
JFP 34, e1, 54 pages, 2024. c© The Author(s), 2024. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in
choreographies

E V A G R A V E R S E N
Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

(e-mail: efgraversen@imada.sdu.dk)

A N D R E W K . H I R S C H
Department of Computer Science and Engineering, University at Buffalo, SUNY, Buffalo, NY 14068, USA

(e-mail: akhirsch@buffalo.edu)

F A B R I Z I O M O N T E S I
Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

(e-mail: fmontesi@imada.sdu.dk)

Abstract

We present PolyChorλ, a language for higher-order functional choreographic programming—an
emerging paradigm for concurrent programming. In choreographic programming, programmers
write the desired cooperative behaviour of a system of processes and then compile it into an imple-
mentation for each process, a translation called endpoint projection. Unlike its predecessor, Chorλ,
PolyChorλ has both type and process polymorphism inspired by System Fω. That is, PolyChorλ
is the first (higher-order) functional choreographic language which gives programmers the ability
to write generic choreographies and determine the participants at runtime. This novel combination
of features also allows PolyChorλ processes to communicate distributed values, leading to a new
and intuitive way to write delegation. While some of the functional features of PolyChorλ give it a
weaker correspondence between the semantics of choreographies and their endpoint-projected con-
current systems than some other choreographic languages, we still get the hallmark end result of
choreographic programming: projected programmes are deadlock-free by design.

1 Introduction

Distributed systems involve interacting processes. Usually, programmers write one pro-
gramme per process and then compose those programmes in parallel. These programmes
contain send and receive expressions which transmit data between processes. Predicting
how the composition of programmes based on this method is challenging, so it is easy
to write code that deadlocks, or gets stuck because patterns of sends and receives do not
match. Session types (Honda, 1993; Honda et al., 1998) can be used to describe the patterns
of sends and receives in a programme, offering a foundation for static analyses aimed at
preventing communication mismatches and deadlocks (Caires & Pfenning, 2010; Wadler,
2012; DeYoung et al., 2012; Dardha et al., 2012; Honda et al., 2016; Scalas & Yoshida,

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796823000114
mailto:efgraversen@imada.sdu.dk
mailto:akhirsch@buffalo.edu
https://orcid.org/0000-0003-4666-901X
mailto:fmontesi@imada.sdu.dk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796823000114&domain=pdf
https://doi.org/10.1017/S0956796823000114

2 E. Graversen et al.

2019). Working with session types enables the programmer to ensure the communications
in their system follow compatible send/receive patterns.

Alternatively, developers can use a choreographic language to programme the interac-
tions that they wish to take place in the system directly from a global viewpoint (Montesi,
2023). Choreographic programming (Montesi, 2013) is a programming paradigm based
on this idea with particularly well-explored foundations (Cruz-Filipe & Montesi, 2020;
Montesi, 2023) and promising developments (see, e.g., Carbone & Montesi, 2013; López
et al., 2016; Dalla Preda et al., 2017; Giallorenzo et al., 2021; Cruz-Filipe et al., 2022;
Hirsch & Garg, 2022; Jongmans & van den Bos, 2022). In this paradigm, a programmer
writes one programme as a choreography, which is then compiled to a programme for each
process that is guaranteed to be correct by construction. Unlike session types, which only
allow local code to be checked against them, choreographies compile to the local code
itself. The syntax of choreographic programming languages is typically inspired by secu-
rity protocol notation (Needham & Schroeder, 1978), where send and receive commands
are written together as part of atomic instructions for expressing communication. This has
two key advantages. First, it gives programmers the power to express the desired com-
munication flow among processes, but without the burden of manually coding send and
receive actions. Second, it ensures that there is no mismatch which can cause deadlock,
a property that has become known as deadlock-freedom by design (Carbone & Montesi,
2013).

To see the power of this, consider the (in)famous bookseller example—a recurring
example in the literature of choreographic programming and session types (Carbone &
Montesi, 2013; Honda et al., 2016; Montesi, 2023). Buyer wants to buy a book from Seller.
To this end, Buyer sends the title of the book—say, “The Importance of Being Earnest”—
to Seller, who then sends back the price. Buyer then can compare the price with its budget
and based on the result informs Seller that they want to buy the book if it is within their
budget or informs them that they do not want to buy the book otherwise. We can describe
this via the following choreography:

let x = comBuyer,Seller (“The Importance of Being Earnest” @ Buyer)
in let y = comSeller,Buyer (price_lookup x)

in if y < budget
then selectBuyer,Seller Buy (() @ Seller)
else selectBuyer,Seller Quit (() @ Seller)

(1.1)

