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Abstract
We study two models of discrete height functions, that is, models of random integer-valued functions on
the vertices of a tree. First, we consider the random homomorphism model, in which neighbours must have
a height difference of exactly one. The local law is uniform by definition.We prove that the height variance
of this model is bounded, uniformly over all boundary conditions (both in terms of location and boundary
heights). This implies a strong notion of localisation, uniformly over all extremal Gibbs measures of the
system. For the second model, we consider directed trees, in which each vertex has exactly one parent and
at least two children. We consider the locally uniform law on height functions which are monotone, that
is, such that the height of the parent vertex is always at least the height of the child vertex. We provide
a complete classification of all extremal gradient Gibbs measures, and describe exactly the localisation-
delocalisation transition for this model. Typical extremal gradient Gibbs measures are localised also in this
case. Localisation in both models is consistent with the observation that the Gaussian free field is localised
on trees, which is an immediate consequence of transience of the random walk.
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1. Introduction
1.1 Height functions as lattice models
Height functions, in the broadest sense, are random real- or integer-valued functions on the
vertices of a connected graph G= (V , E). Let us say for now that G is finite. Each edge xy ∈ E
has an associated potential function Vxy (often assumed to be convex, symmetric, and satisfying
Vxy(a)→ ∞ as |a| → ∞) and the density of a configuration is proportional to

exp
[−H(h)

]
; H(h) :=

∑
xy∈E

Vxy(h(y)− h(x)). (1)

This well-defines the distribution of the gradient of the height function h. We informally think
of this construction as follows: each edge has a spring associated to it, which pulls the heights at
its two endpoints together. The value Vxy(a) is then the energy needed to impose the difference
h(y)− h(x)= a. One may also introduce boundary conditions by fixing the value of the height on
a certain subset ∂V ⊂V , seen as the ‘boundary’. This way, we obtain a well-defined probability
distribution of the height profile h= (h(x))x∈V and not just a distribution of height gradients.
One can also make sense of height functions on infinite connected graphs, through the standard
Dobrushin-Lanford-Ruelle formalism detailed below.
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Height functions arise as lattice models once we choose the role of the graph G to be played by
the square lattice graph (Zd,E) or a variant thereof. There is a range of height function models
which are each of great physical importance: examples include the dimer models (which arise
from random tilings), the six-vertex model (which is a model of random arrows and relates to
Fortuin-Kasteleyn percolation), and the discrete Gaussian free field (DGFF) (which has continuous
heights and quadratic potential functions, and is also known as the harmonic crystal). Height
functions with convex potential functions on lattices were studied in great generality in the work of
Sheffield [26].

A very intriguing issue for height functions is the so-called localisation-delocalisation transition.
Localisation essentially means that, for any given x ∈V , the variance Var [h(x)] remains bounded
uniformly as boundary conditions are taken further and further away; delocalisation means that
the variance grows infinite. In dimension d = 1, all measures are delocalised, with a full description
of the scaling limit in terms of Brownian motion. In dimension d = 2, measures are expected to
either localise, or to delocalise with the Gaussian free field as their scaling limit. Real-valued mod-
els should always be delocalised (quite general results are discussed in [22, 28]). Integer-valued
models in dimension d = 2 are known to localise at low temperature due to the Peierls argument
[5], and they are expected to delocalise above the temperature of the roughening transition TR.
There exist many results for specific models in this direction [1, 7, 8, 10, 13, 14, 18, 19, 20], but
a general theory of the roughening transition is still lacking. In dimension d ≥ 3, all reasonable
height functions are expected to localise at any temperature. The heuristics behind this is that,
in the harmonic case Vxy(a)= a2 (which corresponds to the DGFF on G), the variance of h(x) is
simply the Green’s function G(x, x) of the simple random walk on Z

d, which is finite for d ≥ 3
due to transience. This has been proved rigorously for the discrete Gaussian model [9, 11] and
the solid-on-solid model [2] in dimension three and higher, as well as for the uniformly random
Lipschitz function in sufficiently high dimension [23]. Our work focuses on the case where G
is a tree. Since trees correspond, in a sense, to a high-dimensional setting, one typically expects
localisation. Partial results in this direction, for special boundary conditions, already exist in the
literature (see Subsection 1.3).

1.2 Height functions on trees: an apparent contradiction
If G is a tree, a description of the distribution (1) is particularly easy (and the construction can be
carried out directly on infinite trees): in that case, the height increments on the edges are indepen-
dent, with the increment h(y)− h(x) having a density proportional to exp [−Vxy]. If all potential
functions are the same, then the measure (1) has the property that the variance of h(y)− h(x) is
proportional to the graph distance from x to y. Thus, we might think that the variance of h(x)
blows up as we put boundary conditions further and further away: the measure would then be
delocalised. On the other hand, we mentioned above that one expects localisation when the ran-
dom walk on G is transient: since this is the case on trees with degree strictly larger than two,
one expects that the variance should be uniformly bounded: the model would be localised. One
purpose of this article is to address this apparent contradiction. In fact, we will study a (not-
exactly-solvable) model of integer-valued heights on trees, and we will show that the model is
localised in a strong sense: the height variance is bounded, uniformly on the choice of the ver-
tex and (for finite trees) on boundary conditions. For infinite trees, localisation holds for any
extremal Gibbs measure. In particular, the Gibbs measure described above, with i.i.d. gradients on
edges, is not extremal; see Remark 2.7 below. The notion of extremality really provides the key to
resolving the apparent contradiction, and is closely related to the reconstructability of the height
distribution given a single sample (see for example [[12], Theorem 7.12] or [[26], Lemma 3.2.3,
Statement 1]). We conjecture that some ideas apply in great generality: we expect that, under a
strict convexity assumption on the potential, all height functions on trees are uniformly localised,
that is, the variance is bounded uniformly over the distance to the boundary and the choice of

https://doi.org/10.1017/S0963548323000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000329


52 P. Lammers and F. Toninelli

boundary conditions. For real-valued height functions the analogous uniform localisation result
is an immediate corollary of the Brascamp-Lieb inequality. We will mention exactly the parts in
the proof that are missing for general potentials in the integer-valued setting.

