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Abstract

Simulating abundances of stable water isotopologues, that is, molecules differing in their isotopic composition,
within climatemodels allows for comparisons with proxy data and, thus, for testing hypotheses about past climate and
validating climate models under varying climatic conditions. However, many models are run without explicitly
simulating water isotopologues. We investigate the possibility of replacing the explicit physics-based simulation of
oxygen isotopic composition in precipitation using machine learning methods. These methods estimate isotopic
composition at each time step for given fields of surface temperature and precipitation amount. We implement
convolutional neural networks (CNNs) based on the successful UNet architecture and test whether a spherical
network architecture outperforms the naive approach of treating Earth’s latitude-longitude grid as a flat image.
Conducting a case study on a last millennium run with the iHadCM3 climate model, we find that roughly 40% of the
temporal variance in the isotopic composition is explained by the emulations on interannual and monthly timescale,
with spatially varying emulation quality. The tested CNNs outperform simple baseline models such as random forest
and pixel-wise linear regression substantially. A modified version of the standard UNet architecture for flat images
yields results that are as good as the predictions by the spherical CNN. Variations in the implementation of isotopes
between climate models likely contribute to an observed deterioration of emulation results when testing on data
obtained from different climate models than the one used for training. Future work toward stable water-isotope
emulation might focus on achieving robust climate–oxygen isotope relationships or exploring the set of possible
predictor variables.

Impact Statement

Information on the hydrological cycle is imprinted onto the isotopic composition of precipitation, which
subsequently is preserved in natural climate archives like speleothems or glaciers. Some climate models,
so-called isotope-enabled General Circulation Models (iGCMs), simulate isotopes explicitly and, thus, allow
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comparing climate model output under paleoclimate scenarios to samples taken from natural climate archives.
However, isotopes are not included in most climate simulations due to computational constraints and the
complexity of their implementation. We test the possibility of using machine learning methods to infer the
isotopic composition from surface temperature and precipitation amounts, which are standard outputs for a wide
range of climate models.

1. Introduction

Reliable analysis of current climate change, as well as robust prediction of future Earth system behavior,
has become a crucial foundation for all endeavors to protect humanity’s prosperity, mitigate ecological
disasters, or formulate plans for adaptation (IPCC, 2023). This analysis hinges on an accurate under-
standing andmodeling of complexmechanisms in the climate system, which in turn relies on knowledge
of the system’s past behavior. To analyze past climatic conditions outside the comparatively short period
of instrumental measurements, we depend on environmental processes recording and preserving
information on the climate system in natural “climate archives.” One way to recover past climate
information from such archives is to measure the relative abundance of isotopes, particularly of the
isotopes of the constituents of water molecules (Mook and Rozanski, 2000). Due to differences in mass,
molecules with varying isotopic compositions, so-called isotopologues, differ in their behavior in
chemical reactions and phase transitions. For the special case of water, molecules containing heavy
18O atoms, in the following denoted heavy isotopes, evaporate slower but condensate faster than ones
containing the lighter 16O. These effects are imprinted on the global hydrological cycle. The resulting
patterns of the isotopic composition of precipitation depend on many variables such as precipitation
amount, temperature, relative humidity, and the circulation of the atmosphere (Dansgaard, 1964). This
makes heavy isotopes in water an important tracer of the hydrological cycle and consequently a valuable
proxy for past climatic changes.

Isotopic abundances are canonically expressed in the delta notation. For stable oxygen isotopes 18O
and 16O, this is given by

Here the ratio of concentrations of the isotopic species in a given sample is compared to a defined
reference standard. For δ18Oof precipitation, this standard is an artificially created samplewith an isotopic
composition that is typical for ocean surface water (Baertschi, 1976).

One important task in paleoclimatology is to test whether hypotheses about the past climate are
compatible with proxy data like δ18O measured in natural climate archives (e.g. Bühler et al., 2022).
To compare simulations of hypothetical climate states to those measurements, a special sub-type of
climate models, so-called isotope-enabled General Circulation Models (iGCMs), was developed. They
explicitly simulate isotopic compositions by following the isotopic water species through the hydro-
logical cycle (Yoshimura et al., 2008; Tindall et al., 2009; Colose et al., 2016;Werner et al., 2016; Brady
et al., 2019). However, many climate models and climate model simulations exist that do not include
information on water isotopologues. Simulating δ18O is costly because it typically requires duplicating
large parts of the water cycle for each simulated water species (Tindall et al., 2009). In light of recent
advances in data science, the question arises whether this isotopic output can instead be emulated using
machine learning (ML) models that infer the δ18O at each location from other climate variables after a
model run is finished. We thus call this approach “offline-emulation.” Conducting the emulation
“offline,” that is, not coupled to the climate simulation, is possible because isotopes are passive tracers
of the hydrological cycle that reflect climatic variations, but have no feedback onto the climate system.
Exploratory work in this direction has been conducted by Fiorella et al. (2021), who used random forest
regression to infer isotope ratios in precipitation. Their study assessed whether and to what extent
potential climate effects on the isotopic composition can be verified in data simulated by an isotope-
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enabled climate model. There is an important difference between their study and our work: while ourML
methods use standard output variables of climate models as inputs, Fiorella et al. (2021) relied on tracers
being implemented for the inputs to the random forest regression. While this is a suitable choice for their
study design and research question, it limits the utility of their random forest model as an emulator.