In Listing (1.1), as in all choreographic programmes, computation takes place among mul-
tiple processes communicating via message passing. Values are located at processes; for
example, in the first line of the choreography, the title of the book is initially located
at Buyer. The function comP,Q communicates a value from the process P to the process Q.
It takes a local value at P and returns a local value at Q.1 Thus, x represents the string “The
Importance of Being Earnest” at the process Seller, while y represents the price at the pro-
cess Buyer. Finally, we check locally if the book’s price is in Buyer’s budget. Either way,
we use function select to send a label from Buyer to Seller representing Buyer’s choice to

1 Formally, we require a type annotation on comP,Q (see Section 3). We elide this here for clarity.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 3

either proceed with the purchase or not. Either way, the choreography returns the dummy
value () at Seller.

While most of the early work on choreographies focused on simple lower-order imper-
ative programming like in the example above, recent work has shown how to develop
higher-order choreographic programming languages. These languages allow a program-
mer to write deadlock-free code using the usual abstractions of higher-order programming,
such as objects (Giallorenzo et al., 2023) and higher-order functions (Hirsch & Garg, 2022;
Cruz-Filipe et al., 2022).

For instance, Listing (1.1) bakes in the title and the value of the book. However, we may
want to use this code whenever Buyer wants to buy any book, and let Buyer use any local
function to decide whether to buy the book at a price.

λ title : String @ Buyer.
λ buyAtPrice? : Int @ Buyer →∅ Bool @ Buyer.
let x = comBuyer,Seller title
in let y = comSeller,Buyer (price_lookup x)

in if buyAtPrice? y
then selectBuyer,Seller Buy (() @ Seller)
else selectBuyer,Seller Quit (() @ Seller)

(1.2)

Note the type of the function buyAtPrice?: it takes as input not just an integer, but an
integer at Buyer; similarly, it returns a Boolean at Buyer. Moreover, the arrow is anno-
tated with a set of processes, which in this case is empty (∅). Other than those processes
named in the input and output types of the function, these are the only processes who may
participate in the computation of that function. Since that set is empty here, no other pro-
cess may participate in the function—i.e., buyAtPrice? is local to Buyer. (Sometimes we
wish for other processes to participate in the computation of a function, as we will see in
Example 3.)

However, not every function with an ∅ annotation is local. For instance, comP,Q is
a function compatible with type τ →∅ τ for any type τ . Despite the fact that comP,Q is
clearly not local, only P and Q are involved in the communication, leading to the ∅ annota-
tion. Similarly, just because the input and output of a function are at different locations does
not mean that the function involves communication. For instance, it might be a constant
function: the choreography λ x : Int @ P. 5 @ Q has the same type of a communication of
an integer from P to Q, i.e., Int @ P →∅ Int @ Q.

A programmer using a higher-order choreographic language, like a programmer using
any higher-order programming language, can write a programme once and use it in a large
number of situations. For instance, by supplying different values of title and buyAtPrice?,
the choreography in Listing (1.2) can be used to buy several different titles and Buyer can
determine if they are willing to buy the book at the price using any method they desire.

While the move from first-order programming to higher-order programming is sig-
nificant, previous work on the theoretical foundations of higher-order choreographic
programming still did not account for other forms of abstraction (Hirsch & Garg, 2022;
Cruz-Filipe et al., 2022). In particular, they did not allow for polymorphism, where pro-
grammes can abstract over types as well as data, allowing them to operate in many more

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

4 E. Graversen et al.

settings; nor did they allow for delegation, where one process can ask another process to
act in its stead.

These forms of abstraction are relatively standard: delegation is an important operation
in concurrent calculi, and polymorphism is vital to modern programming. In choreographic
programming, however, another form of abstraction becomes natural: abstraction over pro-
cesses. Current higher-order choreographic languages require that code mention concrete
process names. However, we often want to write more-generic code, allowing the same
code to run on many processes. For example, Listing (1.2) allows Buyer to decide whether
to buy a book from Seller using any local function buyAtPrice?. It would be more natural
to write Seller as a book-selling service which different clients could interact with in the
same way to buy a book.

In this paper, we tackle three new features for choreographic languages. Firstly, we
show that abstraction over processes is a type of polymorphism, which we refer to as
process polymorphism. Secondly, we extend Chorλ—a simply-typed functional chore-
ographic language—with polymorphism, including process polymorphism, and call this
new language PolyChorλ. Thirdly, we add the ability to communicate distributed values
such as functions. This gives us the ability to delegate (i.e., to send code to another pro-
cess, which that process is then expected to run), giving a clean language to study all three
forms of abstraction.

