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Abstract. Real analytic actions of connected Lie groups locally isomorphic to
SL (2, R) on compact surfaces, possibly with boundary, are classified up to topological
conjugacy and up to real analytic conjugacy. Finite dimensional universal unfoldings
of the real analytic conjugacy relation are also constructed. These are local trans-
versals to the conjugacy classes in the space of actions. Sometimes the unfolding is
a variety but not a manifold, and thus the space of actions is not naturally modelled
on a vector space. We find many rigid actions and some unexpected bifurcation.

0. Introduction

The general problem addressed here is to determine how a non-compact semisimple
Lie group can act differentiably on a manifold. Of course, this is a very general
problem, and we do not attempt a full attack. Rather, we consider a special case —
that of the group SL (2, R) acting on a surface — and see what happens.

One of the charming aspects of the general problem is that it might be solvable
to some extent. If, instead of considering actions of a semisimple Lie group G —
i.e. homomorphisms from G into some group of diffteomorphisms — one considers
homomorphisms from G into a Lie group H, then the problem has essentially been
solved. For one thing, a homomorphism from G and H is always rigid; composing
it with small inner automorphisms of H provides all nearby homomorphisms. Also
one can, in principle, list the conjugacy classes of such homomorphisms using the
representation theory for the Lie algebra of G. Thus the true object of interest

Hom (G, H)/H

is a discrete, describable space.
For a compact group G, R. Palais has shown [5] that the same rigidity carries
over to general actions. That is, if M is a manifold, then

Act (G, M)/ Dift (M)

is discrete in the appropriate topology. Our primary goal is to determine the extent
to which actions of semisimple groups are rigid. As is well known [7, § IV. 2] and
as will be seen here, some are not rigid. Still, it seems possible that the action of
Diff (M) on Act(G, M) (by conjugation) admits finite-dimensional local cross-
sections near many points. This is at least the case if M is a surface and G is SL (2, R).

The approach here is naive. In the first section, the orbit types which may occur
in an action of SL (2, R) on a surface — i.e. the homogeneous spaces of SL (2, R) of
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dimensions zero to two - are classified. In § 2, we determine normal forms for the
generating vector fields near a stationary point or a one-dimensional orbit. This
computation is the heart of the investigation, for knowledge of dynamics near orbits
of less than maximal dimension and the ways in which these local dynamics may
be perturbed lead to global conclusions. The normal forms near a stationary point
are, according to [1] and [2], just the linear ones. Near a one-dimensional orbit,
the list of normal forms is infinite but quite simple, as might be expected since
o€ (2,R) is simple. In § 3 we succumb to the temptation to list the analytic and
topological conjugacy classes of actions. In particular, we find that the only compact
surfaces on which SL (2, R) can act non-trivially are the sphere, projective plane,
torus, Klein bottle, disk, Mobius band, and cylinder. This is not too surprising, since
SL (2, R) contains SO (2), but the same holds for the universal cover SL (2, R),
which contains no non-trivial compact subgroup. Finally, § 4 describes the finite-
dimensional unfolding of a neighbourhood of a non-degenerate action. We find that
a special few of these non-degenerate actions are fragile — i.e. they can be perturbed
into actions with vastly different characteristics. The other actions exhibit some
degree of stability. In particular, we find that actions having a hyperbolic or elliptic
two-dimensional orbit are rigid and that actions having a stationary point are
structurally stable in the sense of being topologically conjugate to all nearby actions
but are not rigid. .

This summary of results should have been prefaced by the disclaimer that they
hold only in the space of real analytic actions. The initial reason for considering
this case was that it facilitated the computations of § 2. In fact, a similar list of
normal forms for C” actions, 1=r=0o0, would be quite complicated. However, if
one is willing to require that a certain eigenvalue (eventually called A) associated
with each one-dimensional orbit does not lie in a certain range (roughly,
Ag[—4r71,0]), then it seems that much of the analysis here carries over at least to
C’-Holder actions.

In order to bring out phenomena determined by the algebraic, rather than
topological, properties of a group, we actually consider actions by the universal
covering group SL (2, R). It is easy to go from such actions to actions by SL (2, R)
itself, since the latter may be interpreted as those actions by SL (2, R) which send

0 -1
2
w2e(® )
to the identity. However, it is by no means clear that phenomena arising here should
be typical of actions by general semisimple groups. For one thingMe, surfaces
are small. More important, perhaps, is the fact that the centre of SL (2, R) is infinite,
whereas the centre of SL (n, R) for n> 2, for example, is finite. These drawbacks

are balanced in part by the role of 4¢ (2,R) as a fundamental constituent of
semisimple Lie algebras.

1. SL(2,R)

—_—
Here we present the basic facts about SL (2, R) which will be needed later and
classify its homogeneous spaces of dimensions one and two. For brevity, we denote
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SL (2,R) by G and its Lie algebra of left invariant vector fields by g. This notation
will remain in force throughout this paper.
The standard basis for g consists of the matrices

1 0 01 00
H—(O _1), X—(O 0), and Y—(1 0).

These satisfy the relations
[H, X]=2X, [H,Y]=-2Y, and [X, Y]=H.
It follows that the adjoint group
Ad(G)=GL ()

is the component of the identity among all linear automorphisms of g which preserve
the Casimir form

6(aH +bX +cY)=8(a’+ bc).
Portrayed in figure 1, this adjoint action is the key to the algebraic structure of G.

FIGURE 1. Orbits of the adjoint action.

As for topology, G is an infinite cyclic cover of SL (2, R), homeomorphic to R?,
with infinite centre generated by exp w(Y —X). Moreover, the one-parameter
subgroup exp R(Y — X)) infinitely covers SO (2). These observations follow from
the fact that every matrix in SL (2, R) may be factored uniquely as

(cos t —sin t) (u v )
sint cost/\0 u’!
with u>0.

An action @ € Hom (G, Diff* (M)) decomposes a surface M as a union of orbits,
each of which can be viewed as a homogeneous space of G. The action therefore
can be described by saying which homogeneous spaces are involved and how they
fit together. In order to describe ‘which’, we classify the homogeneous spaces in
theorem 1.2 below; the results of § 2 will allow us to say ‘how’. The relevant
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terminology is that for x € M, the closed subgroup
J(x)={ge G: a(g)x=x}

is called the isotropy group of x, its Lie algebra #(x) is called the isotropy algebra,
and a(G)x is called the orbit through x. The mapping

gl (x)—~a(g)x

from the left coset space G/J(x) into M is always a C* injective immersion, and
it intertwines the natural action on G/J(x) with a. Since the isotopy group of a
typical point on the orbit through x is

J(a(g)x)=gJ(x)g™",

orbit types correspond to conjugacy classes of closed subgroups of G.
To classify the closed subgroups of G, we begin by classifying their Lie algebras.
The proof, a computation, is omitted.

THEOREM 1.1. Every two-dimensional subalgebra of 4 is conjugate under the adjoint
group to span {H, X}. Every one-dimensional subalgebra is conjugate to one of:

span {H}, span{X}, or span{Y-—X},
and no two of these three are conjugate.

We call a one-dimensional subalgebra hyperbolic, parabolic, or elliptic according to
its conjugacy to span {H}, span {X}, or span{Y — X}, respectively, and extend this
terminology to one-dimensional subgroups and two-dimensional homogeneous
spaces.

Let 4 be a subalgebra of g,

N={geG:Ad, 5= s}

its normalizer, and J, the subgroup generated by exp ( 7). Using theorem 1.1, it is
easy to see that J; is closed. There is a one-to-one correspondence between the
closed subgroups of G having Lie algebra ; and the discrete subgroups of N/Jq,
namely that J < G corresponds to
J/Joc N/ Jy.

Also, for two such subgroups J;, and J, to be conjugate in G, it is necessary and
sufficient that J,/.J, and J,/J, be conjugate in N/J,. In the cases considered below,
N turns out to be the semidirect product of J, with an abelian group K, so there
is a bijection between the conjugacy classes of closed subgroups with Lie algebra
# and the discrete subgroups of K. We omit the computations.

7 K
span {H, X} centre (G) =(exp 7(Y — X))
span {H} (expzm(Y — X))
span {X} exp RH X centre (G)

span{Y — X} {16}
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Here (g) denotes {g": neZ} for g€ G. In summary:

THEOREM 1.2. The conjugacy classes of closed subgroups of G of dimensions one
and two are parameterized by:

two-dimensional subgroups of Z

hyperbolic subgroups of Z

parabolic discrete subgroups of RX Z
elliptic singleton.

Note that a subgroup of G corresponds to a subgroup of SL (2, R) precisely when
it contains exp 27 (Y — X).

Soon it will be convenient to have explicit realizations of the homogeneous spaces
just classified. Besides, the dynamics of the natural actions on them are interesting
in their own right. Let ;s be any one of the four subalgebras considered above and
Jo the corresponding subgroup. If J is any closed subgroup of G with Lie algebra
7, then G/J may be viewed as the quotient of G/J, by the right action of J n K,
where this right action is defined by

(gJo)k =glok = gkJ,

for ke K and g€ G. Thus to describe the homogeneous spaces G/J, we will be
content with an explicit realization of G/J, and the right action of K in each of
the four cases. To obtain G/J,, we place coordinates on the universal cover of the
orbit through a point x of any convenient action with #(x) = ;.

For the case s =span{H, X}, consider the natural representation of G on RZ.
This induces a transitive action on RP'. Mapping the real line onto RP' via

s—[exp (s«/—_l)]

and lifting the infinitesimal generators, we obtain vector fields

_ d
H=-sin2s—
as
S 0
X =3(—1+cos2s)—
as

_ i)
Y =1(1+cos2s) —
as

on the real line. The right action of K is generated by the mapping
scexpm(Y—X)=s+m
Thus G/J is a circle except when J = J,. For these one-dimensional spaces, we will
call the index of JA K in K the length of G/J. The situation is sketched in
figure 2.
For the hyperbolic case, consider the action on the sphere S(g) which is induced

by the adjoint representation (see figure 3). The orbit through R*"He S(g) is a
hyperbolic cylinder. In coordinates, its universal cover becomes R X (—1, 1), and the
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Fundamental interval
FIGURE 2. One-dimensional homogeneous spaces. —«— = flow generated by H, —~«--=flow gener-

ated by X, —O— =zero of vector field.

elliptic / hyperbolic
length one length one
elliptic

FIGURE 3. Orbits of the induced action on S(g).

W
A

infinitesimal generators take the form

Jd d
H=—tsin2s—+2(1—1t*) cos 2s—
as at

X

i) d
1(-1+tcos2s)—+(1—1t%)sin2s—
as at

o 3 . A D
Y=3(1+tcos2s)—+(1—1¢t)sin2s—.
as ot

This model is sketched in figure 4(a). A computation reveals that the right action
of K is generated by

(s,8) - expim(Y—X)=(s+3m, —1).
Thus for J properly containing Jy, G/J is either a cylinder or a Mobius band,
depending on the parity of the index of Jn K in K.
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FIGURE 4. The simply connected two-dimensional homogeneous spaces.

(-31) (0.1) (1)

RGN

FIGURE 4(a). The hyperbolic strip.

The parabolic case 7 =span {X} is complicated by the fact that K is not cyclic.
Since the punctured plane R?\{(0, 0)} is a parabolic orbit of the natural representa-
tion, G/J, may be obtained by placing coordinates on its universal cover. This yields
the strip Rx(—1, 1) with vector fields

] d d
H=—sin2s—+3(1—1% cos 2s—
as at

S 3 3
X =4(-1+cos2s) —+31—1*) sin 2s—
as dat

_ E] 9
Y =1(1+4cos 2s) —+3(1—1?) sin 2s—.
a8 ot

(‘g’l) 0. 1) (%’-1)

(5) e

FIGURE 4(b). The parabolic strip. 4« = curves along which X vanishes.

See figure 4(b). We identify
K =exp (RH) X centre (G)
with R XZ. The right action is generated by a vertical vector field

)
11— 2
-
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and a horizontal translation

(s, )—=>(s+m,1).
For parabolic subgroups J properly containing J,, we then have the following cases:
Case 1. J n K is not cyclic. Then J n K has generators (a, 0) and (b, n) with a e R™,
beR,and neZ". Moreover, a and n are uniquely determined, and b is determined
modulo a. Here G/J is a torus, and the family of tori is parameterized by

R*xS§'xZ".

Case 2. J nK is generated by an element of the form (a, 0). This case provides a
family of cylinders parameterized by R", which in fact never occur in an action of
G on a compact surface.
Case 3. J n K is generated by an element of the form (a, n) with n€ Z". This gives
a family of cylinders parameterized by RXZ".

Finally, suppose that s =span{Y — X}. There is just one orbit type, an example of
which is either cap on S(g) (figure 3). In coordinates, this cap becomes the disk
§2+ 12 <1 with vector fields

_ ad 0

H=-2st—+2(1-1*) —

as ot
_ d d
X=(s+1—-1)—+s(t—-1)=
(s )as s(t—1) Py
_ d d
Y=(s"—1-1)—+s(t+1)—.
(s vt Ch) o

See figure 4(c).

e n

(0.-1)
FIGURE 4(c). The elliptic disc.