Within this study, we narrow the broad task of “offline-emulation” by making a number of choices for
the learned isotope emulation. The first choice is to only emulate the isotopic composition of precipitation,
neglecting subsequent processes thatmight disturb the signal until it is stored in a climate archive (see e.g.,
Casado et al., 2018). Systematic observations of oxygen isotopes in precipitation did not begin until the
1960s (IAEA/WMO, 2020), and data are spatially sparse. A line of research (Bowen and Revenaugh,
2003; Bowen, 2010; Vachon et al., 2010; Terzer et al., 2013) constructs so-called iso-scapes (isotopic
landscapes) for δ18O from observation data (e.g., IAEA/WMO, 2020). These studies often address
climatological rather than meteorological questions (Bowen, 2010), and provide, for instance, multi-
year averages of annual and monthly mean δ18O. In contrast, we exclusively utilize simulation data in our
experiments and aim to learn and emulate the relationship between a given atmospheric state and the
related spatial distribution of δ18O.

We limit ourselves to using surface temperature and precipitation amount as the two fundamental
predictor variables, since these variables possess strong correlations to δ18O that are well known
experimentally (Dansgaard, 1964) and from simulations (see Figure 2c) and are frequently simulated
in climate models. We decided to emulate yearly δ18O data from the last millennium (850 CE to 1849 CE)
climate simulations. This is motivated by the combination of the high data availability of simulation runs
of sufficient length, and the archiving resolution of paleoclimate records during this time period which is
typically between monthly and sub-decadal. We also contrast the yearly emulation results with experi-
ments using monthly resolution.

As a measure of emulator performance, we will use the R2 score, which measures the fraction of
explained temporal variance, as detailed in Section 2.2.5. While we use ML methods that exploit spatial
correlations in the data by design, we leave explicit incorporation of temporal correlations largely to future
investigation.

Working within these constraints, our article presents the following contributions:

• We train a deep neural network to estimate stable oxygen isotopes in precipitation (δ18O), given
surface temperature and precipitation, and compare to common regression baselines.

• To respect the underlying geometry of the climate model data, we investigate the performance of a
spherical network architecture.

• We present cross-model results, where a regressor trained on simulated data from one climate model
is used to emulate δ18O in a run from a different model.

2. Data and Methodology

Our approach to emulating δ18O is sketched in Figure 1. For each time step, we start with variables that we
know to be statistically related to δ18O, namely surface temperature and precipitation amount.
All variables are standardized pixel-wise, that is, we subtract the mean and divide by the standard
deviation, both calculated on the training set. We then estimate the standardized spatial field of δ18O from
the predictor variables by training a machine learning (ML) regression model. Subsequently, the
standardization is inverted for the inferred δ18O, resulting in our estimate for the isotopic composition.

2.1. Data

We use data from the isotope-enabled version of the Hadley Center Climate Model version 3 (hereafter
iHadCM3, Tindall et al., 2009). iHadCM3 is a fully coupled atmosphere–ocean general circulation model
(AOGCM). The horizontal resolution of iHadCM3 is 3.75° in the longitudinal direction, and 2.5° in the
latitudinal direction.We exclude�90° and 90° from the latitudinal values because δ18O is not simulated at
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these latitudes. We focus on the last millennium (850 CE to 1849 CE), which is characterized by a stable
climate with variability on interannual-to-centennial timescales, but no major trends (Jungclaus et al.,
2017). Additionally, the last millennium is well documented in climate archives and observations (Morice
et al., 2012; PAGES2k-Consortium, 2019; Comas-Bru et al., 2020; Konecky et al., 2020).

Diagnostics of the iHadCM3 data set are visualized in Figure 2. As can be seen from Figure 2b, the
standard deviation of the simulated δ18O is large over dry regions like the Sahara desert or the Arabian
peninsula. This is partly related to the way δ18O is computed in the climate models: in these regions, the
abundances of 18O and 16O are both small because of generally low precipitation amounts, leading to
numerically unstable ratios and missing values on the monthly time scale. Overall, 0.3% of the δ18O
values are missing on the monthly timescale, with a strong clustering in the regions with numerical
instabilities described above (compare Supplementary Figure A.10). We take this into account by
adapting the loss we use to train our ML methods to deal with missing values, as described in
Section 2.2.3.

To test the extrapolation and robustness of our emulator, we use last-millennium simulations of three
other climatemodels: Scripps Experimental Climate PredictionCenter’sGlobal SpectralModel (hereafter
isoGSM, Yoshimura et al., 2008), iCESM version 1.2 (hereafter iCESM, Brady et al., 2019), and
ECHAM5/MPI-OM (hereafter ECHAM5-wiso, Werner et al., 2016). While iCESM and ECHAM5-
wiso are fully coupled AOGCMs, isoGSM is an atmospheric GCM forced by sea-surface temperatures
and sea-ice distributions of a last millennium run with the CCSM4 climate model (Landrum et al., 2013).
We re-grid the data of the other climate model simulations (δ18O, surface temperature, precipitation
amount) to the iHadCM3 grid using bilinear interpolation from the CDO tool set (Schulzweida, 2020).

Figure 1. Our approach to the emulation of δ18O in precipitation: for each time step, we use surface
temperature and precipitation amount as predictor variables. Subsequently, the data is standardized
pixel-wise by subtracting the mean and dividing it by the standard deviation at each pixel (top right).
Means and standard deviations are based on the training set of the investigated climate model simulation.
We use a machine learning emulation model (ML Regressor) to obtain a standardized estimate for δ18O.
The emulator output (bottom right) is then de-standardized using the training set mean and standard
deviation of δ18O at every pixel, to arrive at the final emulation result (bottom left). When applying theML
model to data from climate models other than the one that was used for training (e.g., in the cross-
comparison experiment in Section 3.4), we use the mean and standard deviation from the training set of
the new model.
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All datasets are freely available at https://doi.org/10.5281/zenodo.7516327 and described in detail in
Bühler et al. (2022).1

2.1.1. Pre-processing
We apply the following pre-processing steps to the climate simulation data:

• We set valid ranges for all variables, thereby excluding implausibly large or small values, using the
following choices: surface temperature range: 173,373½ � K, δ18O range: �100,100½ �, precipitation
amount: �1,10000½ � mm

month. Wide ranges are chosen because we aim to exclude only implausible
values that might deteriorate emulator performance without artificially removing model deficien-
cies. Thus, we also keep small negative precipitation values that climate models might produce due
to numerical inaccuracies in rare occasions.