Let us examine the bookseller service in our extended language:

� B :: Proc.
λ title : String @ B.
λ buyAtPrice? : Int @ B →∅ Bool @ B.
let x = comB,Seller title
in let y = comSeller,B (price_lookup x)

in if buyAtPrice? y
then selectB,Seller Buy (() @ Seller)
else selectB,Seller Quit (() @ Seller)

(1.3)

This programme allows a process named B to connect with Seller to buy a book. B then
provides a string title and a decision function buyAtPrice?. Thus, we no longer have to
write a separate function for every process which may want to buy a book from Seller.

While this addition may appear simple, it poses some unique theoretical challenges.
First, the goal of a choreographic language is to compile a global programme to one local
programme per process. However, since B does not represent any particular process, it is
unclear how to compile the polymorphic code above. We solve this problem via a simple
principle: each process knows its identity. With this principle in place, we can compile the
code to a conditional in each process: one option to run if they take the role of B, and the
other to run if they do not.

Notably, each process chooses dynamically which interpretation of the code to run. This
flexibility is important, since we may want to allow different processes to occupy B’s
place dynamically. For instance, we can imagine a situation where Buyer1 and Buyer2
work together to buy a particularly expensive book: perhaps they compare bank accounts,
and whoever has more money buys the book for them to share. This can be achieved in
our system with Listing (1.4), where seller_service is the name of the choreography from

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 5

Listing (1.3):

λ title : String @ Buyer1.
let x = comBuyer1,Buyer2

bank_balance1

in if x < bank_balance2

then selectBuyer2,Buyer1 Me selectBuyer2,Seller Me(
seller_service Buyer2 (comBuyer1,Buyer2

title)

(λ z. z < bank_balance2)

)

else selectBuyer2,Buyer1 You selectBuyer2,Seller Them
(seller_service Buyer1 title (λ z. z < bank_balance1))

(1.4)
Here Buyer1 sends its bank balance, bank_balance1 to Buyer2, who compares the

received value with its own balance, bank_balance2. If Buyer2 has the larger balance,
then it informs Buyer1 and Seller that Buyer2 will be buying the book by means of the
label “Me.” Buyer1 then sends the book title to Buyer2, which allows Buyer2 and Seller to
initiate the seller_service choreography using a buyAtPrice? function that checks whether
the price is less than Buyer2’s bank balance. If Buyer1 has the larger balance, then Buyer2
again informs Buyer1 and Seller of who will be performing the role of buyer for the rest
of the protocol, “You” and “Them” respectively. Then, Buyer1 enters the seller_service
choreography with similar input to the first case, except the title and buyAtPrice? are now
located at Buyer1.

A related challenge shows up in the operational semantics of our extended language.
Languages like PolyChorλ generally have operational semantics which match the seman-
tics of the compiled code by allowing out-of-order execution: redices in different processes
might be reduced in any order. However, care must be taken with process polymorphism,
since it may not be clear whether two redices are in the same or different processes.

In addition to type and process polymorphism, PolyChorλ is the first choreographic lan-
guage to allow the communication of distributed values: values not located entirely at the
sender. These values include full choreographies described by distributed functions, which
can be used to model delegation. To see how process polymorphism and communication
of distributed values enables delegation, consider Figure 1. Here, when a buyer asks for a
book, the seller first checks whether it is in stock. If it is, the sale continues as normal. If
not, the seller delegates to a second seller, which may sell the book to the buyer.

In more detail, after ascertaining that the book is not in stock, Seller informs B and
Seller2 that the rest of the choreography will be executed by Seller2 in the place of Seller
using two selections with label “Delegate.” Then, Seller sends first the rest of the chore-
ography to Seller2, followed the title of the requested book. Seller2 uses its own lookup
function to execute the code in Listing (1.2). Both Seller2 and B need to be informed that
the delegation is happening, since B needs to know that it should interact with Seller2 rather
than Seller.

In general, delegation poses a challenge: the third-party processes involved in a com-
municated value (processes that are neither the sender nor the receiver, such as B above)
might need to change who they are going to interact with by swapping names (for instance,
swapping Seller2 and Seller above). As we will see, this challenge is relevant for both the

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

6 E. Graversen et al.

� B :: Proc.
λ title : String @ B.
λ buyAtPrice? : Int @ B →∅ Bool @ B.
let x = comB,Seller title
in if found(price_lookup x)

then selectSeller,B Continue
selectSeller,Seller2 Disconnect
let y = comSeller,B (price(price_lookup x))
in if buyAtPrice? y

then selectB,Seller Buy (() @ B)

else selectB,Seller Quit (() @ B)

else selectSeller,B Delegate
selectSeller,Seller2 Delegate

let F = comSeller,Seller2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ title2 : String @ Seller.
if found(price_lookup2 title2)
then selectSeller,B Continue

let y′ = price(price_lookup2 title2)
in let y = comSeller,B y′

in if buyAtPrice? y
then selectB,Seller Buy (() @ B)

else selectB,Seller Quit (() @ B)

else selectSeller,B Quit (() @ B)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in let title2 = comSeller,Seller2
x

in F title2

(1.5)