1.3 Models under consideration and relations to previous works
The first model under consideration in this article is the model of graph homomorphisms, in
which the height at neighbours must always differ by exactly one. The local law is uniform. The
model of graph homomorphisms has been considered by several mathematicians, and in particu-
lar also on non-lattice graphs. General, rudimentary inequalities were obtained in [3]: for example,
it is proven that the variance of the height difference grows at most linearly in the distance between
vertices. That article also studies the behaviour of the model on a tree under zero boundary con-
ditions at the leaves. Further bounds on the maximum of the random graph homomorphism are
derived in [4], by an analogy with the DGFF. The same problem is revisited in [6], which, in par-
ticular, relates the bounds on the maximum to the degree of the graph (in relation to its size).
These first three papers consider height functions in the very first sense presented in the introduc-
tion: on finite graphs, and without boundary. In two later articles, Peled, Samotij, and Yehudayoff
[24, 25] consider uniformly random K-Lipschitz functions on a tree, subjected to zero boundary
conditions on a designated boundary set ∂V ⊂V . In either case, the authors obtain extremely
tight bounds on the pointwise fluctuations of the random integer-valued functions.

Our presentation differs from the results quoted so far, in the sense that we have as objective
to bound the fluctuations of the model uniformly over all boundary conditions. This makes our
setup less symmetric: for example, under both free and zero boundary conditions, the law of the
model is invariant under a global sign flip. With non-zero boundary conditions this is clearly not
the case.

The second model under consideration lives on directed trees which have the property that
each vertex has exactly one parent and at least two children. We consider the locally uniform law
on height functions which are monotone in the sense that the height at the parent always dom-
inates the height at the child. We give a complete classification of Gibbs measures, and describe
exactly the (nontrivial) localisation-delocalisation transition. It is possible for this model to delo-
calise, even though we shall argue that this behaviour is atypical. The potential associated to this
model is convex but not strictly convex, which invalidates our heuristic which (we believe) rules
out delocalisation on trees. There are several works on potentials which are not (strictly) convex
and which have delocalised extremal Gibbs measures [15, 16, 17]. This includes the solid-on-solid
model which has the convex potential function Vβ(a) := β|a| associated to it. It is easy to see that
such a potential cannot induce uniform localisation (although ruling out general localisation is
harder): if one forces the height function to equal some non-constant boundary height function b
on the complement of a finite set � ⊂V , then one can approximate a continuum model by mul-
tiplying the boundary height function b by an extremely large integer k. This necessarily blows
up the pointwise variance of the height function at certain vertices in �. This suggests that the
strictly convex framework introduced below is indeed the correct framework for proving uniform
localisation.

2. Definitions andmain results
2.1 Graph homomorphisms on trees
We adopt several notations and concepts from the work of Georgii [12] and Sheffield [26], but we
will try to be as self-contained as possible.

Definition 2.1 (Graph homomorphisms). An irreducible tree is a tree T= (V,E) with minimum
degree at least three. A height function is a map h :V→Z, and a graph homomorphism is a height
function h :V→Z such that h(y)− h(x) ∈ {±1} for any edge xy ∈E. Write Hom (T,Z) for the set
of graph homomorphisms on T.
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Write � ⊂⊂V to say that � is a finite subset of V.

Definition 2.2 (Uniform graph homomorphisms). Write F for the natural product sigma-algebra
on � := V

Z ⊃Hom (T,Z). Write P(�,F) for the set of probability measures on (�,F). For any
� ⊂⊂V and b ∈Hom (T,Z), let γ�( · , b) ∈P(�,F) denote the uniform probability measure on
the set {

h ∈Hom (T,Z) : h|V�� = b|V��

}
.

The probability measure γ�( · , b) is called the local Gibbs measure in � with boundary height
function b. The family γ := (γ�)�⊂⊂V forms a specification. A Gibbs measure is a measure
μ ∈P(�,F) which is supported on Hom (T,Z) and which satisfies the Dobrushin-Lanford-
Ruelle (DLR) equations in the sense that μγ� = μ for any � ⊂⊂V. In this case we say that (the
distribution of) h is locally uniform in μ. A Gibbs measure is said to be tail-trivial if it is trivial
on the tail sigma-algebra T ⊂F . This sigma-algebra is realised as the intersection over � ⊂⊂V

of all sigma-algebras T� which make h(x) measurable for all x ∈V��. Such measures are also
called extremal.

Definition 2.3 (Gradient measures). Let F∇ denote the smallest sub-sigma-algebra of F which
makes all the height differences h(y)− h(x) measurable. A measure μ ∈P(�,F∇) is called a
gradient Gibbs measure whenever it is supported on Hom (T,Z) and satisfies the DLR equation
μγ� = μ for each� ⊂⊂V. Extremal gradient Gibbsmeasures are gradient Gibbsmeasures which
are trivial on the gradient tail sigma-algebra T ∇ := T ∩F∇ .