• Time steps with missing values in the predictor variables are excluded from the dataset. This leads to
the exclusion of 31 of the 12,000 monthly time steps of iHadCM3.

• We form yearly averages from monthly data. Missing δ18O data points are omitted in the yearly
averaging. We argue that this does not impact our results negatively, because the invalid 0.3%
of δ18O values cluster in regions, where due to numerical instabilities in the “ground truth”
iHadCM3 simulation, learning a physically consistent emulation would not have been possible
anyway (compare Supplementary Figure A.10).

Figure 2. Statistical properties of the iHadCM3 δ18O data: (a) mean state of isotopic composition (δ18O)
in precipitation and (b) standard deviation of δ18O on an annual timescale; (c) absolute correlations of
δ18Owith temperature (green) and precipitation amount (brown) on interannual timescale—for each grid
cell only the stronger of the two is shown.

1 Bühler et al. (2022) also investigate a fifth climate model, GISSModelE2-R (Colose et al., 2016), which we excluded from our
study because of physically implausible trends in polar regions in the corresponding model run.
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• We re-grid the yearly datasets to the irregular grid on which the investigated spherical network
operates (see Section 2.2) using a first-order conservative remapping scheme (Schulzweida, 2020).

• We split the data into test and training sets. We use 850–1750 CE for training and 1751–1849 CE for
testing. The data are split chronologically instead of randomly to make the test and training set as
independent as possible, and prevent the network from exploiting auto-correlations from previous or
subsequent time steps. If a validation set (used for making choices of ML hyperparameters) is
needed, we split off 10% of the training set randomly unless specified otherwise.

• Before the MLmethods are applied, the data are standardized pixel-wise by subtracting the training
set mean and dividing by the standard deviation of the corresponding climate model, as visualized in
Figure 1.

2.2. Methodology

To obtain a spatially consistent emulation, and to utilize the fact that the local statistical relations between
δ18O and the predictor variables are similar in many grid boxes on the Earth’s surface, we choose two
approaches based on convolutional neural networks (CNNs). Both utilize the successful UNet architec-
ture (Ronneberger et al., 2015), whose multi-scale analysis can simultaneously capture fine structure
variations and utilize large-scale contextual information. UNet architectures have been successfully
applied in a climate science context before (e.g., Kadow et al., 2020). The first of our two approaches
treats data on the latitude-longitude grid as a flat image. The second explicitly incorporates the spherical
geometry of the data.

2.2.1. Flat network
Because our data naturally lie on the surface of a sphere, distortions arise when treating the equally spaced
longitude-latitude grid as a flat image using, for example, a plate carrée projection (lat/lon projection).We
test if we can still obtain reasonable results with this naive setup. Furthermore, we try to partially remedy
the effects of the distortions within the “flat” approach, by modifying the standard UNet architecture in
three ways:

• We use area-weighted loss functions.
• We use periodic padding in the longitudinal direction, that is, we append the rightmost column to the
very left of the plate carrée map (and vice versa) before computing convolutions. Thereby, we assure
continuity along the 0°–360° coordinate discontinuity.

• We incorporate CoordConv (Liu et al., 2018), a tweak to convolutional layers that appends the
coordinates to the features input into each convolution, thus allowing networks to learn to break
translational symmetry if necessary.

2.2.2. Spherical network
As a more sophisticated technique, a multitude of approaches to directly incorporate the spherical nature
of data into a neural network architecture has been proposed (Cohen et al., 2018; Coors et al., 2018; Cohen
et al., 2019; Defferrard et al., 2020; Esteves et al., 2020; Lam et al., 2022). We reproduce the approach of
Cohen et al. (2019), where the network operates on an icosahedral grid, with grid boxes centered on the
vertices. Using the icosahedron offers a straightforward way to increase or decrease resolution for a UNet-
like design, as we can recursively subdivide each of its triangles into four smaller triangles, projecting all
newly created vertices onto the sphere again.We denote the number of recursive refinements of the grid as
r, with r¼ 0 identifying the grid containing only the 12 vertices of the regular icosahedron. As the refined
icosahedral grid is locally very similar to a flat hexagonal grid, we can use an appropriately adapted
implementation of the usual efficient way to compute convolutions. Additionally, the architecture of
Cohen et al. (2019) is equivariant to a group of symmetry transformations, meaning that if the input to the
CNN is transformed by an element of the symmetry group, the output transforms accordingly. This fits
well with the approximate symmetries present in the Earth system, like symmetry to reflections on the
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equatorial plane or rotations around the polar axis.We validate our implementation of the method on a toy
problem described by Cohen et al. (2019): the classification of handwritten digits projected onto a
spherical surface. We obtain results that are comparable to those reported by Cohen et al. (2019); see
Supplementary Appendix A.1.1 for more details.

2.2.3. Loss function
To train our UNet architectures for isotope emulation, we use a weightedmean squared error loss between
the standardized δ18O ground truth Y and the predicted values bY:

L Y ,bY� �
¼ 1
b

Xb
i¼1

1
∣Gi∣

X∣Gi∣

j∈Gi

wj Yi,j� bYi,j

� �2
, (2)

where the loss is averaged over a batch of size b and the set of valid grid boxes Gi at time step i. A grid box
is valid if the simulated ground truth data has no missing value at this time step in this grid box. ∣Gi∣
denotes the cardinality of Gi, and wj are weighting coefficients. For the convolutional UNet working on
the plate carrée projection, we choosewj to be proportional to the cosine of the latitude of the center of grid
cell j, which is an approximation of the area of the grid cell. We rescale the weights, such that they sum to
the total number of grid boxes. For the icosahedral UNet, all grid boxes are of approximately equal size.
Therefore, no weighting is applied and wj is a constant independent of j.