Fig. 1. Example of delegation.

type system and projection operation of PolyChorλ. For typing, the combination of pro-
cess polymorphism and distributed value communication can make it difficult to statically
determine where data are located. For projection, we need to ensure that the third-party pro-
cesses involved in a communicated value perform the required changes to process names
in the right places during execution.

Structure of the Paper. We begin in Section 2 by examining the system model of
PolyChorλ. We then proceed with the following contributions:

• In Section 3, we describe the PolyChorλ language in detail. This language includes
both type polymorphism and process polymorphism. We develop both a type system
and kind system and an operational semantics for PolyChorλ.

• In Section 4, we describe the local network language used to describe the dis-
tributed implementation. We also detail how to obtain this implementation via
endpoint projection, which compiles PolyChorλ programmes to a programme for
each process.

• In Section 5, we describe the main theorem of this paper, the correctness of endpoint
projection with respect to our operational semantics. Because of the dynamic nature

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 7

of process polymorphism, this requires significant reasoning compared to previous
works on choreographies.

• In Section 6, we demonstrate how our theory can be used to model an extended
example where an edge computer can delegate tasks to an external server.

Finally, we discuss related work in Section 7 and conclude in Section 8.

2 System model

We begin by discussing the assumptions we make about how PolyChorλ programmes
will be run. These assumptions are as light as possible, allowing for PolyChorλ to be run
in many different scenarios. In particular, we assume that we have a fixed set of pro-
cesses, which can communicate via messages. These processes can each be described by
a polymorphic λ-calculus, similar to System Fω, but with the addition of communication
primitives.

2.1 Processes

We assume that there is a fixed set N of process names P, Q, Alice, et cetera. These pro-
cesses can represent nodes in a distributed system, system processes, threads, or more.
Process polymorphism allows us to refer to processes using type variables, which may go
in or out of scope. Despite this, the set of physically-running processes remains the same.

We assume every process knows its identity. Thus, every process can choose what code
to run on the basis of its identity. This assumption is reasonable for many practical settings,
for instance it is common for nodes in distributed systems to know their identity. This
capability is essential to our strategy for enabling process polymorphism.

2.2 Communication

We assume that processes communicate via synchronous message passing. Thus, if P sends
a message to Q, then P does not continue until Q has received the message. Moreover, we
assume that message passing is instantaneous and certain, so messages do not get lost.

Processes can receive two kinds of messages: values of local programmes (described
below) and labels describing choices made during a computation. These are used to ensure
that different processes stay in lock-step with each other.

2.3 Local programmes

We assume that processes run a local language described in Section 4. This is a func-
tional language extended with communication features, similar to the language GV (Gay
& Vasconcelos, 2010; Wadler, 2012; Lindley & Morris, 2015). Even more related to our
work is FST (System F with Session Types) Lindley & Morris (2017), an extension of GV
with polymorphism. As it does not have our communication of distributed values, they can
base their types on System F rather that System Fω.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

8 E. Graversen et al.

Variables x, y, . . .
Type Variables X , Y , . . .
Integers n
Labels �

Process Names P
Process-Name Sets ρ ∈ 2Type Values

Kinds K ::= ∗ | K1 ⇒ K2 | Proc | K \ ρ

Types τ ::= ν | τ 1 τ 2 | τ 1 →ρ τ 2

| τ 1 + τ 2 | τ 1 × τ 2 | ∀X :: K. τ | λX :: K. τ
Type Values ν ::= X | () @ ν | Int @ ν | ν1 →ρ ν2 | P

| ν1 + ν2 | ν1 × ν2 | ∀X :: K. ν | λX :: K. ν
Expressions M , N , . . . ::= x | () @ ν | n @ ν | λ x : τ. M | � X :: K. M

| M N | M τ | inlτ M | inrτ M
| case M of inl x ⇒ N1; inr y ⇒ N2

| (M ,N) | fst M | snd M
| comτ

ν1,ν2
| selectν1,ν2 � M | f

Values V ::= x | () @ ν | n @ ν | λ x : τ. M | � x :: K. M
| inlτ V | inrτ V | (V1,V2)
| comτ

ν1,ν2

Fig. 2. PolyChorλ syntax.