Each model here has the property that the generating vector fields extend
analytically to its boundary in R*>. We will see in theorem 3.1 that the behaviour
near the boundary is topologically quite natural; it occurs along the edge of any
orbit of that type in an action on a surface.
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2. Local structure

Let M be a real analytic surface, possibly with boundary. A real analytic (C*)
action of G on M is a homomorphism from G into Diff” (M) for which the
evaluation map from G XM into M is real analytic. The infinitesimal generator of
the action «a is denoted

ay:g>x" (M, oM).
That is,
d
a*(Z)x=E alexp tZ)x
t=0

for Z € 4 and x € M; the notation x“(M, IM) refers to C* vector fields on M which
are tangent to the boundary. Since a is a homomorphism, the identities

a,(Z)a(g)x = Da(g)|a(Ad;Z)x
and
a[Z, W]=—[a(2Z), a,(W)]

hold. In particular, the space Act” (G, M) of all real analytic actions injects into
the space of anti-homomorphisms from g into x“(M, 6M). If M is compact, this is
a bijection.

In this section, we look for normal forms for a, near a point x€ M which is
either stationary or lies on a one-dimensional orbit. To describe the possibilities in
the latter case, we may assume that the isotropy algebra ;(x) is span{H, X}. For
if x is any point on a one-dimensional orbit, there is a group element g with

Ad, 7(x)=span{H, X},
and always
#(a(g)x) = Ad, #(x).
If ¢ is a diffeomorphism from a neighbourhood of a(g)x onto a subset of R* which

transforms «,, into some normal form a,, then ¢ ° a(g) transforms o, near x into
the normal form a, ¢ Ad,. That is,

D(¢ ° a(g))lye(Z2)y =a,(Adg Z)$ ° a(g)y

for all Ze€ 4 and all y near x.

Let x be a stationary point of a. Evaluating derivatives at x, we obtain the isotropy
representation of g on T, M:

Ze g Day(Z)|, € g€ (TM).

If this representation is not trivial, then it must be equivalent to the natural
representation, since these are the only two-dimensional representations of g. Since
the natural representation is irreducible, it can only occur when x is interior to M.

The linearization theorem of Guillemin and Sternberg, [1] (see also [2]) thus
transcribes as:

THEOREM 2.1 (Guillemin and Sternberg). Let x be stationary for a € Act” (G, M).
Then either ., vanishes near x, or else there exist local C* coordinates in which x
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becomes the origin of R? and o, takes the normal form

— 9 0
H=s——1t—

Js ot
- )
X=t—

as
— d
Y=s5—.

at

In the latter case, x is interior to M.

A wider variety of normal forms arises when the orbit through x is one-dimensional.
Suppose that #(x) =span {H, X}. We first choose coordinates in which x becomes
the origin of R* and a,(Y) becomes the constant vector field Y =3/ds. We then
perform a sequence of coordinate changes within R? which leave the origin fixed
and do not destroy the results of previous constructions.

The relation [H, Y]=2Y forces

ﬁ=(0(t)—2s)a—as+R(t) %

where Q and R vanish at zero. A change of coordinates of the kind
(s, ) (s, (1))

then transforms R into one of the forms

(i) R(t)=at acR, or

(i) R(t)=+t™+bt*™! m=2,beR.
A second change of coordinates of the kind

(s, )—>(s+f(1), 1)

transforms Q to zero except in a few cases — namely, the instances of (i) above with

a =-2m"" for some positive integer m. The upshot is that we may obtain coordinates
in which Y =4/ds and H is one of the following:

— d d
(1) H=-2s—+at—, ach;
as at

_ d d
(2) H=(xt"-2s)——2m™t—, meZ";
as at

- 3
(3) H=—2s—+(:tt'”+bt2"‘_1)-a—, m=2,beR.
as ot

These cases are almost pairwise inequivalent under C* change of coordinates; the
only exception is that the transformation

(s, ) (s,—1)
interchanges some cases.
Since [X, Y]=—H, we have

X=(S(t>+so(t)—s2>%+(T(r>+sR<z))‘%,
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where Q and R are as above and
S(0)=T(0)=0.
The relation [H, X]=—-2X becomes (' denoting d/ dt):
(*) Q*-Q'T+4S+RS' =0, and
(**) OR+RT'-TR'+2T=0.
In case (1), this means that
atS'(1)+45(t) =0,
and
atT'()+(2—-a)T(1)=0.
If a=0, then §=T =0. Otherwise, the general solution is
S()y=at™°,  T(t)=x'"¥9,
If = is not zero, then for T to be analytic with T(0) =0 it must be that 2/a is a
negative integer, say a=—2m"', meZ". The change of coordinates
(s, )>(s—2rmt™ t)
then leaves Y and H unchanged while putting X in the form

— d _ d
X=(o—-i*mHt*"—s)——2m 'st—.
as at

In summary, we can always choose coordinates in case (1) so that T=0. In these
coordinates, S vanishes except when a = —4m™', meZ", in which case S(¢) =ct™
A linear change of the t-coordinate then yields ¢ =0, +1, or —1.
In case (2), the equation (**) simplifies to
tIT'()—(m+1)T(r) =™+ =0.
The general solution
T =Ft""Int+ct™"!
is not analytic near ¢=0. Thus (2) in fact never occurs. In case (3), (*) and (**)
become
(2™ +b*" 1S (1) +4S(1) =0,
and
(£t + 2" HT' () +QRFmt™ ' —(2m—1)b*"" 3 T(t) =0.
Since m =2, the only solutions analytic near t=0 are S=T=0.
In summary, we have the following complete list of normal forms for a, near a
point x having isotropy algebra s(x)=span{H, X}:
Normal form (1, a), acR.

. 4 J
H=-2s—+at—
as ot
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Normal form (I, m, +), meZ".
i)

- ] .
H=-2s——4m "t—
as ot

_ J 0
X=(xt"—s)——4m 'st—
( )as at

ds’
Normal form (1II, m, b, £), m=2, beR.

_ ) .9
H=-2s—+(£t™+b>™" 1) —
as ot

3 N
X=~s2—+s(xt"+bt*"" ) —
as ot

=0
The restriction of each to the upper half plane provides a complete list of normal
forms when x lies in the boundary of M. As before, the forms listed here are almost
pairwise inequivalent, the only exceptions being that the transformation
(s, 1) (s, 1)
converts (II, m, £) to (II, m, ¥) when m is odd and (III, m, b, +) to (III, m, b, ¥)
when m is even.
In all cases, the s-axis is invariant, and the restriction to the s-axis is always

_ 3 _ 9 = 8
H=-2s—, X=-s*—, Y=—.

as ds as
The degenerate normal form (7, 0) is just the product of this representation with
the trivial representation on the t-axis. In all the other normal forms, however, the
s-axis is flanked by two dimensional (local) orbits as follows:

Normal form Local orbit above s-axis Local orbit below s-axis
(I,a),a#0 parabolic parabolic
(II, m,+), m even elliptic elliptic
(II, m,—) m even hyperbolic hyperbolic
(II, m,+) m odd elliptic hyperbolic
(II, m,—) m odd hyperbolic elliptic
(1) parabolic parabolic

The normal forms may also be grouped according to the qualitative behaviour of
the restriction of H to the t-axis. Except for the case (I, 0), each half of the t-axis
is invariant under the local flow generated by H, and the origin either attracts or
repels in each half. This phenomenon has a more natural interpretation — namely,
whether the origin attracts or fails to attract an entire neighbourhood in the
corresponding half plane under this local flow.

https://doi.org/10.1017/50143385700002066 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002066

Real analytic actions of SL (2, R) 459

Normal form Positive ¢-axis Negative t-axis
(I,a),a>0 repels repels
(I,a),a<0 attracts attracts
() attracts attracts
(III, m, b, +), m even repels attracts
(III, m, b,—), m, even attracts repels
(I, m, b, +), m odd repels repels
(I, m, b,—), m odd attracts attracts

Examples are sketched in figure 5.

FIGURE 5. Normal forms. Symbolism as in Fig. 4.

parabolic

> parabolic

¢ Pparabolic

r parabolic

(-1
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} elliptic

? elliptic

(11,2, +)

hyperbolic

> hyperbolic

(I,2,-)

r elliptic

& hyperbolic

(IL1,+)

Reflecting in s-axis yields (/I, 1, —).
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> parabolic

> parabolic

(I1L2,1,+)

!
!
/

» parabolic

r parabolic

parabolic

parabolic

(1L 3,1,-)

Imagine an orientation-preserving homeomorphism from one neighbourhood of
the origin in R* onto another which fixes the origin and intertwines the local actions
generated by two of these normal forms. Such a homeomorphism must be the
identity on the s-axis and therefore preserve the upper and lower half planes. It
follows that the two normal forms must have the same gross properties specified
in the two tables above. The following theorem says that, conversely, two normal
forms which could possibly be topologically conjugate are so.
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THEOREM 2.2. Consider the nine families of normal forms determined by the two
tables above — the case (1,0), the four families from case (II), and the four families
from cases (I) and (III'). Two normal forms are conjugate by an orientation-preserving
local homeomorphism which fixes the origin if and only if they belong to the same
family.

If we allow orientation-reversing conjugacy, the number of inequivalent normal
forms is reduced to seven.
Proof. Consider two normal forms which lie in the same family; number them one
and two. If they are of type (II), the homeomorphism

(s, )= (s, sign ()] ™/™)
conjugates one with the other.

In the parabolic case (i.e. each is of type (I) or (/II)), it is simpler to give a
general argument than to come up with such an explicit conjugacy. Let f be a local
homeomorphism of the f-axis, defined near =0, which conjugates the local flow
generated by H, with that generated by H,. Then f is a diffeomorphism away from
zero. Set

&(s, )=(s,0)+f(0,1).
With ¢, denoting the forward push of vector fields, we have
by Yl = Yz,
¢ Hi=H, along {(0, £): t # 0},
and L
$. X1 =X,=0 along {(0, #): t # O}.
Both ¢, H, and H, are solutions to

3 -
LIPS
as as

and they agree along the t-axis, so they must be equal. Similarly, both ¢, X, and

X, are solutions to

9 =~ -~

- Z = H2

as
and vanish along the t-axis, so they must be equal. a
We have ignored the more difficult but important question of how the normalizing

coordinates depend on a, at least if they are chosen carefully. This question will be
taken up in § 4.

3. Classification of actions on a surface

The previous results allow us to classify, up to topological conjugacy and up to real

analytic conjugacy, the real analytic actions of G on a surface. To keep the description

simple, we consider only compact, connected surfaces, possibly with boundary.
Let M be such a surface. It follows from theorem 2.1 (and is well known) that

the set of stationary points of an action of G on M is either discrete, hence finite,

or is all of M. Of course, every manifold admits the trivial action.
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Another possibility is that an action may have just one orbit — i.e. that M is a
homogeneous space. As determined in §1, the compact two-dimensional
homogeneous spaces of G constitute a family of tori, all parabolic, parameterized
by R* X S'xZ*. Topological and C* conjugacy are equivalent here, for the differen-
tial structure on a homogeneous space is determined by the requirement that the
natural action be real analytic.

A third possibility is that an action may have only one-dimensional orbits. Let «
be such an action. By §2, the set

P={xeM: j;(x)=span{H, X}}

is a neat ([3, p. 30]) one-dimensional submanifold which is transverse to the orbit
foliation. Let x be a point in P, P, the component of P containing x, and

go=expa(Y—-X)eG.
Since P has finitely many components and «(g,)P = P, there is a smallest positive
integer n with

a(go)Po=P,.

Let f: Py~ P, denote the restriction of a(gg ), and let L denote the explicit realization
of the homogeneous space G/Jy(x) which is sketched in figure 2. Then « is C*
equivalent to the quotient of P, X L, which carries an action on the second factor,
by the equivariant diffeomorphism

(p,s)~>(f"'p,s+nm).
Thus the C“ conjugacy class of « is determined by the diffeomorphism class of P,
the integer n, and the conjugacy class of f in Diff* (P,). The topological conjugacy
class of « is similarly determined by Py, n, and the toplogical conjugacy class of f.
Here M is a cylinder, Mdbius band, torus, or Klein bottle, when f is in Diff* [0, 1],
Diff” [0, 1], Diff* S, or Diff~ S', respectively.

The remaining possibilities, in which the action has at least one two-dimensional
orbit and at least one orbit of lower dimension, cannot be disposed of so quickly.
We first determine the toplogical conjugacy classes of such actions by analyzing the
closure of an open orbit.

Let a be such an action, w a point with isotropy algebra span {H}, and W the
orbit through w. There is a unique equivariant mapping ¢ from the hyperbolic strip
RXx(—1,1) onto W with

¢(m/4,0)=w.
Let x be a point of accumulation of ¢(0, ) as ¢ tends to one. Taking limits in

a*((l +6)X+(1-t) Y)¢(O, t)=0,

we have a,(X)x = 0. Clearly x cannot lie in a parabolic orbit, nor can x be stationary,
since any stationary point is surrounded by a parabolic orbit. So x lies in a one-
dimensional orbit, and #(x), since it contains X, must equal span {H, X }. The list
of normal forms shows that any such point contained in the closure of a hyperbolic
orbit is a sink of a,(H). Thus

lim ¢(0, t) = x,

t—>1
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and for any so€R,
lim (s, )= lim a(exps(Y—X))¢(0,1)
(s,8)~>(sg,1) (5,8)>(sg,1)

= a(exp so( Y —X))x.