2.2.4. Baselines
In addition to the UNet models, we implement three simple baseline models to assess the relative benefit
of complex and deep models in our emulation problem. These baselines are as follows:

• Grid-box-wise linear regression, the simplest conceivable model: regress δ18Oon temperature and
precipitation amount in a separate model for each grid box.

• Grid-box-wise random forest regression model: in contrast to the linear regression baseline,
we train a single random forest (Breiman, 2001) to make predictions on all grid boxes. To allow
the model to learn spatially varying relationships, we include the coordinates as predictor
variables.2

• Grid-to-grid approach (PCA regression): relations between δ18O and other climatic variables
tend to behave similarly over large areas (see Figure 2c), justifying a dimension reduction of the
input and output spaces before applying a multivariate linear regression. This is implemented by
computing the principal components of the input and output spaces. Schematically, the com-

putation goes as follows: X ↦
PCAX CX ↦

lin:reg: bCY ↦
PCA�1

Y bY . Approximately optimal numbers of prin-
cipal components are obtained as follows: we iterate over a 50× 50 logarithmically spaced grid
of candidate values for the number of input and output principal components. For each
configuration, the emulation model is trained and its performance is measured on a held-out
validation set. We then select the combination of numbers of input and output principal
components which yields the best results on the validation set. As a last step, the selected model
is retrained, now including the validation set data. Principal component analysis can be
performed on arbitrary grids, which makes it equally applicable to the projected 2D data and
the icosahedral representation.

2.2.5. Metrics
The metric we use for evaluating emulation approaches is the R2 score, also called the “coefficient of
determination,”which quantifies what fraction of the temporal variance in the test set is explained by the

2We encode each longitude ϕ as two values sin ϕð Þ and cos ϕð Þ to avoid the discontinuity at 0°/360°.
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ML estimate in each grid box. The R2 score compares the δ18O ground truth Yj and an estimate bYj in a
given grid box j as

R2 Yj,bYj

� �
¼ 1�

MSE Yj,bYj

� �
σ2j

, (3)

whereMSE Yj,bYj

� �
is the mean squared error and σ2j the variance of the test set ground truth, both taken

over the time axis at grid box j. A value of R2 ¼ 1 indicates perfect emulation. R2 ¼ 0 can, for instance, be
obtained by a trivial baseline model that returns the true temporal mean at every time step. The score can
become arbitrarily negative.

Additionally, we compute the Pearson correlation coefficient between the true and emulated time series
at selected grid boxes. To choose time steps in which a method’s performance is particularly strong or
weak, we calculate the anomaly correlation coefficient (ACC) between emulation and ground truth. ACC
is defined as the Pearson correlation coefficient between the true and emulated anomaly patterns for a
given time step. Anomalies are computed with respect to the training set mean.

If error intervals on performancemetrics are given, they are 1σ intervals computed over a set of 10 runs,
unless stated otherwise. Thus, the uncertainties only account for the uncertainty of the stochastic aspects
of the ML model parameter optimization, disregarding any uncertainty that is related to the data.

Implementation details for training and configuration of the ML methods are provided in
Supplementary Appendix A.1, and the code to reproduce our experiments is freely available at https://
github.com/paleovar/isoEm/releases/v1.0.

3. Results

We structure the Results section as follows. First, we give a detailed spatiotemporal overview to illustrate
the characteristics of the ML-based emulation results. To this purpose, we use the best-performing
emulation method as an example. Subsequently, we compare emulation methods amongst each other,
contrasting deep architectures and baselines as well as “flat” and “spherical” approaches. We follow up
with a range of sensitivity experiments and conclude by conducting a cross-model experiment, that is, we
train anMLmodel on data from one climatemodel and then use the trainedmodel to emulate δ18O in other
climate model simulations.

3.1. Spatiotemporal overview of emulation results

In Section 3.3, we will discover that the best-performing ML emulation method, a deeper version of the
flat UNet architecture, reaches an average R2 score of 0:389 ± 0:006 on the plate carrée grid. This means
that in the global average, almost 40% of the temporal variance in the test set is explained by our emulation
on the interannual timescale.We use this bestMLmethod to introduce spatial and temporal characteristics
of the emulation.

The prediction quality varies spatially, as shown in Figure 3a. R2 scores of 0:6 or larger are reached in
18:5% of the grid cells, and R2 ≤ 0 for only 5:4% of grid cells. The best results are achieved over tropical
oceans, which are regions with strong correlations of δ18O and precipitation amounts. Performance is
good over large parts of the Arctic and over western Antarctica as well, which is important because these
regions are especially relevant for the comparison with δ18O measurements from ice cores. We illustrate
the performance in these regions by comparing emulated and ground truth time series in the grid boxes
closest to two ice core drilling sites in panels b and c of Figure 3: the North Greenland Ice Core Project
(“NGRIP,” 75.1° N, 42.3° W, North Greenland Ice Core Project Members, 2004) and the West Antarctic
Ice Sheet Divide ice core project (“WAIS Divide,” 79.5° S, 112.1° W, Buizert et al., 2015). For these
drilling sites, the correlation between our emulation and the exact output time series of the isotope-enabled
climate model exceeds 0:7.