Note that we have defined gradient Gibbs measures μ on the same state space � as for Gibbs
measures. A point h ∈ � is a height function; however, the height h(x) at a given vertex is not
a μ-measurable function if μ is a gradient measure: only height differences are. In other words,
the measure μ returns as samples height functions which are measurable up to an additive con-
stant. For the validity of the previous definition, observe that Hom (T,Z) ∈F∇ , and that each
probability kernel γ� restricts to a probability kernel from F∇ to F∇ .
Remark 2.4 (Convex interaction potentials). Uniform graph homomorphisms (and also the uni-
form monotone functions of the next section) are examples of random height functions which
arise from a convex interaction potential. This means that the local Gibbs measure γ�(·, b)
can be written as a tilted version of the counting measure, with the Radon-Nikodym derivative
proportional to

1{h|V��=b|V��} exp
[
− ∑

xy∈E(�) V(h(y)− h(x))
]
, (2)

and where the potential function V is convex. Here E(�) denotes the set of edges having at least
one endpoint in�. For graph homomorphisms,V is defined on odd integers, and it equalsV(a)=
∞ × 1|a|>1. Sheffield [26] developed a broad theory for the study of height functions arising from
convex interaction potentials, which applies to our setting.

Definition 2.5 (Localisation-delocalisation). An extremal gradient Gibbs measure μ is said to be
localised if it is the restriction of a (non-gradient) Gibbs measure to the gradient sigma-algebra,
and delocalised otherwise. If such a Gibbs measure exists, then it may be chosen to be extremal
as well (this is a straightforward consequence of extremality of the gradient measure μ). Lemma
8.2.5 of [26] asserts that if μ is an extremal Gibbs measure, then at every vertex x ∈V the law of
h(x) is log-concave, and therefore has finite moments of all order. This implies immediately that
the height fluctuations of (localised) extremal Gibbs measures are finite.

Theorem 2.6 (Uniform localisation for graph homomorphisms). Let T= (V,E) denote an irre-
ducible tree with a distinguished vertex x ∈V. Then the locally uniform graph homomorphism is
uniformly localised, in the sense that:
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1. Any gradient Gibbs measure is the restriction of a Gibbs measure to F∇ ,
2. There exists a universal constant C such that any extremal Gibbs measure μ satisfies

Varμ [h(x)]≤ C.

With respect to Definition 2.5, the localisation is said to be uniform in this theorem because of the
universal upper bound in the second statement. The constant C is also uniform with respect to the
choice of the irreducible tree T. Note that the result is false if we drop the requirement that the tree
has minimum degree at least three: if the tree is Z, then graph homomorphisms are just trajectories
of simple random walks. In this case, most gradient Gibbs measures are delocalised: these are i.i.d.
laws on interface gradients, where each h(x+ 1)− h(x) is a ±1-valued Bernoulli random variable
of some fixed parameter p ∈ [0, 1]. Such measures are localised if and only if p ∈ {0, 1}, in which case
the configuration is completely frozen.

Let us remark that Theorem 2.6 can be extended (with the same proof) to other convex
potentials V with a uniform lower bound on the second derivative, conditional on a technical
assumption that is explained in Remark 3.6 below.

Remark 2.7. The uniform localisation statement of the theorem is not in contradiction with the
fact that the gradient Gibbs measure μ where all height gradients along edges of the tree are i.i.d.
symmetric random variables with values in {−1,+1} is such that Varμ [h(x)− h(y)] is propor-
tional to the graph distance between x and y. In fact, it turns out that μ may be viewed as an
actual Gibbs measure (that is, not just a gradient Gibbs measure), but also that it is not extremal;
this resolves the apparent contradiction mentioned in Section 1.2. Both facts can be shown by
defining the following random variable. Let Ak denote the (empirical) average of h on the vertices
at distance k from some distinguished root vertex. (This sequence is always well-defined, even
though it is not F∇-measurable. It is obviously F-measurable.) Then (Ak)k is a martingale with
independent increments (the increments are given by averaging the coin flips on the edges lead-
ing to the new vertices). Its limit A∞ is called a height offset variable (first defined in the work
of Sheffield [26], and discussed in more detail below). Note that A∞ is T -measurable, but not
T ∇-measurable. However, its fractional part Ã∞ := A∞ − �A∞
 is also T ∇-measurable. Its dis-
tribution is called the spectrum of A∞. The distributions of the increments of the martingale are
known explicitly, and therefore it is easy to see that the spectrum cannot be a Dirac mass. Thus,
μ is nontrivial on the gradient tail sigma-algebra, that is, the measure is not extremal: see [[26],
Sections 8.4 and 8.7] for details.

2.2 Monotone functions on directed trees

Definition 2.8 (Directed trees and monotone functions). By a directed tree we mean a directed tree
�T= (V, �E) such that each vertex has exactly one parent and at least one child. The parent of a
vertex x ∈V is written p(x). If we write xy ∈ �E, then x is the child and y the parent. A monotone
function is a function f :V→Z such that f (y)− f (x)≥ 0 for all xy ∈ �E. Write Mon (�T,Z) for the
set of monotone functions.

Notice that although our interest is in trees where each vertex has at least two children, we do
not impose this requirement in the definition. In fact, the classification of Gibbs measures works
also for trees in which some vertices have a single child.

Definition 2.9 (Uniform monotone functions). For any � ⊂⊂V and b ∈Mon (�T,Z), let
γ�( · , b) ∈P(�,F) denote the uniform probability measure on the set{

h ∈Mon (�T,Z) : h|V�� = b|V��

}
.

All other definitions carry over from Definitions 2.2 and 2.3.
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Monotone functions fit the framework of convex interaction potentials (Remark 2.4) by setting
V(a) := ∞ × 1a<0 in the sum in (2), where the sum now runs over directed edges.