Therefore ¢ extends continuously and equivariantly to the upper boundary R x{1}.
Similarly, ¢ extends continuously and equivariantly to the lower boundary R X {—1}.
The zero set of a,(H) is discrete and therefore finite. With h denoting
exp3m(Y — X), a(h) leaves this set invariant, so there is a smallest positive integer
n with a(h")w=w. Then
J(w)=exp (RH)(h"),

and ¢ induces an equivariant mapping from the quotient of R X[—1, 1] by the right
action of A" which was discussed in § 1. Let
¢:0-M

denote this induced mapping. For n odd, Q is a closed Mdbius band whose boundary
has length n. For n even, Q is a closed cylinder, each boundary component having
length $n. In either case, ¢ maps the interior of Q diffeomorphically onto W, and
since Q is compact, ¢(Q) equals the closure of W. For toplogical reasons, it is clear
that ¢ cannot map three distinct points on the boundary of Q to the same image.
Thus the only manner in which ¢ can collapse the boundary of Q is by an equivariant
mapping of order two of a boundary component to itself or, in the case that n is
even, an equivariant mapping between the boundary components.

In summary, we obtain a complete list of toplogical models for the closure of a
hyperbolic orbit when G acts analytically on a compact surface. With n e Z" playing
the same role as above, the pairwise (topologically) inequivalent models are easily
seen to be: one Mobius band for each odd n, one cylinder for each even n, one
torus for each even n and each integer k in the range 0= k <jn, and, for each n
divisible by four, one Mobius band and one Klein bottle.

The same techniques apply to analyzing the closure of a parabolic orbit, although
the details differ. The key here is to focus on the zero set P< M of a,(X). Suppose
that a has a parabolic orbit W. Then all two-dimensional orbits are parabolic, and
P is a neat one-dimensional submanifold of M, invariant under the flow generated
by a,(H), which intersects any one-dimensional orbits of a transversely. If p is a
stationary point of a, then p is a source for the restriction of the H-flow to P. If
on the other hand p is a point of intersection of P with a one-dimensional orbit,
then under the H-flow p may independently attract or repel each half of a neighbour-
hood within P, depending on the normal form of a, near p.

Let we Wn P. Recall that J(w) is the semidirect product of exp (RX) and a
discrete subgroup of

K =exp (RH) X centre (G).
As in § 1, we identify K with RXZ. Let ¢ be the equivariant mapping from the
parabolic strip R X (—1, 1) onto W which sends the origin to w. The set S of points
of intersection of P with zero- and one-dimensional orbits is finite and may be
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characterized as the zero set of a,(H) on P. For each integer n, ¢ maps the segment
{n7}x(—1,1) to a connected, H-invariant, subset of P\S - i.e. a component of P\S.
Since there are only finitely many such components, the inevitable duplication
implies that J(w) n K contains some element (a, n) with n#0. Were J(w)nK a
lattice, then W would be a torus, hence equal.to M, which is not the case we are
considering here. Thus J(w) n K is cyclic, and we choose the generator (a, n) with
neZ*. In particular, W is homeomorphic to an open cylinder, and ¢ maps the
segment {0} X(—1, 1) homeomorphically onto a component of P\S.
Since

lim¢(0,f)=xeS and lim ¢(0,t)=yeS

t=>1 t->—1
exist, it follows as before that ¢ extends continuously and equivariantly toR X[—1, 1].
It is possible that y is stationary for a, but since x attracts at least a half neighbour-
hood in P under the H-flow, x cannot be stationary. If y is stationary, we have by
theorem 2.1 that (a, n) = (0, 2). Then, since a(exp 27 (Y — X)) fixes ¢(0, ¢t) for all
te(—1,1), the orbit through x has length one or two. In this case, the closure of
W is topologically conjugate either to the closed disk s>+ t* < 1 with action generated
by

_ ) 3
H=5(1-5*+t5)——t(1+s*—1*) —
s(=s )as (1+s )az

_ d d
X=t(1-§>)——st>—
as at

_ i) d
Y=—st—+s(1—1*)—
as at

or to the projective space obtained by gluing the boundary of this disk to itself
antipodally. In the case that y is not stationary, let Q be the quotient of RX[-1, 1]
by the right action of J(W)n K. As before, ¢ induces an equivariant mapping ¢
from Q onto the closure of W which maps the interior of Q diffeomorphically onto
W and collapses the boundary of Q in at worst a two-to-one manner. Notice that
Q is a closed cylinder, and each boundary component has length n.

Recall that the pair (a, n) e RXZ" is an invariant of the orbit W, being independent
of the choice of we P~ W. In summary, we have the following complete list of
topological models for the closure of a parabolic orbit: one closed disk with
(a, n)=(0, 2), one projective space with (a, n) = (0, 2), one cylinder for each pair
(a, n), one torus for each pair (g, n) and each integer k in the range 0 < k <n, and,
for each pair (a, n) with n even, two distinct Mobius bands and a Klein bottle.

There is just one type of elliptic homogeneous space, an example of which is the
elliptic disk s*+¢°<1 presented in § 1. If W is an elliptic orbit of some action and
¢ is the unique equivariant mapping from this elliptic disk onto W, then the same
techniques as above show that ¢ extends continuously and equivariantly to topologi-
cal embedding of the closed disk. Thus there is just one topological model for the
closure of an elliptic orbit.
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stationary
point

A hyperbolic cylinder. The parabolic disk

5D

A hyperbolic Mobius band. The elliptic disk.

A parabolic cylinder.

FIGURE 6. Homogeneous spaces with boundary. Note: all other ‘topological building blocks’ are obtained
from these by equivariant gluing of boundary components to themselves or to each other.

Examples of some of these homogeneous spaces with boundary are sketched in
figure 6. Notice that an analytic action on a compact surface has finitely many open
orbits, since each point has a neighbourhood which intersects at most two open
orbits. If the surface is connected, then we have already observed that either every
open orbit is parabolic or none is. Finally, if there are parabolic orbits, the pair
(a, n)eRXZ" associated to each parabolic orbit must be constant. This follows
from analyticity if nothing else, since if

exp (aH) - exp nm(Y — X)
acts as the identity on some component of P\S, where P and S are as in the discussion
of parabolic orbits above, then it must act as the identity on the corresponding
component, say Py, of P. Since every orbit intersects Py, (a, n) is an integral multiple
of the pair associated with each parabolic orbit. Choosing n to be minimal among
these pairs establishes the claim. Combining these observations with the previous
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analysis, we have proved the following:

THEOREM 3.1. Consider the family of real analytic actions of G on compact, connected
surfaces which have at least one open orbit and at least one other orbit. For such an
action, either all open orbits are parabolic or none is. If all are parabolic, then J(x)
is constant among those points x with 7(x) = span { X }. Subject to these two restrictions,
a complete list of topological models for such actions is obtained by gluing finitely
many of the ‘homogeneous spaces with boundary’ listed above by equivariant homeo-
morphisms of their boundaries.

Some crude consequences are that G can act non-trivially on only those surfaces
enumerated in the introduction, that an action can have no more than two elliptic
orbits, and that a non-trivial action can have no more than two stationary points.

To obtain a complete list of topological models for actions by SL (2, R), we use as
building blocks only those homogeneous spaces with boundary upon which
exp 27 (Y — X) acts as the identity. There are only finitely many of these building
blocks. In particular, the pair (a, n) associated with each parabolic orbit must be
(0,1) or (0,2).

Theorem 3.1 seems to suggest that each topological model admits a differential
structure making the action real analytic. We will now prove this and enumerate
the differential structures which work.

Let M be a toplogical manifold. A local action of G near x € M is a continuous
mapping

(8 y)—>a(g)y

from a neighbourhood of (1, x) in G X M into M such that, if g and h are sufficiently
near 15 and y is sufficiently near x, then

a(lg)y=y
and

a(gh)y=a(g)a(h)y.
An action germ at x is the germ of a local action. Two action germs at points which
may lie in different manifolds will be said to be topologically equivalent if there is
a local homeomorphism from a neighbourhood of one point onto a neighbourhood
of the other which conjugates them. Given an action germ [a] at x, we will say that
[a] admits the germ e of a C* differential structure near x if, in some neighbourhood
of (15, x), the mapping (g, y)— a(g)y is C* with respect to representatives of these
germs. There is similarly a notion of C* equivalence between two given action
germs, each with a given admissible structure germ.

Now let (M, a) be one of the toplogical models described in theorem 3.1. Let &
denote the sheaf over M consisting of the C“ structure germs admitted by the
action germs [« ],, x € M. The stalk of &€ over x will be denoted &,. For each xe M,
we have a complete set of C“ normal forms for [a], - that is, a family B of action
germs at the origin of R® (or of the upper half plane if x € 8M) which are C* in
the usual structure & and such that:

(1) [a], is topologically conjugate to each [8]€ B, and

(2) foreach element of &,, there is a unique [8] € B to which [a], is C* conjugate.
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Each topological conjugacy {¢] from [a], to [B]e B determines an element
[¢7']- & of &, and

(67']1- 7=l '] &
if and only if [¢¢ '] and [ '] are C*. Thus &, is in one-to-one correspondence
with the union over B of the coset spaces

41/ #1515

where g is the group of toplogical self-conjugacies of [8] and #;, is the subgroup
consisting of those which are germs of C* diffeomorphisms.

The case-by-case analysis of &, runs as follows. First, if x lies in an open orbit,
it is well known that &, is a singleton. It is also true that &, is a singleton when x
is stationary, for here theorem 2.1 gives exactly one normal form, and it is easily
verified that in this case ¥ consists of the germs of scalar multiplications. Hence
%= %, proving the assertion. Now suppose that x lies on a one-dimensional orbit.
Using the obvious bijection from &, onto &,;, induced by a(g) for each ge G,
we may assume that ;(x)=span{H, X}. If x is interior to M, we have (theorem
2.2) the following six possibilities for the family B of normal forms:

(1) {(II, m, +): m even}

(2) {(IL, m,—): m even}

(3) {(IL, m,+): m odd}

(4) {(L, a): a> 0}y {(II, m, b, +): m odd}

(5) {(L,a): a< 0}y {(II, m, b, —): m odd}

(6) {(III, m, b, +): m even}.
Recall that (II, m, +) is C* equivalent to (II, m, —) when m is odd, and (III, m, b, +)
is equivalent to (III, m, b, —) when m is even. To obtain uniqueness in families (3)
and (6), we have selected just one of the pair. The normal forms of (1), (2), (4),
and (5) admit at least one orientation-reversing self-conjugacy which is C* — the
mapping (s, t)— (s, —¢) — while those of (3) and (6) admit no orientation-reversing
self-conjugacy. Thus in either case 4/ is equivalent to 9°/ #°, where the super-
script denotes preservation of orientation. The following is easily verified:

LeEmMA 3.2. For each of the normal forms of (1), (2), and (3), 4° is trivial. For
those of (4), (5), and (6), 4° consists of the germs of
(s t)»{(s’\y”t) ift=0
’ (s, ¥,t) ift=0
as a and b vary independently over R. Here ¥ denotes the restriction of the H-flow
to the t-axis. Such a germ is in X° if and only if a=b.

Thus ¥°/ #° is trivial in cases (1), (2), and (3) and is a line in cases (4), (5), and
(6). Finally, if x € dM, then B is the restriction of one of the following families to
the upper half plane:

1) {(JL,m,+): meZ"}

2) {UL,m,—): meZ"}

(3") {I,a):a>0}yu{(II,m, b,+): m=2}

@) {I,a): a< 0}y {(III, m, b, =): m=2}.
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It follows from lemma 3.2 that ¢ = in all of these cases.

Before enumerating the sections of € — i.e. the differential structures on M in
which a is real analytic — we need the following facts. These hold for general reasons
having nothing to do with the particular group G or particular pairs (M, a) con-
sidered here or even with analyticity.

LemMma 3.3. (a) The natural action & on % induced by a is continuous.

(b) If P is a topologically embedded orbit of a, then &|p is a covering space.
Proof. (a) Let xe M, ge G, and e € &, be given. By definition, any neighbourhood
of &(g)e contains the germs [ #],, y € U, of some admissible C* structure ¢ on a
neighbourhood U of a(g)x, where

[£lacerx = &(g)e.

Let ¢’ denote the differential structure on
U=a(g)'U
induced by a(g)~'. Then $' is admissible, and

[#Fl=a(g) [Flegpx=e

Now let V be a neighbourhood of the identity in G and W < U a neighbourhood
of a(g)x such that the mapping

(v, y)—>a(v)y
takes VX W into U and is C* with respect to #. Then if he VA V™! and
zea(g)™' W, we have

a(hg)[#']. = a(h)[Flaie)z =[Flainpz-
Since {{#'].: z€ a(g) ! W}is a neighbourhood of e and (V'r\ V') g is a neighbour-
hood of g, this shows that & is continuous at (g, e).
(b) Let xe P and e€ &, be given. Since the mapping
g—>d(g)e

takes J(x) continuously into &,, the identity component J, of J(x) must fix e. Thus
the mapping

F:G/Jy> €|p

F(glo) = G(g)e
is well defined. On the other hand, F is open. To show this, it suffices to demonstrate
that F is open at Joe G/J,. Let # be an admissible structure on a neighbourhood
U of x such that [#],=e¢, and let V be a neighbourhood of 15 and Wc U a
neighbourhood of x such that the mapping (g, y)— a(g)y takes V' X Winto U and
is C* with respect to #. Now let S be any neighbourhood of 15. If ge SA VA V™!,

then .
F(gJo) = a(g) £l =[Flae)x-
Since a(Sn V n V™ !)x is a neighbourhood of x in P, this shows that F(SJ,) includes

the neighbourhood
{{#Fy:yea(SNVnV Hx}

of e in &|p. Thus F is open. It follows that the image of F is open and is a covering
space of P. Since &|p is disjoint union of such sets, assertion (b) is proved. O
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Now let (M, a) be one of the topological models, and choose one point x from each
one-dimensional orbit P. By lemma 3.3, the possible sections of & are in one-to-one
correspondence with the ways of choosing, for each P, a structure germ e € &€, which
is fixed by a@(J{(x)). Write
J(x) =JoX(exp nm(Y — X)),
where J, is the component of the identity and » is the length of P. Since a(J,) fixes
&, pointwise, the question is: which structure germs are fixed by
a(exp nm(Y — X)).
In other words, which admissible structure germs also make
[a(exp n7(Y — X))],
and its inverse real analytic?