In general, spatial variations in performance follow the correlation structure between δ18O and the
predictor variables (Figure 2c): in regions with strong absolute correlations between δ18O and surface
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temperature or precipitation amount, theR2 scores are higher than in regions where none of the predictor
variables is strongly correlated with δ18O. Thus, performance is worse over landmasses, especially in
the low and mid-latitudes. Next, we visualize emulation and climate model output for individual time
steps. For a year with typical emulator performance3, we plot emulated (panel a) and simulated (panel b)
anomalies in Figure 4. We can see that the large-scale patterns match well between emulation and
simulation: there are strong positive anomalies over the Arctic, related to positive temperature
anomalies in this time step, and the large-scale structure over the Pacific is captured as well. Strong
negative anomalies over parts of South America and northern India and Pakistan are reproduced.
Emulation and ground truth simulation differ in their fine-scale structure: the ground truth is generally
less smooth than the emulation and seems particularly noisy over some dry regions like the Sahara and
the Arabic deserts. In these regions, there is a potential for numerical inaccuracies in the isotopic
component of climate models, due to small abundances of each isotopic species, and it is hard to
untangle which parts of the “noisy” signal have a climatic origin and which parts are simulation

Figure 3. Test set emulation performance of the best ML emulation method. The bluer the colors, the
better the emulation. Blue colors indicate regions in which the performance is better than a trivial
baseline model that returns the correct test set mean at every time step. This plot displays the average of
the R2 scores over 10 runs. Additionally, we show the time series of the ML emulation (green, mean over
ten runs) and the true simulation data (black) for grid boxes next to two ice core drilling sites. Panel
(b) “NGRIP” (Greenland). Panel (c) “WAIS Divide” (West Antarctica).

3We chose the median in terms of anomaly correlation coefficient (ACC).
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artifacts. A part of the overall smoother nature of the UNet regression results can be attributed to the
MSELoss giving a large (quadratic) penalty for strong deviations from the true values, thus, priming the
network against predicting values in the tails of the distribution. Supplementary Figure A.4 compares
emulation and simulation for three additional time steps: time steps in which the emulation works
particularly well or poorly, and a climatically interesting year—1816 CE, the “year without a summer”
(Luterbacher and Pfister, 2015), which is caused by a volcanic eruption included in the volcanic forcing
of the iHadCM3 simulation. For 1816 CE, we observe that the emulator reproduces a strong negative
δ18O anomaly in regions where δ18O is primarily influenced by temperature, namely in the Arctic,
northern North America, and Siberia.

3.2. Comparing machine learning methods

The ML emulation models (UNet architectures and simpler baselines) differ in the quality of their
emulation. In the following, we compare the methods amongst each other. For details on the training
procedures, network architectures, and method implementations, see Supplementary Appendix A.1. We
also address the question of whether using an inherently spherical approach is beneficial over treating the
latitude-longitude grid as “flat.”However, the comparison is not trivial: the approaches are developed for
data on different grids (plate carrée and icosahedral) and the necessary interpolations may deteriorate

Figure 4. Typical emulation results on iHadCM3 dataset: we show anomalies as they are output by the
ML emulator (“Emulation”) and the “true” result in the simulation data set (“Ground truth”). The
anomalies are computed with respect to the training set mean. For the selected time step, the anomaly
correlation coefficient (ACC) reaches its median value.

Table 1. Globally averaged R2 scores for the different ML emulation methods.

Emulation method R2 score, plate carrée grid R2 score, icosahedral grid

Flat UNet, unmodified 0.352 ± 0.015 0.374 ± 0.017
Flat UNet, modified 0.377 ± 0.005 0.402 ± 0.006
Flat random forest baseline 0.212 0.256
Flat linear regression baseline 0.251 0.274
Flat PCA regression baseline 0.303 0.332
Icosahedral UNet 0.126 ± 0.011 0.396 ± 0.009
Icosahedral PCA regression baseline 0.076 0.339

Note. Bold indicates the best performing methods (highest R2 values) on each model grid (= each column). Results are calculated for the icosahedral
grid that the method of Cohen et al. (2019) operates on and the plate carrée grid.When a method works with data on the other grid, the emulated data is
interpolated. “Flat UNet, unmodified” and “Flat UNet, modified” refer to the flat network architecture described in Section 2.2.1, either not applying or
applying the modifications to remedy projection artifacts described in that chapter.
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performance. Thus, we compute performances on both grids, interpolating the predictions from one grid
to another. Results for the globally averaged R2 scores are shown in Table 1. The best model in the
comparison is the “modified” version of the flat UNet that includes the three modifications described in
Section 2.2 (area-weighted loss, adapted padding, CoordConv). The effects of the individual modifica-
tions are detailed in Supplementary Table A.2 and Supplementary Figure A.6.

All UNet architectures outperform all baseline architectures that operate on the same grid. The best
UNet method explains 7%more of the test set variance than the best baseline model, PCA regression. The
other baseline models perform worse. In particular, it seems that the random forest baseline, which
regresses on a pixel-to-pixel level is not able to capture the spatially varying relationships between δ18O
and the predictor variables surface temperature and precipitation amount well enough, even when
including coordinates as additional inputs. The spatial performance differences between the UNet
methods and the best baselines are visualized in Supplementary Figure A.5. The improvements by the
UNets are largest over oceans.

On the icosahedral grid, the icosahedral UNet and the modified flat UNet achieveR2 scores that are not
significantly different. On the plate carrée grid, however, the results of the icosahedral UNet are much
worse. This drop can largely be attributed to the interpolation method (see Supplementary Figure A.7): on
the plate carrée grid, neither training data nor results of the flat UNet are interpolated, while interpolations
are necessary in both cases for the icosahedral UNet.

3.3. Sensitivity experiments

We conduct a range of sensitivity experiments, to test (a) the influence of each predictor variable on the
results, (b) whetherwe can further improve the performance of ourMLmethod, and (c) whether emulation
quality varies with timescale.