Definition 2.10 (Flow, flow measures). A flow ϕ : �E→ (0,∞] on a directed tree �T= (V, �E) is a
map which satisfies

ϕxp(x) = ∑
y : yx∈�E ϕyx ∀x ∈V. (3)

The associated flow measure is the gradient Gibbs measure μϕ defined such that
(h(y)− h(x))xy∈�E

is an independent family of random variables, and such that h(y)− h(x)∼Geom (ϕxy), where
Geom (α) is the distribution on Z≥0 such that the probability of the outcome k is proportional to
e−kα .

Theorem 2.11 (Complete classification of gradient Gibbs measures). The map ϕ �→ μϕ is a
bijection from the set of flows to the set of extremal gradient Gibbs measures.

The classification relies on the very particular combinatorial properties of the model; a similar
classification is not expected in general.

Theorem 2.12 (Localisation criterion). A flow measure μϕ is localised if and only if∑
y∈A(x)

e−ϕyp(y) < ∞ (4)

for some x ∈V, where A(x)⊂V denotes the set of ancestors of x.

Remark 2.13.

1. The summability condition is independent of the choice of x ∈V, because |A(x)	A(y)| <
∞ for any x, y ∈V.

2. The previous theorem implies that gradient Gibbs measures are localised in most natural
cases. Indeed, if �T is a regular tree in which each vertex has d ≥ 2 children, and if ϕ is
invariant under the automorphisms of �T which preserve the generations of the tree, then
ϕ increases by a factor d with each older generation. In that case, it is clear that the locali-
sation criterion is satisfied. Since it is natural to impose extra symmetries on ϕ, we say that
uniform monotone functions are typically localised on trees.

3. On the other hand, a (pathological) example of a delocalised flow measure is obtained by
taking ϕ to be a flow that equals p> 0 on a directed infinite rayR of �T and zero elsewhere.
In this case, the height increments are i.i.d. Geom (p) as one walks along R, while the
height equals −∞ on vertices outside of R. Strictly speaking this example is not allowed
by Definition 2.10 because the flow should be strictly positive, but one can easily construct
flows that approximate the finite constant p along R in the ancestor direction, and such
that it is strictly positive (but small) on the remaining edges.

4. If T=Z, then graph homomorphisms and monotone height functions are in bijection
(simply via a 45◦ rotation of the graph of the height function). This mapping fails when
T is a non-trivial tree. In fact, the results above show that one can have delocalisation for
uniform monotone surfaces but not for uniform homomorphisms.

Our results so far concern (gradient) Gibbs measures on infinite trees. We address now the
following finite-volume question. Let �T= (V, �E) be a regular directed tree where each vertex has
d ≥ 2 children. Fix a vertex v ∈V, and letDn denote the set of descendants of v (including v itself),
up to distance n− 1 from v. Let also ∂Dn denote the set of descendants of v that are at distance
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exactly n from it. Let γn be the uniform measure on monotone functions on Dn+1, subject to
the boundary conditions h(v)= 0 and h|∂Dn ≡ −n. Theorem 2.12 already suggests that the height
will be localised under γn, with bounded fluctuations as n→ ∞. However, it is not a priori clear
whether the typical height profile will be dictated by the boundary height 0, which is enforced
at the vertex v, or the boundary height −n, enforced at the descendants at distance n, or if the
height profile will somewhat smoothly interpolate between them. This question is answered by
the following result.

Theorem 2.14. Sample h|Dn+1 from γn. For any fixed descendant x of v, h(x) tends to 0 in probabil-
ity, as n→ ∞. Moreover, for some suitably chosen constant c(d) depending only on d, the event that
h(x)= 0 for all descendants of v at distance at most n− c(d) log n from it has probability 1+ o(1)
as n→ ∞.

The theorem holds true more generally if the boundary height at ∂Dn is fixed to some value
−�an
 for a> 0. The fact that the effect of the boundary condition at the single vertex v prevails
against the effect of the boundary condition at the dn vertices of ∂Dn, except at distance O( log n)
from the latter, is perhaps surprising at first sight. On the other hand, note that a positive fraction
of the vertices of Dn is actually at distance O(1) from ∂Dn. This property sets the theorem apart
from the case that d = 1, in which case the height profile is linear.

3. Uniform localisation of graph homomorphisms
Definition 3.1. Let p :Z→ [0, 1] denote a probability mass function, whose support consists of a
consecutive sequence of either odd or even integers. The distribution p is called α-strongly log-
concave for some α ≥ 1 whenever

p(k)2 ≥ αp(k− 2)p(k+ 2) ∀k ∈Z.

The following follows immediately from the previous definition.

Proposition 3.2. Let p, q :Z→ [0, 1] denote probability mass functions which are supported on the
even or the odd integers, and whose supports are not disjoint. If p and q are α- and β-strongly log-
concave respectively, then the normalised probability mass function 1

Zpq is αβ-strongly log-concave.

Remark 3.3. If a probability mass function p is α-strictly log-concave for some α > 1, then it has
finite moments of all orders and its variance is bounded by a constant C(α) that depends only on
α. To see this, suppose that p takes its absolute maximum at some k0 ∈Z. Strict convexity implies

log p(k)− 1
2
( log p(k− 1)+ log p(k+ 1))≥ β =:

1
2
log α > 0,

so that

p(k0 + 
)≤ p(k0)e−β(
2−1) ∀
 ∈Z

and finiteness of all moments is obvious. The variance of any real-valued random variable X
may be written Var X = infz E[(X − z)2], and the uniform bound depending only on α follows
by choosing z = k0.