Let us choose x € P with ;(x) =span {H, X}, and let B denote the family of C*
normal forms for {a],. Let ec &,, and choose a C* conjugacy [¢] from [a], to
some [B]e B. Of course, [B] is uniquely determined by e. Let u denote the germ
of a(exp nm(Y — X)) at x. Since exp nw(Y — X) is central, u commutes with [«a],,
SO

[@lul¢] " € 6= %4
Except when P is locally flanked by parabolic orbits, this implies (lemma 3.2) that
[¢]uld] '€ ¥ - i.e. that @(exp nm(Y — X)) fixes e.

Now suppose that P is locally flanked by parabolic orbits. Let (a, m) eRXZ" be

the pair which characterizes all parabolic orbits of a. That is,

J(y)=exp (RX)exp (aH) : exp mm(Y — X))
for all ye M with ;(y)=span{X} (see theorem 3.1). If u preserves orientation,
then m = n; if u reverses orientation, then m = 2n. In the former case, [¢Ju[¢] "
is a self-conjugacy of [B] whose restriction to the t-axis is the time-(—a) flow of
H. By lemma 3.2, [¢]u[¢]" is the germ of

(s, )—> (s, ¥_,1)

(notation as in lemma 3.2). In particular, it is in ¥, so a(exp n7r(Y — X)) fixes e.
In the final case, where u reverses orientation, no such conclusion holds. We can
only say that the square of [¢]u[¢] " takes (s, t) to (s, ¥_,t), so [¢Ju[¢] " is the
germ, for some b, ceR with b+c=—a, of

(s, t)'_*{(s, ¥, ift=0
(s,—¥.) ifr=0.
For d e R, denote by f; the mapping
(s, ¥, ) ift=0

(s t)'_){(s, ) ift=<0.

Then, as we have seen, R is in one-to-one correspondence with those elements
of &, which make [a], C“ conjugate to [B], and this correspondence is given
explicitly by

d—[¢7'fa)" %,
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where & is the standard C*“ structure. There is precisely one value of d, namely
=1(¢—b), such that

[fa'dlule 'fule %,

and this is the unique value of d such that u and u™! are C* in the structure germ

[67'ful- P &.
In summary, we have proved the following:

THEOREM 3.4. Let (M, ) be one of the topological models described in theorem 3.1.
From each one-dimensional orbit P; choose a point x; with 7(x;) =span {H, X}, and
~ let B; denote the family of C* normal forms for [a],,. (B; is one of the 6+ 4 families
discussed earlier.) If P; is two-sided in the sense of separating some neighbourhood
of itself and is flanked by parabolic orbits, then for each [ B] € B; there is a one-parameter
family of germs along P; of admissible differential structures (near P;) in which [a],,
is C* equivalent to [B]. Otherwise, there is for each [Bl< B; a unique such germ.
Each choice of germs for the various orbits P; determines a unique admissible differential
structure on M, and all admissible structures on M are obtained in this way.

If we were to take the entire collection of topological models and assign to each
model the entire range of admissible C“ structures, we would of course obtain
every C“ conjugacy class for actions of the kind considered here. However, there
would be duplication. The question arises: when do different structures produce
actions which are C* equivalent?

For a real analytic action a, the normal form [B] corresponding to a point x with
7#(x)=span {H, X} depends only on the orbit P in which x lies. Let [8](P) denote
this normal form. Then, for a topological conjugacy ¢ from a, € Act” (G, M,) to
a,€ Act” (G, M,) to be a C* diffeomorphism, it is necessary that

[B)(¢P)=[BI(P)

for all one-dimensional orbits P of a,. By theorem 3.4, this necessary condition is
sufficient except when there exists a two-sided orbit P flanked by parabolic orbits,
and it fails to be sufficient in that case.

Suppose that «, has parabolic orbits, that M, is not a torus, and that

[B1(¢P)=[BI(P)

for all one-dimensional orbits P. By theorem 3.1, we can order the open orbits
Wl,' ey Wp of a; SO that

clos (W;) nclos (W,q)

is a one-dimensional orbit P;. Note that P,, ..., P,_; are disjoint and that there are
two other orbits P, and P, each a circle or a point, with

ClOS(W1)=POU W1UP1
and
clos(W,)=P, ;0 W,UP,
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Fori=1,..., p,choose a point w; e W, with ;(w;) =span { X}, and for teR, x € M,,
define
a;(gexp (tH))w; if x=ai(g)w;

x ifxe W,
Then ®,(¢) is continuous, well defined, and commutes with ;. Now, ¢ may not be
a diffeomorphism, but by theorem 3.4, its restriction to clos (W;) isa C* embedding
for each i. By lemma 3.2, we can find ¢, €R such that

¢ o D,(1,)
is an embedding of clos (W, u W,), and then find ¢;€R such that
@ o Dy(1y) o P5(13)

is an embedding of clos (W, u W, u W,), etc. Ultimately we obtain a diffeomorph-
ism. Thus the existence of ¢ in this case implies that a, and a, are C“ equivalent.
Finally, suppose that everything is the same as above except that M is a torus. We
ask: are a; and a, necessarily C“ equivalent? The answer is no. The set-up is the
same as above, except that in this case P,=P,, a one-dimensional orbit. We can
again find ¢,,.. ., ¢, €R such that

¢e q)Z(tZ) g0 q)p(tp)7
when restricted to any half-neighbourhood of P,, is an embedding, but the derivative

may have a jump discontinuity along P,. Now suppose that ¢ were a C* conjugacy
with

d)i(t)x={

$(W,)=¢(W,) foralli
Replacing ¢ with
o a(exp nw(Y —X))
for an appropriate integer n, we may assume that
Ylp,=¢|p, foralli
By lemma 3.2, in order to be smooth near P,u P,u --- UP,_,,
Y logody(t)o o D,(t,)
must be of the form
Dy(1)e - o®,(1)
for some real number t. This forces it to be smooth near P,, implying that
¢ ° q)Z(tZ) orr-0 q)p(tp)
is so. Thus if we failed originally, no such conjugacy ¢ exists. Furthermore, we have
seen that the differential structure of M, near P, may be admissibly changed in a
one-parameter way without affecting [B](P,). Thus failure is to be expected. There
might be (?) a C* conjugacy between a, and a, such that, say,
$(W) =(W),..., 4(W,)=d(W)),
but this would be a fluke.
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In the language of theorem 3.4, these comments amount to the following:

THEOREM 3.5. Let (M, a) be one of the topological models described in theorem 3.1,

P,, ..., P, its one-dimensional orbits, and &, $ admissible structures yielding the same
values for [BI(P,),...,[BI(P,). If there is no two-sided P; flanked by parabolic orbits,
then

F=4.

If a has parabolic orbits and M is not a torus, then (M, a, &) is C* equivalent to
(M, a, #). If a has parabolic orbits and M is a torus, there is precisely a one-parameter
family of such structures § such that the family {(M, a, $)} is pairwise inequivalent
under C* conjugacy leaving each orbit invariant.

4. Stability and unfolding in Act” (G, M)

The group of diffeomorphisms of a surface M acts on the space of actions of G on
M by conjugation. Specifically, the diffeomorphism f transforms the action a into
the action a’ defined by

a’(g)=fa(g)f', geG.

In appropriate topologies to be discussed below, this action is continuous. The object
of this section is to show that for many values of a there is a finite dimensional
universal unfolding (with respect to the action of Diff (M)) of a neighbourhood of
a. That is, there is a continuous mapping

B+ f(B) € Dift (M)
defined on a neighbourhood of « such that the operation

ﬂ'_)Bf(B)

retracts this neighbourhood onto a subset V which is homeomorphic to a finite-
dimensional algebraic variety. The elements of V are interpreted as models for
perturbations of a.

This definition of universal unfolding is somewhat arbitrary in that it simply
matches what we do here. Certaintly a less restrictive definition could be useful
(that given in [6], for example). However, in the presence of a finite-dimensional
unfolding as defined above, it should in general be easy to determine whether an
unfolding exists which satisfies additional conditions. For example, V might be
required to be a local cross section to the action of Diff (M) in the sense that if v
and v’ are distinct elements of V, then there should be no diffeomorphism near the
identity which transforms v into v'. Similarly, V might be required to be a local
section in the stronger sense obtained by removing ‘near the identity’ from the
previous sentence. One might also require that V be a manifold transverse to orbits
in appropriate Banach structures. Although we will not explore any of these
additional conditions, they turn out to be satisfied by most of the unfoldings we
construct.

We continue to work in the C* category and to assume that M is compact and
connected. Considered as a subset of C“(G XM, M), Act” (G, M) inherits a weak
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C” topology ([3, p- 35]). This topology is metrizable, and «,, a,, ... converge to
a if and only if, for each Z € g, a,1,(Z), a,,(Z),... converge to a,(Z) in the C~
sense.

Let P be a one-dimensional orbit of an action a. The normal form for @, near
a point x € P with #(x) =span {H, X} depends only on P. It therefore makes sense
to define A (P) as the eigenvalue other than —2 of the derivative of a,(H) at such
a point x. Thus:

A = a if the normal form is (I, a);

A =—4m™! if the normal form is (II, m, £);

and A =0 if the normal form is (III, m, b, +).
We say that P is infinitesimally isolated if A(P)# 0 and that « is non-degenerate if
every one-dimensional orbit is infinitesimally isolated.

For NeZ™, let

Gy =G/{exp Nn(Y — X)).

For example, G, =SL (2, R).

THEOREM 4.1. The set of non-degenerate actions is open in Act” (G, M). For every
positive integer N, the set of non-degenerate actions is dense (and open) in
Act” (Gn, M).
Proof. The trivial action is isolated even in the space of C' actions of G on M, [8].
If a is non-trivial and non-degenerate, the points at which a,(H) vanishes are
hyperbolic. Any C' perturbation of the H-flow therefore has this same number of
fixed points, each hyperbolic. In particular, an action which is even C' close to «
must be non-degenerate.

Let N be a positive integer, and let a € Act” (Gn, M) be degenerate. The zero
set Q of a,(X) is a neat one-dimensional submanifold, and

a(expR(Y—-X))Q=M.

Let S, denote the set of stationary points of a. On M\S,, define the multi-valued
function 6 by the statement that

xe a(exp 8(x)(Y - X))Q.
Notice that 6 is real analytic on M\S,, defined up to multiples of =, and that
a, (Y—-X)0)=1.

Now let f: Q- Q denote the restriction of a(exp w(Y —X)). Since f has finite
order, it is easy to see that f leaves invariant some C* vector field Z, on Q which
vanishes on 3Q = Q ndM and in addition satisfies:

(1) if o has only one-dimensional orbits, then Z, is Morse-Smale;

(2) if a has at least one open orbit, then Z, (x) =DZo(x)=0 if x€ S,, and
Zo(x)=0, DZ5(x)#0 if x is a point of intersection of Q with a one-dimensional
orbit.

Now, Z, extends uniquely to a vector field Z on M which commutes with a, (Y —
X); clearly it extends so to M\S,, and the assumptions on Z; near a stationary
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point easily show that the extension is analytic near stationary points. Let
H. =a,(H)+ecos(20)Z
X, =a,(X) +1esin'(20)Z
Y. =a,(Y)+3esin (20)Z.
These satisfy the bracket relations
[H., X.]=-2X,, [H,Y.]=2Y,, [X.,Y.]=—-H..
We omit the computations, but they are based on the identities
sin (20)a, (H)+(—1—cos (260))a, (X)+(1—cos (20))a,(Y)=0
a, (H)(0)=—sin (26)
@, (X)(0) =3(—1+cos (20))
a,(Y)(8) =3(1+cos (20))
Z(6)=0
[a (Y~ X), Z]=0.
When ¢ is small but not zero, the zeros of H, are hyperbolic, so the action generated
by H,, X,, and Y, is non-degenerate. Since

YE_XE = a*(Y_X)a
this is indeed an action by Gx. 0

Surprisingly, non-degenerate actions are not always dense in Act” (G, M). For
example, there is a diffeomorphism f of S* such that for any h near f in the C?
topology:

{k € Diff (§"): hk =kh}={h": neZ},
(see [4)). Build a torus by identifying (p, s) with (f'p, s+ a) in S* XR. This torus

carries the degenerate action generated by vector fields

a, (H) =—sin (m%
@, (X)=3(—1+cos (2s)) %

o, (Y)=3(1+cos (2s)) ais

The zero set Q, of a,(X) is a circle, and the first return mapping of a, (Y —X)
is equivalent to f by construction. If B is near a, there is a unique B, (H)-invariant
submanifold Qg near Q,, which by uniqueness must be invariant under S(exp # (Y —
X)). Since the restriction of B(exp m(Y — X)) to Qs is equivalent to a mapping
near f, B, (H) must vanish along Q. Thus 8 is degenerate.

