identity matrix I). The columns of U, denoted by
u(i), represent the eigenvectors corresponding to the
eigenvalues li. Accounting for the orthogonality of
the matrix U the inverse matrix Cx1 is obtained
from:

Cx1= g
n

i=1

1

li
u(i)u(i)k:

However, sometimes the number of independent rows
or columns of C can be smaller than the total number
of rows and columns, which means that a rank
deficiency d of the C-matrix has occurred. The rank
deficiency can be calculated from d=nxr, where r
gives the rank of the C-matrix. Assuming d>0, the
spectral decomposition of C-matrix is as follows:

C=(U1U2)
D1 0
0 0

� �
U1

U2

� �
,
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C=(u1, u2, . . . , ur ur+1, . . . , un)

r

l1

� � � 0

lr

0 0

0
BBBBBBBB@

1
CCCCCCCCA

r(u1, u2, . . . , ur ur+1, . . . , un)k,

C=U1D1U1k+U20U2k,

C=U1D1U1k,

where U1 and U2 are orthogonal subspaces of U.
Then, the inverse of the C-matrix can be substituted

by the pseudoinverse, which is a special kind of a
generalized inverse (Ben-Israel & Greville, 2003). The
pseudoinverse of C, denoted as C+, can be derived
from:

C+=U1D
x1
1 U1k= g

r

i=1

1

li
u(i)u(i)k:

To speed up the computation, the orthogonal null-
space U2 of the C-matrix can be used in the calcu-
lation of the pseudoinverse C+ (Koch, 2007). For
that, the orthogonal subspace U2 is added to the
matrix C resulting in a regular matrix spanning the
full space and existing inverse. After the inversion,
the subspace U2 is subtracted. Therefore, the pseudo-
inverse C+ can now be represented by

C+=(C+U2U2k)
x1xU2U2k

or equivalently with

C+=(U1D1U1k+U2U2k)
x1xU2U2k:

Proof.

C+=(U1D1U1k+U2U2k)
x1xU2U2k,

C+= g
r

i=1
liu

(i)u(i)k+ g
n

i=r+1
u(i)u(i)k

� �x1

x g
n

i=r+1
u(i)u(i)k,

C+= g
r

i=1

1

li
u(i)u(i)k+ g

n

i=r+1
u(i)u(i)kx g

n

i=r+1
u(i)u(i)k,

C+= g
r

i=1

1

li
u(i)u(i)k=(U1D1U1k)

x1:

In conclusion, using the orthogonal nullspace U2 of
C-matrix in the calculation of the pseudoinverse C+

speeds up the inversion of C because in our appli-
cation the subspace U2 has to be computed only once
and does not change during the MCMC sampling.
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Becker, H. C. & Léon, J. (1988). Stability analysis in plant
breeding. Plant Breeding 101, 1–23.

Ben-Israel, A. & Greville, T. N. E. (2003). Generalized
Inverses – Theory and Applications. 2nd edn. New York:
Canadian Mathematical Society, Springer.

Blasco, A. (2001). The Bayesian controversy in animal
breeding. Journal of Animal Science 79, 2023–2046.

Burton, P. R., Tiller, K. J., Gurrin, L. C., Cookson,
W. O. C. M., Musk, A. W. & Palmer, L. J. (1999).
Genetic variance components analysis for binary pheno-
types using generalized linear mixed models (GLMMs)
and Gibbs sampling. Genetic Epidemiology 17, 118–140.

Duangjinda, M., Misztal, I., Bertrand, J. K. & Tsuruta, S.
(2001). The empirical bias of estimates by restricted
maximum likelihood, Bayesian method, and method R
under selection for additive, maternal, and dominance
models. Journal of Animal Science 79, 2991–2996.

Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to
Quantitative Genetics. 4th edn. New York: Pearson.
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