If p and q are probability mass functions, then write p ∗ q for their convolution, which is also
a probability mass function. Write X :Z→ [0, 1] for the probability mass function defined by
2X(k)= 1|k|=1.

Definition 3.4. Let λ ∈ [3, 4] denote the unique real root of x3 − 3x2 − x− 1.

Lemma 3.5. If p is λ2-strongly log-concave, then p ∗ X is λ-strongly log-concave.
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Remark 3.6. Suppose that W is a convex potential function, and let Y = e−W . If there exists a
constant λ(W)> 1 such that p ∗ Y is λ(W)-strongly log concave whenever p is λ(W)2-strongly
log concave, then all results in this section generalise to the height function model induced by
the potential W. Following [[27], Section 6.2], it is natural to expect that such a constant λ(W)
exists whenever Y is α-strongly log-concave for some α > 1. Note that Y is α-strongly log-concave
for some α > 1 if and only if W is uniformly strictly convex, that is, a potential of the form
k �→ εk2 +V(k) where ε > 0 and where V is any convex function.

Proof of Lemma 3.5. Suppose that p is supported on odd integers. Let q := p ∗ X. By shifting the
domain of q if necessary (which does not modify its log-concavity properties), it suffices to show,
without loss of generality, that

q(0)2 ≥ λq(−2)q(2),
which is equivalent to

(p(−1)+ p(1))2 ≥ λ(p(−3)+ p(−1))(p(1)+ p(3)).
If p(−1) or p(1) equals zero, then it is easy to see that the right hand side must be zero, and we
are done. Otherwise, let α := p(1)/p(−1). By multiplying p by a constant if necessary, we sup-
pose that p(−1)= αλ2 and p(1)= α2λ2. Now λ2-strong log-concavity of p implies that p(−3)≤ 1
and p(3)≤ α3. For the sake of deriving λ-strong log-concavity, we may take these inequalities for
equalities. Thus, it now becomes our goal to demonstrate that

(1+ α)2α2λ4 ≥ λ
(
1+ αλ2

)
α2 (

λ2 + α
)

for any α > 0, for the given value of λ. Rearranging gives

α2 − λ4 − 2λ3 + 1
λ3 − λ2

α + 1≥ 0.

This parabola in α does not take negative values for positive α whenever

−λ4 − 2λ3 + 1
λ3 − λ2

≥ −2,

that is,
(1− λ)(λ3 − 3λ2 − λ − 1)≥ 0.

This inequality holds trivially true when λ is a zero of the factor on the right. �
Lemma 3.7. Let T= (V,E) denote an irreducible tree and x ∈V some distinguished vertex. Then
for any � ⊂⊂V and b ∈Hom (T,Z), the law of h(x) in the measure γ�( · , b) is λ2-strongly log-
concave.

Proof. The proof idea is as follows. For each y ∈V distinct from x, there is a unique edge inci-
dent to y which points in the direction of x. We will let py denote the law of h(y) in the measure
γ�( · , b), except that to define this measure we pretend that this special edge is not there. (In par-
ticular, when y �= z, py and pz are marginals of distinct measures on height functions.) This yields
a recursive relation (see (5) below) which, in combination with Proposition 3.2 and Lemma 3.6,
allows us to derive the asserted concentration. It is important to observe that the Markov prop-
erty is very strong on trees: removing edges induces independence of the model on the connected
components of the remaining graph.

Fix � and b. If x �∈ �, then the distribution of h(x) is a Dirac mass at b(x), which means in
particular that it is λ2-strongly log-concave, and we are done. Let

�k := {y ∈V : d(x, y)< k},
and write Ek for the set of edges which are incident to �k. Write μk for the uniform measure
on the set of functions h ∈Z

V��k such that h equals b on the complement of � ∪ �k, and such
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Figure 1. A graphical explanation of the procedure in the proof of Lemma 3.7, in a case whereT is a regular tree of degree 3.
Only the portion of the tree inside� ∪ �d(x,y) is drawn; outside, the configuration coincides with b. In defining the measure
μk with k= d(x, y) (thismeasure is defined on the complement of�k), the blue dashed edges are removed and the tree splits
into a finite number of connected components. Under μk , the height at y is independent of the height on the components
that donot containN(y)= {z1, z2} (that is, the connected components not containing y). Its lawpy is obtainedby conditioning
two independent random variables having distributions pz1 ∗ X and pz2 ∗ X to be equal, which gives (5). Here, the definition
of X comes from the fact that height the gradients along the edges yz1 and yz2 take only values±1 with equal likelihood.

that h(z)− h(y) ∈ {±1} for all yz ∈E�Ek. Remark that μ0 = γ�( · , b). For each y ∈V, we let
py denote the law of h(y) in μk where k := d(x, y), see Fig. 1 (this is equivalent to the informal
definition of py given above). It suffices to prove the claim that py is λ2-strongly log-concave for
any y ∈V (the lemma follows by taking y= x).

We prove the statement by induction on the distance k := d(x, y). If d(x, y)≥ d0 for a suitable
choice of d0 depending on �, then �k ⊃ �. In this case, μk is the Dirac measure on b|V��k and
py is also a Dirac measure, hence λ2-strongly log-concave. We prove the full claim by inductively
lowering d(x, y) from d0 to 0. Fix y with d(x, y)= d < d0. Let N(y) denote the neighbours of y
which are at distance d + 1 from x. Note that |N(y)| ≥ 2 because the minimum degree of the tree
is at least three. Moreover, it is easy to see (as explained in the caption of Fig. 1) that

py = 1
Z

∏
z∈N(y)

(pz ∗ X). (5)

By induction, all the functions pz are λ2-strongly log-concave, so that Proposition 3.2 and
Lemma 3.6 imply that py is λ2-strongly log-concave. �

The proof of Theorem 2.6 now follows from abstract arguments which may appear technical
but which are more or less standard. First, we introduce height offset variables.