First, we use the modified flat UNet architecture as employed in Section 3.2 and test how the
results differ if we exclude one of the predictor variables. The globally averaged R2 score on the plate
carrée grid drops from 0:377 ± 0:005 if both precipitation and temperature are used to 0:327± 0:006
when using only precipitation and to 0:251 ± 0:004 when only using temperature. The spatial
differences in emulation quality follow the large-scale behavior of the correlation structure in panel
c of Figure 2. When precipitation is excluded, the performance decreases most over low latitudes,
while the R2 score drops over polar regions without temperature. This is visualized in Supplementary
Figure A.8.

To potentially improve the emulation results even further, we create variations of the modified flat
UNet architecture: a “wider” version in which the number of computed features per network layer is
doubled (R2 ¼ 0:386 ± 0:008, plate carrée grid), and a “deeper” version with six additional network
layers4, which obtains R2 ¼ 0:389 ± 0:006 (plate carrée grid), both improving over the default choice by
roughly 0:01. Additionally, we test whether results could be improved by tuning the learning rate of the
employed optimizer by testing a grid of 20 logarithmically spaced values between 10�4 and 10�1. The
performance is best for learning rates between 10�3 and 10�2. However, no substantial improvements
over the default parameter choice were reached in the limited range of tested values.

The monthly timescale differs from the interannual scale by a pronounced seasonal cycle of δ18O in
many regions. Thus, even a simple climatology can explain a part of the variability in δ18O. To exclude
this trivially explainable part from the computation of the R2 score, we compute the score separately for
each month. Results are similar to the results on the interannual scale with roughly 40% of variance
explained. The higher time resolution suggests exploringwhether the emulation can profit from taking the
temporal context into account. We test this by including the temperature and precipitation of not only the
current time step but also the previous month as inputs to the emulation of δ18O. Results do not improve
strongly, however, possibly because the investigated timescale is still larger than the average atmospheric
moisture residence time (Trenberth, 1998).

4 I.e. one additional “depth step” in Figure A.11.
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3.4. Cross-model comparison

For practical applicability, it is essential that an emulator’s performance is robust under varying climatic
conditions and under potential biases of the climatemodel that produces the training data for the emulator.
We address these questions by testing howwell our emulation generalizes to data generated with different
climate models (iCESM, ECHAM5-wiso, isoGSM). To do so, we train the best model architecture so far,
the deeper modified flat UNet, on data from iHadCM3. Subsequently, the trained network is used to
emulate δ18O for the test sets of the other climatemodel datasets. Results of the emulation are visualized in
Figure 5. For all datasets themeanR2 score is positive, meaning that in the global average, the emulation is
preferable to predicting the mean state of the corresponding training set. The R2 score is highest for the
ECHAM5-wiso simulation and lowest for isoGSM, where 80% less variance is explained than on
iHadCM3.

In all three cross-prediction cases, the performance drops strongly in the Pacific Ocean west of South
America, a region that is important for the El Niño–Southern Oscillation (ENSO). This might hint at inter-
model differences in the spatial pattern of ENSO variability. For isoGSM, the emulation quality over
Antarctica is considerably worse than for all other models. The Antarctic in isoGSM ismuch less depleted
in δ18O (less negative δ18O) than in the other models while showing similar equator-to-pole temperature
gradients (Bühler et al., 2022). This can potentially impact the relationship between the temporal
variations of temperature and δ18O.

For isoGSM and iCESM, R2 is negative over large areas of the mid-latitude oceans. As synoptic-scale
variability of moisture transport pathways might be an important factor for δ18O in the mid-latitudes,
adding predictor variables that encode information on the atmospheric circulation in the respective
models could improve the results. The independence of the isoGSM and iCESM runs in these regions
must be assessed carefully: isoGSM is forced by sea-surface temperatures and sea-ice distributions of a
last-millennium run with CCSM4, which is a predecessor model of iCESM. Therefore, characteristics of
iCESM might also be present in the isoGSM results.

We also test how well the baseline ML models generalize when employed to estimate δ18O for other
climate models. The very simplistic pixel-wise linear regression yields better results than the PCA

Figure 5. Results for the cross-prediction task: a UNet is trained on the iHadCM3 training data set. The
performance is then evaluated on the test set of various climate models; shown R2 scores are averages
over 10 runs.
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regression baseline. Supplementary Figure A.9 shows the cross-model performance of the linear
regression baseline. While the R2 score for iHadCM3 itself is significantly smaller than for the UNet
model, the loss of performance when doing cross-prediction is much smaller. For iCESM, the results are
even better than those obtainedwith theUNetmodel. Especially overmid-latitude oceans, theR2 scores of
the linear regression are better than the ones obtained with the UNet.

4. Discussion

In a first step toward data-driven emulation of water-isotope variability in precipitation from standard
climate model output variables, we show that in a simulated dataset 40% of the interannual δ18O variance
can be explained by ML models. The emulation quality follows patterns of the correlation between δ18O
and the predictor variables, precipitation amount and surface temperature. This hints at the possibility of
further improving the emulation by including other variables that are statistically connected to δ18O as
predictors. δ18O composition depends on atmospheric moisture transport, which in turn, depends on
atmospheric circulation. Thus, variables encoding information on atmospheric circulation, such as sea-
level pressure, are promising candidates which should be explored in future research. This could be
particularly relevant in the mid-latitudes, where the comparably poor performance of the emulators might
be due to synoptic-scale moisture transport variability which is not well captured by annual or monthly
means of precipitation and temperature. In addition, relative humidity seems a promising candidate as it is
important for the evolution of δ18O during the evaporation process.