The main result of this section is the following.

THEOREM 4.2. There is a finite-dimensional universal unfolding near each non-
degenerate action in Act” (G, M) or in Act” (Gy, M), NeZ",
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The precise nature of the unfolding cannot easily be summarized; there are many
cases. The trivial action and transitive actions will be discussed below. For actions
having a hyperbolic or elliptic orbit, the variety V is a point, i.e. such actions are
rigid. For a non-degenerate, non-transitive action a having a parabolic orbit, V is
usually a vector space. There is one dimension for each one-dimensional orbit P of
a, indicating the variation of A(P). If the unfolding is taking place in Act® (G, M)
and « has no stationary point, there is one additional dimension indicating a variation
of the conjugacy class of subgroup which characterizes all parabolic orbits (cf.
theorem 3.1). If M is a torus and the unfolding occurs in either Act” (G, M) or
Act” (Gn, M), there is an additional degree of freedom as suggested by theorem
3.5. In one unusual and interesting case, however, V is not a vector space. In
addition to the vector space of parameters described above, there is in this case a
transverse line along which all elements but a have hyperbolic orbits.

Let us dispose of the special cases. Since the trivial action is isolated [8], there
certainly is an unfolding in this case. Next, consider a transitive action a; M is then
a (parabolic) torus. Clearly any action near a is also transitive. Choose x € M with
7o (x)=span{X}, and write

J.(x)=(X, (a,0), (b, n)) withaeR", beR, neZ",
The notation means that J, (x) is generated by
exp (RX) u{exp (aH)}u{exp (bH) - exp nw(Y — X)}.
If B is near a, then #4(x) must be a parabolic subalgebra near span {X}, so there
is a unique value of 6 near zero with
7#8(x) =span{Adexp-o(y-x) X}
Set x5 =B(exp 6(Y — X))x; then s5(xg) =span{X}. It is easy to show that there
are unique small constants 8§ and & with
Jﬁ (xB) = <X’ (a + 8, 0)7 (b+ £, n)>9
It is also easy to show that there is a continuous mapping
(8, £)—>TI(8, e)e Act” (G, M)
with I'(0, 0) = a and
Jrse(x) =(X,(a+8§,0), (b+e, n)).
Now for B near a, let f( 8) be the unique conjugacy between B and I'(8( 8), £(B))
which sends x; to x. This produces a two dimensional universal unfolding near a.
If we consider only actions by Gy, then in the previous construction b is a multiple
of anN~', and a perturbation B8 lies in Act® (Gy, M) if and only if £(B) is the
same multiple of &§(8)nN~'. Thus the unfolding in Act” (Gy, M) is one-
dimensional.

For the remaining cases, in which « is non-degenerate, non-trivial, and non-
transitive, we employ a method which seems fairly general, although for the most
part we fill in the details ad hoc. Let {x,, ..., x,} consist of the stationary points of
a together with one point having isotropy algebra span{H, X} from each one-
dimensional orbit. Fix normalizing coordinates

¢i: U;»>R?
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about each point x;, and if x; is not stationary let n; be the length of the orbit of «
through x;. The first step is to find what might be called an unfolding of the local
action near x; determined by a. We consider perturbations of the coordinate
representations of a, (H), a,(X), and a,(Y) which satisfy the same bracket rela-
tions. If x; is not stationary, we also consider perturbations of
¢i° alexp mm(Y — X))o b;'
which commute with the perturbed vector fields. We obtain a space »; of models
for such perturbations; »; is a variety in the appropriate topology. Formally, »;
consists of triples of vector fields defined on some fixed disk or half disk s*+t*<R;
together with an embedding from some fixed smaller disk or half disk s*+¢*<p;
into the larger one when x; is not stationary. For 8 near a, we obtain coordinates
¢f: Ui >R?

about x; with:

(i) Ulc U, and ¢7 is the restriction of ¢;;

(ii) ¢? varies continuously with S;

(iii) the image of ¢# contains the disk or half disk s*+*<R;;

(iv) ¢f transforms B, and B(exp mw(Y —X)) (when x; is not stationary) into
some w;(B)€Em;.

This construction is the local unfolding.

For the second step, let ¢ denote the collection of ends of open orbits of a.
Parabolic orbits have two ends, elliptic orbits have one, and hyperbolic orbits have
one or two. A covering

{‘/i}ISiSPU{VE}Eee
of M is defined as follows. If x; is stationary, choose a small disk V;< U, about x,.
If x; is not stationary, let V; be a regular tubular neighbourhood of the orbit of a
through x; small enough that
Vi< Blexp [0, mml(Y = X)) (¢F) H(s, 1): s>+ 1*<p;}
for all B near a. These sets V; should be chosen small enough that their closures
are disjoint. Now, ¢ is represented by the components of V;\ (orbit of a through
x;) as i ranges from one to p. Let U be such a component representing E € ¢, and
W the orbit of a containing U. Taking
clos (U)u(Wiclos (ViU - -+ L V,)
and then removing a very small closed tubular neighbourhood of the orbit through
x;, we obtain an open set Vg. The following properties hold:

(1) {Vi}1=i=p9{VE}Ec. is an open cover of M;

(2) there exists a unique index i(E) with Ve n Vg # J;

(3) Ve n Vi, is connected;

(4) clos (VE) is contained in an open orbit of a.

For each E € ¢ fix a choice of

Ye € Ve Vigyn Uipy,
and for B near « define

yE =(ofe)) diE) Ve
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We will in fact find it convenient to choose
ye = ($ie)) (0, 1(E))
where #( E) is moderately small in absolute value. Now let W be a two-ended open
orbit of a, with D, E € ¢ being its ends. Fix g = g(W) € G such that
a(g)yp = ye.
If B is near a, then B(g)y% is near y%, so
ofie) (B(R)YD) =u(B, W)

with u € R? near (0, t(E)). If {W,, ..., W,} are the two-ended open orbits of @, we
write u;(B) for u(B, W;). Define

I': neighbourhood of @ = #e; X+« + Xom, XR*X - - - XR?

q times

F(B)=(I-"1(B)’ .. ,Mp(ﬁ)7 ul(B)y- sy uq(B))

This I is the primary tool for unfolding a neighbourhood of a.
It turns out that J5((¢#)7'(s, 1)) may be determined from the normal form pu,;(B).

In particular,
Js(y8) =T ((¢%£)) (0, t(E)))

may be determined. Such a phenomenon probably would not hold in a more general
problem — we would only expect to determine the intersection of

Js((6)7'(5, 1))

with large compact subsets of G — but we will not look a gift horse in the mouth.
If D and E are the ends of W, and g =g(W)), then the relation

Js(B(@)yD)=8"Js(yD) 8"

imposes a restriction on the possible values of I'. We write this as the ‘consistency
condition’

(*) JM-.'(E)(B) (uI(B)) =8 Jl‘-i(p)(B) (O’ t(D)) ' g_l'

Thus there are g different consistency conditions. Let

%gmlx”-Xm,,Xsz---sz

be the elements satisfying all these conditions. We will show:

THEOREM 4.3. If B and y are near a with T'(B)=I(y), there is a canonical
F =F(B, y) e Diff* (M) with B =y. The dependence of F upon ( B, v) is continuous,
and F(B, B) =idy,.

THEOREM 4.4. There is a continuous mapping B from a finite-dimensional algebraic
variety into Act” (G, M) such that the image contains a and T > B is a homeo-
morphism onto a neighbourhood of T'(a) in U.
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These theorems achieve a universal unfolding of a neighbourhood of a. The mapping
B '_)BF(B,B(FDB)"F(B))

retracts a neighbourhood of o onto the image of B.

The unfolding thus constructed is not the smallest possible and does not live up
to the advance billing given after the statement of theorem 4.2. As a final step, we
briefly describe an unfolding of the image of B which, composed with the original
unfolding, completes the project.

We begin with step one. The following lemma is surely widely known and is
therefore offered without proof.

LEMMA 4.5. Let Z be the family of C* vector fields on the real line which vanish
only at the origin and have non-zero derivative there. If Z € &, there is a unique C*
embedding f:R— R with Df(0) =1 which linearizes Z. Furthermore, f depends con-
tinuously on Z in the weak C topologies.

Consider the normal form for «, near a stationary point. Let H X, and Y be C¥
vector fields which are close to s(3/ds)—1(3/ot), t(8/ds), and s(3/3t), respectively,
in some fixed neighbourhood of the origin and satisfy the appropriate bracket
relations. Translating, we may assume that H vanishes at the origin. Let 8 denote
the local action of G generated by these vector fields. Since

_ 1 0
DH|(0,0)*(O _1> »

I DB (exp tH)| 0.0 0]l = exp [3t/2| ] v]|
for all veR” and t€R. On the other hand,
DB (exp tH)| (0.0 X (0, 0) = exp (21) X (0, 0)
DB (exp tH)| 0.0, Y (0,0) =exp (—21) Y (0, 0)
by virtue of the bracket relations. Thus X and Y also vanish at the origin.

Let h=8(exp27(Y —X)). Since D(Y —X)|(0,) is a commutator, it has trace
zero; thus Dh(0, 0) has determinant one. Also, Dh(0, 0) commutes with matrices

known to be near
N R O
o -1/’ 0 0/’ 1 0/’

so it must be a scalar multiplication. Since it is near the identity, Dh(0, 0) must
therefore be the identity. Now, the unstable manifold of the origin for H is C*
(proved below using transversality) and invariant under h. Since h commutes with
H, it follows from lemma 4.5 that h fixes all points of this unstable manifold. Then,
since the image of this unstable manifold under 8(exp R(Y — X)) contains a neigh-
bourhood of the origin, # must fix all points. We apply the familiar change of
coordinates

we have

1 (> (cos® —siné@
] ~ . 0 Y_ y A
(s t)'_)27r L (sm 6 cos O)B(CXP ( X)) (s, 1) db
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In the new coordinates,

Y-X= —ti+ si.

as ot
The argument showing that X vanishes at the origin also shows that X vanishes
along the entire unstable manifold. On the other hand, the points at which the
d/ds-component of X vanishes constitute, by transversality, the graph t=f(s) of
a C* function f which depends continuously upon X. Also, since the unstable
manifold is invariant under scalar multiplication by —1 —i.e. under 8(exp 7w(Y — X))

- f is odd. Write

f(s)=s-u(s?
and apply the change of coordinates

(5, )>(s—t- u(s*+63), t+s- u(s>+1%).
This flattens the unstable manifold without affecting Y — X. Finally, let F be the
unique transformation of the s-axis with DF(0) =1 which linearizes H. Again, F
must be odd. Writing

F(s)=s-v(s?),
apply the transformation
(5, )>(s- v(s*+13),t- v(s*+12)).

This linearizes H along the s-axis without affecting ¥ —X. The system

d - _ —
[—:3+s—,H]=—2(y+X)
as ot
[—t£+s£, Y+X’] =2H
as ot

with initial data

_ d o a
= — + =
H(s,0) asas, (Y +X)(s,0) sat

has unique solutions. One can easily show that if H is analytic through the origin,
a must equal one. Thus H, X, and Y constitute the natural linear representation
of ¢ in the final coordinate system.

This shows that perturbations of the linear normal form may be converted to this
normal form by a C* change of coordinates which depends continuously on the
perturbation. The model space »; is therefore a point in this case. Although we
have been loose about the domain of the change of coordinates, it is clear that if
we consider perturbations defined on some disk s*+t*<R, and if R’ <R is given,
then the domain of the change of coordinates will contain the disk s*+t*<R’
provided the perturbation is near enough the original on the larger disk. Similar
considerations hold true for the local unfoldings exhibited below.
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Let (H, X, Y) be a perturbation of either the normal form

(L,a),a#0:

- d 9
H0=_28—+at_
as at
_ , 9 3
Xo=—s"—+ast—
as at

_ d

Yo=—

° as

or (II, m, +):

3 I
Hy=-2s——4m t—

as at
_ a d
Xo=(£t"—s¥)——4m lst—
0=( )as at
— d
Y, =—.
" as

Translating, we again assume that the unique zero of H is the origin. The transfor-
mation '

(s, )~ B(exp sY)(O, 1)

straightens Y into the constant vector field d/8s. We now have:

I?=(O(t)—2s)a—i+R(t)%

X’=(S(t)+so(:)—s2)5"’;+(T(r)+sR(t»%

where Q(0)=R(0)=0. Applying lemma 4.5, we may assume that R(t)= At with
A =a in the first case and A =—4m ™' in the second. The function

A)"HT()—T(0)—tDT(0)) t#0
“(0=10 t=0

depends continuously on T. After the transformation (s, t)—(s+ u(t), t), we have

- 9 0
= — e _
H=(U(t)-2s) 3s Atat
- 5 9 3
X=(V()+sU@)—s )a—s+(Ast+p+qt)a—t

Y=

’

S|

where p=T(0) and q= DT(0). The relation [H, X]=~2X then works out to
(' denoting d/ dt):
U+ AV’ +4V —(p+qt)U'=0
AtU—Ap+2p+2qt=0.
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Since U(0) =0 and A # 0, the latter equation forces U(t) =0 and g =0, and it forces
p =0 except when A =2. The former equation therefore has the solution
V(i)=Y

Of course, V must also vanish if A¢{—4,—2,—-4/3,...}.