Definition 3.8 (Height offset variables, [26]). A height offset variable is a random variable
H :� →R∪ {∞} which is T -measurable and satisfies H(h+ a)=H(h)+ a for all h ∈ � and
a ∈Z. The variable H is called a height offset variable for some gradient Gibbs measure μ

whenever μ(H < ∞)= 1.

Remark that {H < ∞} ∈ T ∇ because the event is unchanged if we add a constant to each height
function, which means that it depends only on the height gradients. This is perhaps surprising
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becauseH is not T ∇-measurable. Height offset variables capture the following idea. Letμ denote a
gradient Gibbs measure. This measure may be turned into a non-gradient measure by a procedure
called anchoring, that is, by defining h(x) := 0 for some fixed vertex x ∈V. This preserves the DLR
equations μγ� = μ for all � ⊂⊂V which do not contain x, but not for sets � that do contain x.
Thus, we would like instead to anchor at the tail. This is exactly what height offset variables do.
For height functions on Zd, height offset variables, when they exist, often arise as the n→ ∞ limit
of the empirical average of the height function over concentric balls of radius n.

Lemma 3.9. If there exists a height offset variable H for some gradient Gibbs measure μ, then μ is
the restriction of a Gibbs measure to the gradient sigma-algebra.

Proof. The proof, including more context and background, may be found in Sheffield [26], but
we include it here for completeness. Define a newmeasure μ̃ as follows: to sample from μ̃, sample
first h fromμ, then output h̃ := h− �H(h)
. SinceH is a height offset variable, h̃ is invariant under
replacing h by h+ a for any a ∈Z. In other words, h̃ is invariant under the choice of the height
function h to represent its gradient. This means that μ̃ is well-defined as a probability measure in
P(�,F), and h̃(x) is a μ̃-measurable function. Since H is tail-measurable, μ̃ is a Gibbs measure:
the DLR equations hold because the measure is anchored at the tail, as mentioned above. Finally,
plainly, the measure μ̃ restricted to the gradient sigma-algebra is just μ. �

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. The choice of the vertex x is fixed throughout. Start with the first part. Let
μ denote a gradient Gibbs measure. Our goal is to construct a height offset variable. Define �k
as in the proof of Lemma 3.7. Let F∇

k denote the smallest sigma-algebra which makes h(z)− h(y)
measurable for all y, z ∈V��k. Note that

(
F∇
k

)
k≥0 is a backward filtration with ∩kF∇

k = T ∇ .
Write Xk for the random variable defined by

Xk := μ
(
h(x)− h(ak)|F∇

k

)
− (h(x)− h(ak)),

where each ak is chosen in the complement of �k. It is straightforward to work out that this
definition is independent of the choice of ak, precisely because the height gradient outside �k
is measurable with respect to F∇

k . Thus, Xk tells us, given the current height function h, how
much we expect h(x) to increase once we resample all heights at a distance strictly below k
from x. Remark that X0 = 0. It suffices to demonstrate that Xk converges almost surely to some
F∇-measurable limit X∞, because

H := X∞ + h(x)
is the desired height offset variable in that case (it is clear that it is indeed tail-measurable).

For fixed n, the sequence (Xk − Xn)0≤k≤n is a backward martingale in the backward filtration(
F∇
k

)
0≤k≤n. By orthogonality of martingale increments, this means that

‖Xn‖22 = ‖Xk‖22 + ‖Xk − Xn‖22
in L2(μ) for any 0≤ k≤ n. But by Lemma 3.7,

‖Xn‖22 =
∫

Varγ�n ( · ,b) [h(x)]dμ(b)≤ C
(
λ2

)

independently of n, where the constant C
(
λ2

)
comes from Remark 3.3. Therefore (Xk)k≥0 is

Cauchy in L2(μ) and converges to some limit X∞ in L2(μ). This convergence can be upgraded
to almost sure convergence by using Doob’s upcrossing inequality or the backward martingale
convergence theorem, applied to the backward martingale (Xk − X∞)k≥0.

Now focus on the second part. Let μ denote an extremal Gibbs measure. Define Yk by
Xk + h(x); this is simply the expected value of h(x) given the values of h on the complement of
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�k. By the first part, Yk converges almost surely to some limitH. Moreover, sinceμ is extremal,H
is almost surely equal to some constant a ∈R. The tower property implies that μ(h(x))= a. With
Fatou’s lemma, we may estimate the variance by

Varμ [h(x)]≤ lim
k→∞

μ
(
(h(x)− Yk)2

) = lim
k→∞

‖Xk‖22.

But ‖Xk‖22 ≤ C
(
λ2

)
as observed above, which proves the second part of the theorem with C =

C
(
λ2

)
. (In fact, the inequality on the left in the display turns into an equality with these a posteriori

bounds, but this is not important to us.) �

4. Complete classification of Gibbs measures for monotone height functions
Letμ denote an extremal gradient Gibbs measure throughout this section. For x ∈V, letD(x)⊂V

denote the set of descendants of x, which by convention includes x. For k≥ 0, letDk(x) denote the
descendants which are at a distance k from x, and let Ek(x) denote the set of edges yz ∈ �E with
y ∈Dk(x). This means that E0(x) contains one edge, which connects x with its parent p(x). Define
a sequence of random variables (Xk)k≥0 by

Xk := min
yz∈Ek(x)

h(z)− h(y).