It should be noted that correlation structures between predictor variables and δ18O are likely timescale
dependent. Our results suggest that temperature, precipitation, and atmospheric circulation variations due
to internal variability in the climate system and short-scale external forcing such as volcanic eruptions and
solar variability are the most important factors controlling interannual δ18Ovariability. On the other hand,
changes in long-term external forcings such as greenhouse gas concentrations and Earth’s orbital
configuration, and variations in oceanic circulation have been found to explain δ18O changes on
millennial and orbital (10,000 years and longer) timescales (He et al., 2021). This varying importance
of factors controlling climate variations can also result in timescale-dependent relationships between the
predictor variables surface temperature and precipitation amount (Rehfeld and Laepple, 2016), which
limits the generalization of emulators between timescales.Meanwhile, on timescales from hours toweeks,
the memory in the atmosphere is higher. Thus, taking into account previous time steps and explicitly
tracking moisture pathways, for example, in tropical or extratropical cyclones could improve the
emulation performance. On these timescales, ML methods to model sequences of data, like long short-
term memory (LSTM), recurrent neural networks (RNNs), or transformer models could be good
alternatives.

A tested spherical CNN architecture shows no clear benefit over a modified version of the standard flat
UNet for our task of emulating δ18O in precipitation globally. We suppose that this is partly due to the
strong latitudinal dependence of the statistical relationships between δ18O and the predictor variables
(as indicated by correlations in Figure 2c). Thus, the strength of the spherical network architecture,
namely its equivariance to rotations, possibly does not offer a strong benefit. Additionally, the interpol-
ation between the plate carrée grid and the icosahedral grid deteriorates the results. This might be
remedied by “differentiating through” the interpolation or directly learning the interpolation, as is done
by Lam et al. (2022). Using ML architectures that are equivariant to approximate symmetries in the Earth
system might still be beneficial in many applications, since adapting the ML approach to symmetries of
the problem reduces overfitting and the demands for training data. One might use Cohen and Welling
(2016), for example, as a starting point and test a network that is equivariant under rotations around the
polar axis and reflections on the equatorial plane.

The cross-model emulations can be seen as a supplement to test for the generalization to the
(unavailable) real-world δ18O data. Assuming that each climate model possesses different deficiencies
in its δ18O simulation, robustness under varying models would hint at robustness in the generalization to
real-world data. Additionally, reliable δ18O emulations for climate models that do not possess an
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implementation of water isotopologues would ideally be done with an emulator that does not overfit to a
certain climate model it was trained on. Two reasons that might make an ML emulator perform poorly
under cross-emulations are (a) weak statistical connections between δ18O and the predictor variables in
the training set and (b) differences in the statistical connections of δ18O and the predictor variables
between climate models. Variations between the climate models’ isotope modules likely affect these
statistical connections. Particularly, the models differ in the formulation of kinetic fractionation:
iHadCM3 is based on Cappa (2003), while isoGSM, ECHAM5-wiso, and iCESM use results of Merlivat
(1978). We investigate whether drops in cross-prediction performance can be attributed to causes (a) and
(b) in Supplementary Appendix A.2 and Supplementary Figure A.3. Indeed, most regions, in which there
is a drop in emulation performance, coincide with regions of differing correlation structures or weak
correlations between δ18O and the predictor variables in the iHadCM3 dataset (Supplementary Figures
A.3, B4 to D4 and B2 to D2). In regions with weak correlations between δ18O and the predictor variables
in the iHadCM3 dataset, such as the Southern Hemisphere mid-latitudes, the UNet has to predict δ18O
based on spatial similarity structures (teleconnections). The poor performance in the Southern Hemi-
sphere mid-latitudes in IsoGSM and iCESM suggest that the spatial similarity structures differ between
those two GCMs and iHadCM3. Here, predictors that encode atmospheric circulation more directly such
as sea-level pressure could be beneficial in future studies.

This interpretation is supported by a much sharper drop in performance of the UNet architectures than
simple linear regression when methods were trained on the iHadCM3 climate model and then used to
emulate other climate model data. As a result, the R2 scores on the other climate models were comparable
between UNet and linear regression. This suggests that the UNet might overfit to the spatial anomaly
patterns in iHadCM3, given the limited information provided by the predictor variables. This overfitting
will partly reproduce deficiencies of the respective dataset used for the training of the emulator. It was
shown previously that the models used in our study differ in their mean climate state. For example,
iHadCM3 and ECHAM5-wiso show a similar global temperature state, but iHadCM3 δ18O is much more
negative in the global mean (Bühler et al., 2022). Similar differences in the spatial anomaly patterns
between models need to be explored further to understand their contribution to poor cross-model
emulation performance. To obtain a more robust emulator that is applicable across models, one might
utilize data frommultiple climate models and climate states (e.g., Last Glacial Maximum, mid-Holocene,
Pliocene) in the training set. The cross-prediction performance might also be influenced by the interpol-
ations that are necessary to re-grid all climate model datasets to the resolution of iHadCM3. We would
expect interpolation artifacts to appear as small-scale noise. However, wemostly find differences in large-
scale patterns, that are structurally similar to the results on the iHadCM3 dataset, in which no interpolation
has been applied (Figure 5a). This indicates that interpolation artifacts are of minor relevance for the
reduced performance in the cross-model emulations.

Spatially, ML estimates are smoother than the true simulated data. The ground truth data show very
noisy behavior over dry regions, part of which is likely due to numerical instabilities in the computation of
δ18O for very low precipitation amounts. Missing data points also occur more frequently in these regions,
thus potentially biasing the emulator and its measured performance. Because of these inconsistencies in
the input data, it might be beneficial to focus on particular regions when developing an emulator with the
aim of comparing to a certain natural climate archive. Examples are the polar regions for comparisons to
ice core data or themid-latitudes for speleothem records. Restricting the spatial extent would also alleviate
artifacts of the map projection and render spherical approaches unnecessary. Alternatively, one might
think about the application ofML to do in-painting ofmissing values of δ18O for the training of emulators,
similar to Kadow et al. (2020). In this case, the incomplete δ18Owould serve as an input to theMLmethod
in addition to precipitation and temperature.