In summary, we have unfolded the perturbations of (Hy, X,, Y), producing a
space of models which turns out as follows:
Case 1. The normal form (I, a) with ag{0,2}u{—4,—2,—4/3,...} has the one-
dimensional unfolding:

H

a a
—2s—+(a+te)t—
a8 at

- d ad
X=—s>—+(at+e)st—
as at

==
Case 2. (I, —4m™"), me Z", has an unfolding whose models constitute a union of
two interesecting lines. One line is described in case one, and the other is:

Notice that when ¢ # 0, this model is equivalent to (II, m, sign (¢)). However, the
change of coordinates converting it to (II, m, sign (¢)) would be discontinuous at
e=0.

Case 3. (1, 2) also unfolds to the union of two intersecting lines — that described in
case one, and the line:

_ 3 d
H=-2s—+2t—
as at

>

ad a
=—s*—+2st+e) —
as at

]

Y=—.
as

Notice that when £ # 0, the one-dimensional orbit has disappeared.

Case 4. (II, m, %) is rigid. Here one further change of coordinates is needed. Fix
to#0 such that (0, ) lies in the common domain of the perturbations being
considered. If a perturbation is near the normal form, then after the previous change
of coordinates we have

_ 4
X(0, tp) =ty a5’
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However, if A is near but not equal to —4m ™', we have seen that X(0, t,) =0. Thus
in fact A =—4m™" for all perturbations. Now apply the transformation
(s, )= (s,]7]"™1),

where
_ 0
X(0, ty) = 1t5 —
as

This transformation depends continuously on X and converts (H, X, Y) to the
normal form (II, m, +).
The analysis above also applies to normal forms for a, near the boundary of M.
The exceptional models (H, X, Y) of case 3 do not arise in unfoldings along the
boundary, but with this exception the boundary and interior unfoldings are identical.

As already mentioned, our goal is to find unfoldings not for perturbations of
(Hy, Xo, Yo) but for perturbations of (Hy, X,, Yo, ho), where hy is the coordinate
representation of

a(exp mw (Y — X)).

To perform this, we make no further change of coordinates but only analyze the
possibilities for h near h, to commute with model vector fields (H, X, Y). While
we are at it, we also compute the isotropy group J(0, ¢) of a point with coordinates
(0, 1), t # 0. The isotropy group J(s, t), t#0, is then determined by the formula

J(s,t)=exp(sY) - J(0,1) - exp(—sY).

Since the analysis here is trivial and rather uninteresting, we omit it.

Case 1 revisited. Write

_ (I'_Io, X—O’ Yo) =(1,a)
wile)= {hoz (s, t) > (s, At).
The models of the unfolding are then given by
(I, a+e¢)
{(S, (s, (A+38)1),
and there is no restriction on the pair (g, ). Thus »; is a plane. In such a model,
<X, exp (mm(Y—-X)) - exp(—ln—(é—-‘_i)H)> fA+86>0
J0,0)= are s
X, exp 2nym(Y - X)) - exp(—ll(%H>> if A+8<0.
Case 2 revisited. Here
(L, —4m™)
() = {(s, 1) (s, At).

If either A2{—1, 1} or if m is odd and A =—1, a; is just the plane of case 1. If m
isodd and A=1, or if m is even and A €{—1, 1}, »; is the union of this plane with
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the line consisting of

- ] d
the exceptional model in which X = (&t™ ~ 5?%) £—4m_’st—

ot
(s, 1)~ (s, Al).
In such a model with € # 0,
J 0, t)={(X—st’"Y,exp nm(Y — X)) ?fA=1
(X—et"Y,exp2nm(Y — X)) fA=-1.

Case 3 revisited. Here
( )_{(I, 2)
HRO = (s, )0 (s, AD).

If A#1 or if x;€9M, »; is just the plane of case 1. If A=1 and x; is interior to
M, s; is the union of this plane with the line:

_ 0 d
the exceptional model in which X = —s* £+ (2st+¢) o

(s, t)—> (s, 1).
In this model with £ # 0,
J(0, 1) =(eH —2tX, exp myw(Y — X)).
Case 4 revisited. We have

( )_{(11, m, £)
HAEZ (s, Do (s, At)

where A=1 if m is odd, and Ae{—1, 1} if m is even. Clearly »; is a point. Also,
J(0, 1) =J.(¢7)7(0,1).

For completeness, we should also point out that in the normal coordinates near a
stationary point we have

JO, 0 =(Y,exp2a(Y— X))
for t#0, and
J(rcos @,rsin8)=g-J(0,r)- g7,

where g =exp ((# —37)(Y —X)). This completes step one of the programme for
unfolding.
Proof of theorem 4.3. For 1=i=p, let D; denote the disk of radius R; about the
origin of R? or, if x; € M, the half disk. For B, y near a, define

F(B,v)=(67) " 6f:(¢f)7'Di > (¢7)'D..
Suppose that u;(B)=p;(y). Then F;(B, y) intertwines B, with y,. If x; is not

stationary for a, we also have

Fi(B, v) e Blexp nyw(Y — X)) = y(exp myw(Y — X)) e Fi(B, ¥)
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on (¢?2)Y(s, t): s*+t*< p;}. This allows F;(8, ¥) to be extended to
B(exp ([0, mm)(Y = X)) () (s, 1): s+ 12 <p;}
by setting
F;(B, v)(B(exp 6(Y — X))y) = y(exp 0(Y — X)) Fi(B, v)y
for 6 €[0, n;m] and y e (¢?) (s, t): s>+ 1> < p;}. The extension is well defined and
intertwines B, with y,. By construction of V;, the domain of this extension includes
V.
Let E be an element of ¢. By definition,
Fie)(B, V)YE =(8Xr)) (0, t(E)) = yE.
We have observed that the isotropy group of a point with given coordinates may
be deduced from the model. Thus
Jo(¥8) =J ey (0, t(E)) = T, (YE).
Finally, if B is near a then
Ve < B(G)yE
by property (4) in the construction of V. It therefore makes sense to define
Fe(B,y):Ve>M
by the formula
Fe (B, v)(B(g)yE)=v(8)YE,
where g e G is arbitrary so long as B(g)y% € Vg. Clearly Fx (B, y) intertwines 8,
with 7y,.

We claim that Fg (8, v) and F; (B, y) agree on their common domain Vg n
V(). Certainly the points of agreement constitute a closed subset containing y%.
On the other hand, this subset if open. If the two mappings agree at ye Ve n Vg,
and if z is near enough to y, there exists Z € g with

B(exp (tZ))y € Vi,
for all t€[0, 1] and B(exp Z)y=z. Then
Fe(B, v)z=Fg (B, v)(B(exp Z)y)
=y(exp Z)Fe (B, v)y = v(exp Z)Fyg)(B, v)y
=Fi)( B, Y)(B(exp Z)y) = Fyg)(B, 7)z
Since Vg n V) is connected, this proves the claim.
The question remains: for distinct D, E € ¢, do Fp (B, v) and Fg (B, y) agree on

Vb Ve? The only time this intersection is non-empty is when D and E are the
ends of some W,. Set g =g(W,;). The yet unused assumption that

u(B) = u;(v)
means that there is some h € G, which may be determined solely from

I-‘—i(E)(ﬂ) = P«i(E)(‘Y) and uj(B) = uj(Y),
with
B(h)yE =B(g)yh
y(h)yt =v(8)yb-

https://doi.org/10.1017/50143385700002066 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002066

486 D. C. Stowe

At a point z=(g;)y5 € Vo N Vg, then,
Fp(B, v)z2=v(8)yb =v(g:8 'h)yEL
=F:(B, v)(B(g:87 ' WyE) =Fe(B, v)z O

The next step is to prove theorem 4.4. Although a general proof would be
desirable, we offer a specialized proof in five cases — the case that « has a hyperbolic
or elliptic orbit and four cases in which a has a parabolic orbit -~ and we define the
desired mapping B by fairly explicit formulae.

The first case is easy. If « has a hyperbolic or elliptic orbit, then each space »;
consists of a single point &;. Let W, be a two-ended open orbit of a with ends
D, E € ¢, and let g = g(W,). In each model 4;, the function (s, t)— J(s, t) is locally
one to one. Thus if B8 is near a, the consistency condition

J;Z;(E)(uj(B)) =8 ];I,-(D)(O’ (D)) - 8_1
has no solution u;(8) near (0, t(E)) other than (0, ¢t(E)) itself. Therefore % is a
point; a is rigid.

From now on, we assume that « is non-degenerate, non-trivial, and non-transitive
and has at least one parabolic orbit. Let us determine exactly what % is by finding
what the consistency condition (*) says about w;py, mie), and u; for a parabolic

orbit W, with ends D and E.
Suppose that x;(p, is stationary for a (in which case x;g, is not stationary). Write

(@) {(I, A)

Hice) (s, t)— (s, At).
Since J,(yg) is conjugate to J,(yp) =(Y, exp 27 (Y — X)), either n; gy =2and A =1
or else n; gy =1 and A=—1. Now let

(/J'l’--~’/~1p’ﬁ1,-~-’ﬁq)
be a point near I'(a) in %. As m; ) is a point, the consistency condition (*) says that

Jﬁi(E)(ai) =8 (Y, €xXp 2w(Y —X))- g_l
=J.(yg)=(X, exp 27(Y - X)).

No matter if there are exceptional models in »;g,, this equation forces &; to lie on
the t-axis and forces

_ (LA+e)

MiE) =

(s, 1) (s, At).

The values of &; and ¢ are independent.
Now consider the case that neither x;py nor x;g, is stationary. Write

Hao) (S, t)'_) (S, ADt)
)_{(17 AE)
#ED =) (5, 0 (5, Ap ).

One of Ap and Ag is positive, the other negative; assume that

Ap <0< Ag.
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Since #,(yb) = 7.(yg)=span{X}, the element g = g(W,) must be of the form
g=exp (nm(Y —X)) - exp (bH) - exp (¢X).

Let (&y,..., fp i, ..., d,;) be near I'(a) in U. Clearly the consistency condition

implies that either both of & p), and gy are exceptional or neither is. If neither

is, let

- _JLAp+ep)

Hae= {<s, B> (s, (Ap+8p)1)

— _ (I, Ag + &)

Hie = {<s, £ (5, (Ag +8g)1).

The condition (*) forces i, to lie on the r-axis and imposes precisely one relation
among €p, 6p, €5, and 8g. This relation takes four different forms, depending on
the one-sidedness or two-sidedness of the orbits of & through x;py and x; ). When
both are two-sided, for example, it is that

In(Ap+85) _In(Ag+58;)
AD+8D AE+£E )

In no case is the relation degenerate; it always has a three-parameter family of
small solutions. Finally, suppose that @;py and gy are exceptional. This only
occurs when Ap=—4m™"', meZ", either m is odd and A, =1 or m is even and
Ap=+1, A =2, Ag =1, and x; g €int (M). In this very special case, we can have

_ o a
the exceptional model with X = (gpt™ — s%) Py 4m " lst—

Rip)= ot

(s, )—>(s, Apt)

. — d i)
the exceptional model with X =—s> —+ (2st+e5) —
™ = as at
Hi(E)
(s, )= (s, 1).

Write ;= (5,1). After some calculation, one finds that the consistency equation (*)

works out to:

(%) ep =—exp (4b)(5)*(1—5c exp (2b)) *t(D)™™
ep =—231(1—5c exp (2b))(1—25c exp (2b)) .

(Recall that g =exp (n7w(Y — X)) - exp (bH) - exp (¢X).)

We are now in a position to describe % in the parabolic cases. We say that a is
fragile if there are points near I'(«) in % having what we have called ‘exceptional’
models among their first p coordinates. Assuming the validity of theorem 4.4, this
is to say that a fragile action is one which may be perturbed into an action having
hyperbolic or elliptic orbits. The description of % falls into four cases:

I. Either a has a stationary point or the unfolding is in Act” (Gn, M) and «a is
not fragile;
II. @ has no stationary point and is not fragile, and the unfolding is in
Act” (G, M);
I1II. a is fragile and the unfolding is in Act” (G,n, M);
IV. a is fragile and the unfolding is in Act” (G, M).

https://doi.org/10.1017/50143385700002066 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002066

488 D. C. Stowe

There is no ambiguity here — an action with stationary point is not fragile — since
clearly all of the first p coordinates of an element of % are exceptional or none is.
In the following discussion, we denote the orbit of a through x; by P;, and for each
one-dimensional orbit P; we let

(Iy Al)

wile) ={(s, B (s, Ast).

Consider case 1. Here each A; is £1. Let

N=(R1,..., fp ly,...,Hg)
be a point near I'(«) in
oy X -meXRZX- <X R
Then:
I. ne U if and only if each #; lies on the t-axis and, for each one-dimensional
orbit P; of «, &; has the form
_ (I A+ &)
i {(s, £y (s, Ait).