For convenience we shall write ∇h|V for the map
V ×V →Z, (y, z) �→ h(z)− h(y)

for any V ⊂V.

Lemma 4.1. Underμ, the sequence (Xk)k≥0 is i.i.d. with distributionGeom (α) for some α ∈ (0,∞].
Moreover, this sequence is independent of ∇h|V�D(x).

Proof. For lightness, we drop the argument x in the notations D(x) and Dk(x). We first claim
that conditional on ∇h|V�D, the distribution of the sequence (Xk)k≥0 satisfies the following two
criteria:

1. It is exchangeable,
2. Conditional on X0 + · · · + Xn = a, the distribution of (X0, . . . , Xn) is uniform in{

x ∈Z
{0,··· ,n}
≥0 : x0 + · · · + xn = a

}
.

In fact, the second criterion clearly implies the first, which is why we focus on proving it. First,
let Dn := ∪0≤k<nDk. Write μ′ for the measure μ conditioned on ∇h|V�Dn . Since μ is a gradient
Gibbs measure and since μ′ is only conditioned on the complement of Dn, μ′ still satisfies the
DLR equation μ′γDn = μ′. Suppose now that we also condition μ′ on ∇h|Dk for every 0≤ k< n.
This means that we are adding the information on the height difference within each of sets Dk,
but not on the height gradients between a vertex in Dk and a vertex in Dk′ for k �= k′. Observe that
this means that the gradient of the height function h is completely determined if we also added
the information of the variables X0, . . . , Xn. The random variables X0, . . . , Xn are nonnegative,
and their sum can be determined from the information we conditioned on (that is ∇h|V�Dn and
∇h|Dk for every 0≤ k< n). The values of these random variables are not constrained in any other
way. Since the specification induces local uniformity, the second criterion follows.

Continue working in the measure μ conditioned on ∇h|V�D. De Finetti’s theorem implies
that the sequence (Xk)k≥0 is i.i.d. once we condition on information in the tail of (Xk)k≥0. Since
μ is extremal, this tail is trivial, which means that the sequence (Xk)k≥0 is i.i.d.. Moreover, it is
easy to see that the second criterion implies that the distribution of X0 is Geom (α) for some α ∈
(0,∞]. In fact, taking n= 1 and letting U(x) := log P(X0 = x), the second criterion implies that
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U(x)+U(a− x) is constant for 0≤ x≤ a, so that U(x+ 1)−U(x)=U(a− x)−U(a− x− 1)
for 0≤ x< a. Since a is arbitrary, U is affine and therefore X0 is a geometric random variable.

To prove the full lemma, we must demonstrate that this parameter α does not depend on the
information in ∇h|V�D(x) that we conditioned on. Indeed, if α did depend on this information,
then this would imply again that the tail sigma-algebra of (Xk)k≥0 is not trivial, contradicting
extremality of μ. �
Lemma 4.2. There exists a map ϕ : �E→ (0,∞] such that under the extremal gradient measure
μ, the gradients (h(y)− h(x))xy∈�E are independent with distribution h(y)− h(x)∼Geom (ϕxy).
Moreover, ϕ is a flow.

Proof. Let, as above, p(x) denote the parent of a vertex x. The previous lemma implies that there
exists some map ϕ : �E→ (0,∞] such that for each x ∈V, we have:

1. h(p(x))− h(x)∼Geom
(
ϕxp(x)

)
,

2. h(p(x))− h(x) is independent of ∇h|V�D(x).

This implies readily that the family (h(y)− h(x))xy∈�E is independent. It suffices to demonstrate
that ϕ is necessarily a flow. The flow condition (3) for a fixed vertex x ∈V follows immediately
from the definition of the probability kernel γ{x}, which induces local uniformity. In particular, it
is important to observe that the minimum of n independent random variables having the distri-
butions ( Geom (αk))1≤k≤n respectively, is precisely Geom (α1 + · · · + αn), so that the sequence
(Xk)k is i.i.d. if and only if ϕ is a flow. �
Proof of Theorem 2.11. By the previous lemma it suffices to demonstrate that for each flow ϕ,
the measure μϕ is an extremal gradient Gibbs measure. The reasoning at the end of the previous
proof implies that μϕ satisfies μϕγ{x} = μϕ for any x ∈V. In other words, for any vertex x, the
measure μϕ is invariant under the ‘heat bath’ Glauber update where the value of the height at the
single vertex x is resampled according to the specification, and conditional on the heights of all
other vertices. On the other hand, the state space of configurations coinciding with some fixed
boundary condition on the complement of a fixed finite domain, is connected under updates at a
single vertex. This follows from a standard application of the Kirszbraun theorem, see for example
[[21], Proof of Lemma 13.1]. It is well-known that this implies the DLR equation μϕγ� = μϕ for
fixed �, simply because the measure on the left may be approximated by composing μϕ with
many probability kernels of the form (γ{x})x∈�. In other words, μϕ is a gradient Gibbs measure. It
suffices to show that it is also extremal. If μϕ was not extremal, then the previous lemma implies
that it decomposes as a combination of other flow measures. But since a geometric distribution
cannot be written as the non-trivial convex combination of geometric distributions, we arrive at a
contradiction. �

Proof of Theorem 2.12. Recall that every extremal gradient Gibbs measure is a flow measure. Let
ϕ denote a flow and consider the flow measure μϕ . Fix x0 ∈V, and define a sequence (xk)k≥0 ⊂V

by xk+1 := p(xk). Suppose first that the localisation criterion is satisfied, that is, that the sum (4)
converges. We observe that h(xn)− h(x0) is the sum of n independent Geometric random vari-
ables with their respective parameters given by

(
ϕxkp(xk)

)
0≤k<n. A random variable X ∼Geom (α)

satisfies

E(X)= e−α

1− e−α
.