Training an isotope emulator on real-world data would avoid uncertainties originating from climate
models and the implementation of isotopes within them. It would also increase the emulator’s utility for
research areas that work with observational isotope data. For instance, the local isotopic composition of
precipitation can be valuable when studying human influences on hydrology (Good et al., 2014). The
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isotopic signature of precipitation is archived in the composition of plants or the tissue of wild animals.
Understanding spatial and temporal variations of stable water isotopes can, therefore, help in studying
plant origins and wildlife migration patterns, and contribute to food authentication (Bowen et al., 2005;
West et al., 2007; Cernusak et al., 2016). Databases of observed δ18O in precipitation (IAEA/WMO, 2020)
or δ18O from natural climate archives (Konecky et al., 2020) are publicly available. However, challenges
arise from the spatial scarcity and unequal distribution of data, and the short temporal coverage of
observations. Here, using graph networks like the one developed by Defferrard et al. (2020) might be an
option, and likely strong prior constraints would need to be used to compensate for small dataset sizes. For
the future goal of comparing emulations to δ18O measured in natural climate archives, archive-specific
processes need to be taken into account. This is because δ18O in precipitation is not archived directly, but
always as the response of a sensor of the archivingmedium. For example, precipitation δ18O is archived in
speleothem records as calcite carbonate in accumulating layers that form from cave drip water (Fairchild
and Baker, 2012).

We calculate yearly δ18O as the unweighted average of monthly δ18O. Inmost natural climate archives,
yearly δ18O is weighted by precipitation amount. We tested the influence of such a weighting and found
that it does not impact the emulator performance negatively (not shown). However, climate archives can
also show seasonal preference in their sensitivity to δ18O (Wackerbarth et al., 2010; Fohlmeister et al.,
2017; Baker et al., 2019) such that there is likely no optimal way for computing yearly values. Including
archive-specific processes could either be a second step in a two-step approach, where anML emulator is
trained to predict δ18O in precipitation and then a proxy system model (Evans et al., 2013) is used to
forward-model archive-specific processes. Alternatively, one might include a differentiable proxy system
model in the ML pipeline. This would make it possible to train the ML architecture directly with proxy
data instead of δ18O measured in precipitation.

5. Conclusion

In this study, we explored the ability of machine learning methods to emulate oxygen isotopes as
simulated by isotope-enabled General Circulation Models (GCMs). Focussing on interannual variability
in a last-millennium simulation, we show that UNet neural networks improve the emulation performance
compared to baselinemethods such as pixel-wise linear regression and PCA regression. Averaged over all
grid cells, our best-performing UNet architecture explains 40% of the temporal δ18O variance. The
emulation performs best in polar regions, where δ18O is strongly controlled by surface temperature
variations, and in low latitude ocean areas, where δ18O is highly correlated with precipitation amounts.
Lowest performances occur in arid regions, partly because of numerical instabilities in the simulation of
δ18O for very low precipitation amounts. Using a spherical network architecture does not improve the
results compared to amodified flat architecture, which accounts better for Earth’s spherical geometry than
a default UNet architecture. This might be because our spherical UNet architecture is not optimized to
capture latitudinal dependences in the relationships between δ18O and the predictor variables.

We tested the generalization of the emulator trained on output from the iHadCM3 GCM to last-
millennium simulations with other GCMs. While the performance is better than predicting the model’s
climatology for all GCMs, the explained variance is substantially lower than for iHadCM3. Performances
are especially poor in regions where the correlation structure between δ18O and the predictor variables
differs from the correlation structure in iHadCM3 and in regions with low correlations between δ18O and
the predictor variables in iHadCM3. In the latter case, the UNet architecture learns spatial dependence
structures to improve the emulation of δ18O. This improves the performance within iHadCM3 compared
to pixel-wise regression. However, these spatial structures seem to differ too much between GCMs to
facilitate skillful cross-model emulations, especially in the mid-latitudes where encoding synoptic-scale
circulation variations could be important to capture δ18O variations.

To further improve emulation performance, addingmore predictor variables could be a promising next
step. In particular, variables such as sea-level pressure, which capture characteristics of the atmospheric
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circulation more directly than surface temperature and precipitation amount, could help in regions with
currently poor performance. To compare emulated isotopes to δ18Omeasured in natural climate archives
such as ice cores and speleothems, a way of incorporating archive-specific processes needs to be
investigated. This could be done by incorporating differentiable proxy system models into UNet
architectures or by applying proxy system models to the emulator output in a two-step approach. For
comparison with δ18Omeasurements in natural climate archives, the timescales of variations recorded by
the archives are important. While we focused on interannual timescales in this study, shorter as well as
longer timescales could be explored in future research to understand the importance of synoptic-scale
processes, local predictor variables, and external forcings for δ18O emulation across timescales.

Abbreviations

ACC anomaly correlation coefficient
AOGCM Atmosphere–Ocean General Circulation Model
CDO Climate Data Operators tool set
CNN convolutional neural network
ECHAM5-
wiso

ECHAM5/MPI-OM, an investigated climate model

ENSO El Niño–Southern Oscillation
GCM General Circulation Model
iCESM iCESM1 version 1.2, an investigated climate model
iGCM isotope-enabled General Circulation Model
iHadCM3 Hadley Center Climate Model version 3, an investigated climate model
isoGSM Scripps Experimental Climate Prediction Center’s Global Spectral Model, an

investigated climate model
ML machine learning
NAO North Atlantic Oscillation
NGRIP North Greenland Ice Core Project
PCA principal component analysis
WAIS Divide West Antarctic Ice Sheet Divide ice core project
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