In particular, a neighbourhood of I'(a) in % is homeomorphic to a vector space of
dimension q+r, where r is the number of one-dimensional orbits of a. From a
constructive point of view, this indicates a freedom to vary each A; and to slide Vp
and Vg along each other equivariantly for each pair of ends D and E of an open
orbit W,. In case 11, we have this same freedom and one additional degree of freedom
in varying the common conjugacy class associated to all open orbits. More formally:

II. There are smooth functions f;, 1=i= p, defined near one such that f;(1)=1,
f1(8) =8, and n € U if and only if each &; lies on the t-axis and each g; has the form

_ {(I, Aiteg)
H7 (s, )0 (s, sign (A) - [AS(8)[ &2 p).

The instance 8 =1 corresponds to the case that an action B8 with I'(B)=1n is
topologically conjugate to a. In fact, the functions f; can be chosen uniquely so that
two actions B8 and vy near a are topologically conjugate if and only if the same value
of & occurs in I'(8) as in I'(y). In case II, then, a neighbourhood of I'(«) in ¥ is
homeomorphic to a vector space of dimension p+q+1.

Before describing % in cases III and IV, we determine necessary and sufficient
conditions for a to be fragile. We assume that « has no stationary point, since if
it had one it would not be fragile. Index the orbits of a so that they are arranged
according to the following diagram:

P« W > Py e W, > P« W,,).')

An arrow from W, to P; means that P, < clos (W;). This diagram is meant to indicate
any one of four cases — that g=p—1 and M is a cylinder with boundary P,u P,;
that g =p—1 and M is a Mdbius band with boundary P;; that g=p—1 and M is
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a Klein bottle; or that g=p and M is a torus. If a is to be fragile, it is clearly
necessary that:
(a) for each boundary component P, A\;=—4m™', meZ*, and A;=1;
(b) for each interior orbit P;, either
(i) ;=2 and A;=1,o0r
(ii) A;=—4m™', m an even positive integer, and A,==1, or
(iti) A;=—4m™', m an odd positive integer, and A;=1.
In fact, if (ili) occurs then « is not fragile. If P; is interior to M and A; =1, there
are distinct ends D, D' € ¢ with i(D) =i(D') =i, and t(D), t(D’) have opposite sign.
If

_ 0 _ d
the exceptional model with X = (et™ — 5%) s~ 4m™! 5t =

=
(s, )= (s, 1)

is the ith coordinate of a point near I'(a) in %, then (**) shows that the sign of ¢
is opposite that of t(D)™ as well as opposite that of ¢(D’)™. This is impossible if m
is odd. Necessary conditions for fragility can therefore be rephrased:

(1) « has no stationary point;

(2) for some neZ*, a(exp nm(Y — X)) =idys;

(3) for each boundary component P;, A;e{—4, —2, -4/3,.. .};

(4) for each interior orbit P, either A;=2 and P; is two-sided or else
re{—2,-1,-2/3,...}

Condition (2) is equivalent to saying that A;==+1 for some (equivalently, every)
index i Surprisingly, these conditions are not sufficient for a to be fragile.

We now assume that « satisfies (1)—(4). We also assume that A, <0. This is
automatic if M is a cylinder, Mobius band, or Klein bottle, and since the signs of
A1, A,, ... alternate we can obtain this when M is a torus by shifting the indices
over. Define m,, ms, ms,...€Z" by the equation

A =—4m;! (A;=2for i even).
If P; is a boundary component, m; may be odd, but otherwise m; is even. Define
the ends Dy, E; of W, by the diagram:
P1<—D1E1—)P2(—E2D2—)’ .

In other words, A;p)<0 and A;g)=2 for all j. Finally, we make simplifying
assumptions about the choices of ¢t(E), E<ce, and of g;=g(W,), 1 =j=gq. These
will not detract from the generality of our proof but only simplify the formulae,
since it is easy to show that different choices lead to isomorphic objects % and I'.
We assume that there is some positive number £, such that {t(E)| =1, for all E€ e,
and that each g; is of the form

gi=exp (yym(Y — X)) - exp (b;H).

Recall that g; was necessarily of the form exp (n7(Y — X)) - exp (bH) - exp (¢X)
anyway, and we simply drop the last factor. We maintain the convention that a(g;)
maps yp, to yg, rather than the other way around.
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Suppose that M is a torus, in which case m,, ms, ..., m,_, are even. Let
77=(I7~1,---,11p,111,---,ap)
be an exceptional point near I'(a) in 9. Define €,, €3, ..., £, by

. . S d _ i)
the exceptional model with X = (&;t™ — 5%) v 4m;! st py
s

Mi =
(s, )= (s, ).
and €,, &4,...,¢, by
_ the exceptional model with X = —s2 i+ (25t +¢;) 9
o= as ot
(s, )—>(s, 1).
Set ;= (5, 1;). By (**):
£, = —exp (4b1)(§1)2t6m‘
€= _25121 = _25_'2;2
£3= —€Xp (4b2)(§2)2tam3-
Then

% =exp [4(b,— b))t ™ (1)(1,) %

1
Similarly, we obtain formulae for the ratio of &5 to &3, etc., on out to the ratio of
€ to €,_;. The product of these ratios being one, we obtain:

(***) 1=exp[4(—b +by,— - -+ bp)](iliS T ;p—l)z(izizt te ;p)_z'
If « is fragile, then 7 can be chosen arbitrarily close to I'(a), which places each |7 |
arbitrarily close to #,. Thus there is another necessary condition for a to be fragile
when M is a torus, namely:

(5) =by+by,—+--+b,=0.
We will try later to clarify the meaning of this condition, but the reader may convince
himself that it does not follow from (1)-(4).

If « satisfies (1)—(5), then it is indeed fragile. To describe the exceptional elements
in % near I'(a), choose real numbers f; near t(E;) for j=1,...,q and choose §
near zero. If M is a torus, (***) requires that

t1ts -« Tl =ltats- - - 1,
but other than this the choices may be made independently. The formulae (**) then
determine a unique element of % exhibiting these parameters. If 5§, =0, this element
is not exceptional. We conclude:

III. A neighbourhood of I'(e) in % is homeomorphic to the union of a vector
space of dimension p+g (the non-exceptional elements) and a vector space of
dimension p (consisting mostly of exceptional elements) which intersect along a
vector subspace of dimension p—1.

IV. A neighbourhood of I'(a) in % is homeomorphic to the union of a vector
space of dimension p+¢q+1 and a vector space of dimension p which intersect along
a subspace of dimension p—1.
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This description is a bit flat, but in the interest of simplicity we leave a fuller
description to the reader.

To define the mapping B sought in theorem 4.4, we introduce notation applicable
to all cases I-IV. Let Q be the zero set of a,(X). As in the proof of theorem 4.1,
define the multi-valued function 6 on M\{stationary points of a} by the statement
that x € a(exp 6(x)(Y — X))Q whenever x is not stationary; 6 is defined up to
multiples of 7. Recall that there exist a €R and ne€Z" such that

J.(x)=(X, exp (n7(Y — X)) - exp (aH))
whenever 7 ,(x)=span{X}. In cases I, III, and IV, a =0. The vector field
C =cos20a,(H)+sin 20a,(Y + X)
is C* even through stationary points of « and commutes with a,(H), a,(X), and
a,(Y). This is most easily seen by observing that C commutes with a,(Y —X)
everywhere and that C is tangent to Q and commutes with a,(H) and a,(X) along
Q. In fact, C generates the component of the identity among the analytic self-
conjugacies of a. Set
R=a,(Y—-X)+a(nm)"'C;
R satisfies the same bracket relations with a,(H), a,(X), and a,(Y) as does
a,(Y—X). Since R(6)=1, the time-7 flow along R sends Q back into Q. Let
f: Q- Q be the restriction of this mapping. For x € Q,
f'x=a(exp nm(Y —X))a(exp aH)x = x.
That is, f has period n. The only time that f™x = x with 0 <m <n is when m =}n
and either x is stationary or x lies on a one-sided interior one-dimensional orbit.
Let Q'=Q/f. If M is a torus, then Q' is a circle. Otherwise Q' is a segment. We
also denote by C the vector field on Q' induced by the f-invariant vector field
Clo=ax(H)lo.
Fori=1,...,p, let z;=[x;]€ Q'. These are the zeros of C, and DC(z;) =1 when
x; is stationary and DC(z;) = A; when Xx; is not. We assume that these occur in order
Z1,...,2, along Q'. The normal coordinates ¢ about x; provide a coordinate
system about z; in which C is linear, and this extends uniquely to a mapping 7;
from the segment between 2, ; and z;,, (the half-segment if z; € dQ") onto the real
line (the positive half-line if z; € dQ’) which linearizes C. The segment from z; to
z;41 corresponds to an open orbit of @, which we index as W, in keeping with
conventions discussed above. Notice that g=p—1 except when M is a torus, in
which case g = p and we interpret the indices modulo p. The change of coordinates
Ti+1°7; - on this segment is of the form

— c|t|'\i+1/'\i;

¢ may be determined from g(W,), (D), and t(E), where D and E are the ends

of W. We have
a,(H)=cos28- C—sin 26(R—a(nm)"'C)

a, (Y+X)=sin20- C+cos20(R—a(nw)"'C)
a (Y-X)=R-a(nm)"'C.
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Let U be a vector field on Q'. There is a smooth extension of U to M which
commutes with R provided the following holds:
(i) If x; is stationary for a or lies on a one-sided interior orbit of «, then in the
coordinates 7; the even order derivatives of U vanish at the origin.
Denote this extension as U also. Then U(8) =0 everywhere. For the extension to
be tangent to dM, we need:
(ii) If x;€ oM, then U(z,)=0.
Now let 8 be a real number, and consider the vector fields
H' =co0s26(C+U)—sin28(R+ (8 —a(nz) " H(C+U))
(Y+X) =sin26(C+ U)+cos 20(R+ (8 —a(nm) " HWC+ 1))
(Y-X)=R+(6—a(nm) H)(C+U).
In cases I and III, we will always take 8 =0. In light of this and the fact that a=0
in case I (as well as in cases III and IV), smoothness of H', X', and Y’ through
stationary points will be guaranteed by the additional assumption:
(iii) If x; is stationary for «, then DU(z;) =0.
These vector fields satisfy the necessary bracket relations. Let 8 = 85y denote the
action they generate. Then Q is also the zero set of B,(X), and for xe Q:

B(exp nm(Y —X))x = B(exp (nmwé—a)H)x.
Thus
' Jg(x) =(X, exp (nm(Y — X)) - exp ((a — nwd)H))
whenever #;(x) =span{X}. Thus varying é has the effect of varying the conjugacy
class of isotropy groups associated to the open orbits, which explains why we take
8=0 in cases I and III.
For each one-dimensional orbit P; of a, let U; be a vector field on Q' which

satisfies (i)-(iii) and satisfies:

U(z)=0, DU(z)=1

Ul(z;)=DU(z;)=0 forj#i
Let B, denote the action obtained by setting 8 =0 and U = eU; above, where ¢ is
any real number. If

( ) _ {(L Al)
Hi *= (S, t)'_)(s’ Ait),
then
_J(LA+e)
I‘Li(Bs) _{(s, t)»—»(s, Sign (Ai)IAi|1+(E/A'.)t)

and u;(B.) = u;(a) for j# i. Now for each open orbit W;, let U’ be a vector field
on Q' which satisfies (i)—(iii), approximates C on a large compact subset of the
interval from z; to z;,4, is extremely small off this interval, and satisfies:

U'(z)=DU’(z)=0 foralli.
Again, let B, denote the action corresponding to the choices 8 =0and U = £U’. Then
“i(Ba)=#’i(a) forlsispa
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and if k # j then

d
de de
This statement presupposes something we have not proved - that our local unfoldings
depend smoothly upon parameters. This is the case, but we leave the proof to the
reader. Now let r be the number of one-dimensional orbits of a. It follows from
the inverse function theorem and our analysis of % that in case I the mapping

(e1r.. €€ty N> U=g, U+ - +&U+e' U+ - -+eU’

=B = Bo,u—>T(B)
takes a neighbourhood of the origin in R"*¢ homeomorphically onto a neighbourhood
of I'(a@) in 4. In case II r=p, and we have the (p+ g+ 1)-dimensional unfolding
5,1, N8, U=¢, U+ +eUD—B=Bsu—>T(B).

These mappings also unfold the non-exceptional actions near « in cases III and IV.

If Q' is a segment — that is, if M is not a torus — then we can reduce the dimension
of the unfolding by q units as follows. Let B, y be actions near a with u;(8) = u;(1y)
for all i in the range 1=<i= p. The composition (#7) 7' ¢5 provides the germ of
a unique analytic conjugacy between 8 and v, as we have already seen in theorem
3.5, and this conjugacy varies continuously with (8, y). Let & be the vector space

span{U,,..., U, u',...,U%

«

uk(Bs) uj(Be)
0 0

£= £=

in case I and
Rxspan{U,,..., U, U',..., U%
in case II, and
B:®-> Act” (G, M)
the mapping just constructed. Let
Dy={xe®: u(Bx)=ui(a) forall j1=j=gq}.