Since ϕxkp(xk) is increasing in k and ϕx0p(x0) > 0, we observe that the sequence
h(xn)− h(x0)

converges almost surely as n→ ∞ if the localisation criterion is satisfied. (By looking at the
Laplace transform, it is also easy to see that the sequence h(xn)− h(x0) diverges almost surely
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otherwise, but this fact is not used in this proof.) If this sequence converges, then limn→∞ h(xn)
is a height offset variable, so that μϕ is localised.

Finally, we must prove the converse statement. Assume that the sum in the localisation crite-
rion diverges; our goal is now to prove delocalisation, which is achieved through a slightly different
route. By Definition 2.5, it suffices to prove that

lim
�↑V

∫
Varγ�( · ,b) [h(x0)]dμ(b)= ∞.

The integral is increasing in � due to orthogonality of martingale increments. Write � = �n,k :=
Dn+k(xn)� {xn} ⊂V, which by definition contains the descendants of xn from generation 1 to
n+ k− 1. We prove a lower bound on the quantity in the previous display, by taking first k→ ∞
and then n→ ∞. For fixed n, we can essentially repeat the arguments in the proof of Lemma 4.1
to see that the following claim is true.

Claim. For μ-almost every b, the quenched law of ∇h|Dn+1(xn) in γ�n,k( · , b) converges weakly as
k→ ∞ to the law of ∇h|Dn+1(xn) in the unconditioned measure μ.

Proof of the claim. For each fixed vertex x ∈Dn+1(xn), introduce the sequence of random
variables (X
)
≥0 as above. Note that if x is at distance r ≥ 0 from xn, then under γ�n,k( · , b),
the random variable X
 is deterministic whenever 
 > n+ k− r. Each of these sequences
(X0, . . . , Xn+k−r) has the same exchangeability and local uniformity properties as in the proof
of Lemma 4.1. In addition we know that, under the unconditioned law μ, the empirical average
of X0, . . . , X
 tends almost surely to a constant α as 
 → ∞. Since μ is extremal, it follows that
for μ-almost every b, the quenched law of the empirical average of X0, . . . , Xn+k−r under the
conditional measure γ�n,k(·, b) tends as k→ ∞ to a Dirac mass at α. This implies that for every
x ∈Dn+1(xn), the quenched law of (X
)
≥0 converges almost surely to the law of a sequence of
i.i.d. Geom(α), independent of ∇h|V�D(x). This readily implies the claim. �

In turn, the claim implies that

lim
k→∞

∫
Varγ�n,k ( · ,b) [h(x0)]dμ(b)≥Varμ [h(xn)− h(x0)]

=
n−1∑
m=0

e−ϕxmxm+1

(1− e−ϕxmxm+1 )2
≥

n−1∑
m=0

e−ϕxmxm+1 →n→∞ ∞

by divergence of the sum in the localisation criterion. This proves the theorem. �

5. Monotone functions on finite trees
This section contains the proof of Theorem 2.14. Recall that each vertex has d children. Recall
also that Dn(v) denotes the set of n-th generation descendants of some fixed vertex v, and that
Dn(v) := ∪0≤k<nDk(v). Let γn,k denote the uniform measure on monotone height functions on
the set Dn+1(v), with boundary conditions h(v)= 0 and h|Dn(v) ≡ −k for some fixed k≥ 0.

Lemma 5.1. Let z1, . . . , zd denote the children of v. For any i= 1, . . . , d, we have

γn,k(h(zi)= 0)≥ 1−
(
1− 1

k+ 1

)dn−2

.

Proof. Fix i. Under γn,k, the height restricted to the descendants of zi is independent of the
height on the rest of the graph. To match the notations of Section 4, write x instead of zi. For
k= 0, . . . , n− 1, define the random variable Xk and the set of directed edges Ek(x) as in Section 4.
We know from the proof of Lemma 4.1 that the sequence X0, . . . , Xn−1 is exchangeable. Note that
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X0 = h(v)− h(x) and that Xn−1 is the minimum height gradient between one of the dn−1 ances-
tors of x in Dn(v) and their parent, which belongs to Dn−1(v). Given the height on Dn−2(v), the
height on the vertices in Dn−1(v) are independent and each one is uniformly distributed in an
interval of size at most k+ 1. Therefore,

γn,k(Xn−1 = 0)≥ 1−
(
1− 1

k+ 1

)dn−2

.

Since X0 has the same distribution as Xn−1, the lemma follows. �
Proof of Theorem 2.14. The measure γn is nothing but γn,n in the notation of Lemma 5.1. From
Lemma 5.1 we have that with γn,n probability at least

1− d
(
1− 1

n+ 1

)dn−2

,

we have h(z)= 0 for each of the d children of v. Conditioned on this event, the measure γn,n
restricted Dn(v)� {v} is just the d-fold product measure γ ⊗d

n−1,n. Iterating the argument, the
probability that h(x)= 0 for every x ∈Dn(v) at distance up to m from v has γn-probability at
least

1−
m∑
j=1

dj
(
1− 1

n+ 1

)dn−j−1

.

Given that d ≥ 2, it is easy to see that this quantity is o(1) as n→ ∞, as soon asm≤ n− c(d) log n
for large enough c(d). �
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