Then @, is homeomorphic to a vector space of dimension r in case I or of dimension
p+1 in case II. For each x € ®, there is a unique 7(x) € ®, with

pi(Bx) = u;(Bw(x)) forl=i=p.
Furthermore, the local unfolding about x,, say, determines a canonical analytic
conjugacy from Bx to Bw(x) which varies continuously with x € . We have thus

unfolded the image of B to obtain the smaller unfolding described after the statement

of theorem 4.2.
If Q' is a circle —i.e. M is a torus — then the same ideas apply, but as we have

seen (theorem 3.5) the relation

wi( B) = mi( Y)
for all i does not imply that 8 and y are analytically conjugate. Rather, there is an
additional restriction. An ambitious reader may work out a formula for this restric-
tion, but for our purposes it suffices to point out that if I'(8) is fixed then after
arbitrary choices of u,(7),..., uz-1(y), there is a unique value of u,(y) which
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guarantees that y is analytically conjugate to B. In this case, then we can reduce
the models of the unfolding to a set which is homeomorphic to a vector-space of
dimension r+1 in case I and p+2 in case II.

These comments also apply to the unfolding of the non-exceptional elements
near a when « is fragile. Again, let ® be the parameter space for the unfolding of
the non-exceptional elements,

B:® - Act” (G, M)
the mapping just constructed, ®,< ® the reduced parameter space, and 7: ® > ®,
the projection. For x € ®, let f, € Diff” (M) be the analytic conjugacy from Bm(x)
to Bx with germ determined by the local unfolding near x,. Suppose we can construct
a curve of exceptional actions in Act” (G, M) such that 8, = «, the evaluation map
RXGXM->Mis C*, and

d
A E=OI“( B.)#0.

Then for x € = {0}, set
B(e, x)=(B.)'".

It follows from the implicit function theorem (again using smooth dependence of
the local unfoldings upon parameters) that I'> B sends a neighbourhood of the
origin in

({0} x @)U (Rx = {0})
homeomorphically onto a neighbourhood of I'(a) in %. Furthermore, we may
obviously reduce the parameter space to

({0} x®o) L (Rx{0}),

thus obtaining the smaller unfolding described after theorem 4.2.
It remains to construct such a line of exceptional actions when « is fragile. We
dispense with some of the earlier notation, since now a =0,

R=a, (Y -X),
and a has no stationary point. However, we maintain the conventions introduced
in the discussion of fragile actions above. Let U and V be vector fields on Q' and
u and v real-valued functions. These admit smooth extensions to M, denoted by
the same letters, which satisfy

[ax(Y =X), Ul=[ay(Y-X), V]=0
a (Y-"Xu=a,Y-X)v=0
provided:
(i) If x; lies on a one-sided interior orbit of a, then in the coordinates 7; the
even order derivatives of U and V and the odd order derivatives of u and v vanish

at the origin.
Again, U(8) = V(8) =0 everywhere, and we assume:
(ll) If X; € aM, then U(Z,') = V(Z,') =0.
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Consider vector fields
H' =cos20(U+u- a,(Y—X))—sin20(V+v- a, (Y —X))
(Y+X) =sin20(U+u- a,(Y—X))+cos26(V+uv- a (Y —-X))
(Y-X) =a,Y—-X).
These satisfy the desired bracket relations provided:
(i) (U, V]+2uU+20V =0

(iv) U(v)— V(u)+2(u*+v) =2.
Notice that the action a corresponds to the case

U=C, V=0, u=0, v=1.
We would like to find solutions
(U.(2), Vo(2), u.(z), v.(2))

to (i)—(iv) such that the resulting action is exceptional for £ # 0 and such that the
dependence on € and z is C*. However, we only succeed in producing solutions
which are C* in z and C” in both variables.

Let ¢, Ca,. .., C3p/2; be non-zero real numbers, and define a function ¢ on

Q'\{z,,..., z,} by:
¢(2)=c7(z)"' if zedomaint, ieven.
Notice that C(¢)+2¢ =0, since in the coordinates 7; with i even C takes the form
d
2t—.
at
Now let i be odd, 1=<i= p, and consider the expression for ¢ in terms of 7. If z;,,
makes sense (that is, except when i = p and Q' is a segment), then by our conventions
a(exp v (Y — X))a(exp (b:H))yp, = yE,.
Therefore with ¢ denoting the flow on Q' generated by C:
mlye 1= 7 [yD, D
=exp (—4b;/ m)1,[yp,1=exp (—4b;/ m;)t(D;).
Since 7;.1[yE 1= t(E;), this shows that on the segment from z; to z;,; we have
Tir1(2) = I(Ei)t(Di)im" €Xp (_2bi)7'i(2)_imi
and therefore
é(z)=cy t(Ei)_lt(Di)_;mi exp (2b)m(2)Pm.

Similarly if z,_, makes sense (that is, except when i=1 and Q’ is a segment), then
on the segment from z;_, to z; P

d(z)=ci, t(Ei~1)_1t(Di—l)_imi exp (2bi—1)7i(z)imi-
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We claim that ¢, c,, etc., can be chosen so that @2 is analytic through z,, z,, etc.
All that is necessary here is that whenever i is odd with z; interior to Q’, then:

Ci+1

t(Ei—l)_lt(D'—l)_imit(Ei)t(Di);mi exp [2(bi-;— bi)]

Ci—1
=exp[2(b;_,— b)].
Clearly this can be achieved when Q' is a segment; any choice of ¢, determines
€4 Co» €tC., up to sign. If Q' is a circle, the same holds true, since the cycle of
relations among c,, ¢4, etc., is itself consistent by condition (5) among the conditions
for a to be fragile. In this case that Q’ is a circle, condition (5) also has a more
visible interpretation — that of ‘symmetry’ of the vector field C. Starting with any
point in the interval between z; and z,, say, reflect this point into the interval from
2, to z5. Specifically, the point z goes to 75" (—7,z). By lemma 4.5, this reflection
is a natural property of C. Continue reflecting through z;, z,4, etc., until returning
to the initial segment. Condition (5) is equivalent to the condition that the final
point coincide with the initial point.

From now on, assume that non-zero values of ¢,, ¢4, etc., have been chosen so
that ¢2 is analytic through z,, z3, etc. In many cases, these can be chosen so that
¢ itself is analytic through z,, z;, etc. In these cases we could set

U, =C, V. =¢¢C, u.=0, and v.=1
to achieve (i)—(iv). In fact, the idea of the proof in the general case is to conjugate
the resulting continuous action by a carefully chosen homeomorphism of M so as
to obtain an action which is C*. However, since there are cases in which ¢ cannot
be made analytic through z,, z, etc. — namely, those in which some m; is odd (hence
Q' is a segment and z;€3Q’) or else Q' is a circle and the number of m;’s divisible
by four is odd - we do not attempt any ‘best possible’ choice of c,, ¢, etc.

LLEMMA 4.6. There is a continuous real valued function w defined on R X Q' such that:
(a) wis C* on RX(Q'\{zy, z3,...}) and C* on
(R\{O}) X (Q,\{Zl, Z3,.. -});
(b) if i is even, then for each € €R the first four derivatives of w, vanish at z;;
(c) the function F.(z)=w,(z)+arctan (e¢(z)) is C* on
RX(Q'\{z2, 24,...})
and C® on
(R\{O}) X (O’\{ZZ’ 245 -});
(d) if i is odd, then for each € € R the first m;+2 derivatives of F, vanish at z;;
(e) w(0,2)=0 forall ze Q’;
(f) if z,€9Q' and x;eint (M), then for each € €R the expression for F, in the
coordinates ; has the property that all odd order derivatives vanish at the origin.

Proof. First, suppose that Q’ is a circle. Let f be a C™ real valued function on
L
Q'\{Zz, Z4yeees Zp}
which is zero in a neighbourhood of z; for each odd index i and agrees with ¢ in
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a neighbourhood of z; for each even index i. Consider the mapping
h:(R{0}) X Q' >R/ 7Z
h(e, z) =[arc tan {(ef(2))].
This is C* and in fact extends to a C™ mapping defined on
(RX QI(O0, 22), (0, z4), . .., (0, 2,)}

which is zero along
{O}X (O’\{229 Zas-- 05 zp})'
Furthermore, the difference
h(e, z)—[arc tan (e¢(z))]
extends to a continuous mapping defined on all of RX Q' which vanishes along
{0}x Q' and is C™ on
R X (Q,\{zh Z3y.0ny zp—l})-

Let h® be a C* approximation to h in the strong C™ topology ([3, p. 35]) on
mappings from (R\{0}) X Q' into R/ #Z. If the approximation is close enough, then
h* has the same properties of extension as does h, and we assume this degree of
approximation.

Let

w(e, z) = h“(g, z) —[arctan (e¢(2))].
Then w is continuous on RxX Q’, C* on
R X (O'\{Zh 23, sres zp-—l})9
and C* on
(R\{O}) X(O'\{Zl’ Z35-40 zp—l})’
and w vanishes along {0} X Q'. Because of the latter property, w may be taken as

a mapping into R rather than R/ wZ. In the lemma, all mappings are supposed to
be real valued. Clearly the real valued function
F.(z) = w.(z) +arctan (e¢(2)),
which is defined on
RX(Q'\{z2, 24, - - -, 2p}),
satisfies (c) since it consists of branches of the mapping £“ over the various strips
constituting its domain.

Thus we have attained (a), (c), and (e). To attain (b) and (d) as well is standard.
For each odd index i and each integer k in the range 0=k =m;+1, choose a C*
function r¥ on Q' such that in the coordinates 7; the jth derivative of rf is 8 for
0=j=m;+1 and such that for j# i the first four derivatives of r¥ vanish at zif j
is even and the first m;+2 derivatives of rf vanish at z; if j is odd. Similarly choose
C* functions r* for each even index i and each integer k, 0=k=3, and let ¥ be
the vector space spanned by the entire collection {r¥}. If w satisfies (a), (c), and
(e), then for each £ there is a unique r, € ¥ which for every even index i agrees
with w, through order three at z; and for every odd index i agrees with F, through
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order m; +1 at z;. Furthermore, the dependence of r. upon ¢ is C* and is C* away
from £ =0. Setting

w(e, z)=w(e, 2)—r1.(2)
achieves (b) and (d) without destroying (a), (c), and (e). This proves lemma 4.6
when Q' is a circle.

If Q' is a segment, form the manifold Q" by joining two copies of Q' at any
boundary points representing the same interior orbit. Impose the obvious analytic
structure, and let J be the natural involution on Q". The function ¢ on Q'
corresponds to a J-invariant function ¢’ on Q" with the same essential properties
as ¢. The argument above provides a function w’ on R X Q" satisfying (a)—(e). Setting

w'(e, z)=w'(g, 2)+ W (g, J2)
then provides a J-invariant function satisfying (a)—(e). The corresponding function
w on RX Q' satisfies (a)~(f). 0
Define
U, =(cos (w,)— €@ sin (w,))C
V.=(sin (w.)+ ¢ cos (w,))C
u. =—3(cos (w,) — e¢ sin (w.)) - C(w,)—sin (w,)
v, = —3(sin (w,) + ¢ cos (w,)) - C(w,)+cos (w,)
on Q'\{z,, z5,...} and
U =(1+e’¢?) - cos(F.)- C
V.=(1+£’¢*! sin(F,)- C
u.=—31+&2¢* - cos (F.) - C(F.)—(1+&°¢>) ™ - sin (F,)
v, =—1(1+&2¢?)} - sin (F,) - C(F.)+(1+&%¢*)*- cos (F.)

on Q'\{z;, z4,...}. These agree on their common domains, and by the lemma they
are C* for each value of £ and vary continuously with ¢ in the C™ topology. Notice
that ¢C is analytic through 25, z,, etc. so there are no singularities in these objects.
It is easily verified that (U,, V, u., v.) satisfy (i)—(iv) for each value of ¢ (in fact,
4.6(f) is included precisely to achieve (i)) and that

U():C, V0=0, u0=0, and Uo=1.

Therefore (U,, V., u,, v.) determine a curve B, in Act” (G, M) with By=a.
Suppose that i is even. The local unfolding near x; has the property that if two
perturbations (H’, X', Y’) and (H", X", Y") of (a,(H), a,(X), a,(Y)) near x
agree through terms of third order about x; and if
H'(x;)=H"(x;) =0,
then the resuiting models u; and u{ are identical. Therefore in determining w;( 8.)
we may assume that

U, =C, V,=e¢C, u,=0, and v, =1
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near z;. Under this assumption, in the coordinates ¢ which normalize a, near x;
we have

d d
J(H)=-2s—+[2t—4ec H 21—
B..(H) 2sas [2t—4dec;s(1+59) ]8t
i) d
B X)=—5>—+[2st+ec(1—s)(1+5?) ] —
as ot

i) d
WA Y)=—+ec(1—sH)(1+s2) 72—,
B..(Y) 2 ec;(1—5%)(1+5°) ™

One can verify directly that u;(8.) is then the model in which
_ J a
X=—5>—+2st+ec)—.
as at

That is, in the terminology used in discussing % in the case of fragile actions,
E; = EC;.
This completes the proof of theorem 4.4 and of theorem 4.2, for we have shown
that

d
—| T .
de .o (B)#0

For completeness, we mention that in fact when i is odd, &; =—14.62, where the
expression for ¢? in the coordinates 7, is that ¢(z)>=d,7,(z)™. The values of
ui(B.)s ..., ug( B.) may be computed directly from ¢4,..., &,
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