Endpoint projection translates PolyChorλ into this “Network Process” language. We
have thus further extended GV with features required for our endpoint projection
mechanism. For instance, in the local language described in Section 4 we provide an AmI
expression form, which allows a process to choose which code to run based on its iden-
tity. Despite these extensions, the language should feel familiar to any reader familiar with
polymorphic λ-calculi.

3 The polymorphic Chorλ language

We now turn to our first major contribution: the design of the polymorphic, choreographic
λ-calculus, and PolyChorλ. This calculus extends the choreographic λ-calculus Chorλ
of Cruz-Filipe et al. (2022) with both type and, more importantly, process polymorphism.
We begin by describing the features that PolyChorλ shares with the base Chorλ before
describing the new features. The syntax of PolyChorλ can be found in Figure 2.

Syntax Inherited from Chorλ. Since choreographic programmes describe the behaviour
of an entire communicating network of processes, we need to reason about where terms are
located. In other words, we need to know which processes store the data denoted by a term.
Terms of base type, like integers, are stored by exactly one process. This is represented in
our type system by matching base types with a process name. For example, integers stored
by the process Alice are represented by the type Int @ Alice. Values of this type also mark
the process which stores them, so a value 5 @ Alice (read “the integer 5 at Alice”) has type

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 9

Int @ Alice. In Figure 2, the only base types are () @ P and Int @ P, but it is easy to extend
the language with other base types, such as the types String @ P or Bool @ P used in the
introduction. We will continue to freely use other base types in our examples.

While base types are located on just one process, data of more-complex types may
involve multiple processes. For instance, the term (5 @ Alice,42 @ Bob) involves both
data stored by Alice and Bob. This is still recorded in the type: the term above has type
Int @ Alice × Int @ Bob. In addition to base types and product types, PolyChorλ also has
sum types (written τ 1 + τ 2), along with their normal introduction and elimination forms.
Note that products and coproducts in PolyChorλ may not represent a product or coproduct
at the local level, since each component may be at a different process. For instance, we can
represent distributed Booleans as Bool @ Alice × Bool @ Bob + Bool @ Alice × Bool @
Bob. Matching on a value with this type will cause both Alice and Bob to make the same
choice.

Functions are treated more unusually: while we have standard λ and application forms,
we also allow functions to be defined mutually recursively with each other. In order to do
so, any PolyChorλ choreography is associated with a list, D, of bindings of functions to
function variables f , which are also expressions. A function variable can then during exe-
cution be instantiated with its definition according to this list. As we will see in Section 3.3,
PolyChorλ terms are evaluated in a context which associates each function variable with
a term. Note that, while in the original Chorλ types were mutually recursive in a similar
way, in PolyChorλ we do not support recursive types. To see why, note that we syntacti-
cally restrict many types to type values. This prevents us having to reason about processes
denoted by arbitrary terms—e.g., we cannot send to the “process” (λX :: Proc. X) P but
we can write (� Y :: Proc. comτ

Q,Y) ((λX :: Proc. X) P) which, due to our call-by-value
semantics, will force the type to reduce to P before Y gets instantiated. As we will see
in Section 4, allowing communication between arbitrary types would make endpoint pro-
jection difficult. However, since recursive types cannot necessarily reduce to a type value,
they cannot be used in many parts of the type system.

Function types are also more specific than their usual construction in λ-calculus: they
are written τ 1 →ρ τ 2. Here, ρ is a set of process names and type variables denoting addi-
tional participants in the function which do not have either the input or output. Thus,
if Alice wants to communicate an integer to Bob directly (without intermediaries), then
she should use a function of type Int @ Alice →∅ Int @ Bob. However, if she is will-
ing to use the process Proxy as an intermediary, then she should use a function of type
Int @ Alice →{Proxy} Int @ Bob. We will use ρ when projecting to determine that the
function in question and any uses thereof must be part of the local code of Proxy.

In order to allow values to be communicated between processes, we provide the primi-
tive communication function comτ

P,Q. This function takes a value of type τ at P and returns
the corresponding value at Q. As mentioned in the introduction, most choreographic lan-
guages provide a communication term modelled after the “Alice-and-Bob” notation of
cryptographic protocols. For instance, Alice ->Bob : 5 might represent Alice sending 5
to Bob. This is easily recovered by applying the function comτ

Alice,Bob. For example, the

term comInt@Alice
Alice,Bob (5 @ Alice) represents Alice sending a message containing 5 to Bob: it

evaluates to 5 @ Bob and has type Int @ Bob.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

10 E. Graversen et al.

Finally, consider the following, where M has type Int @ Alice + Int @ Alice:

case M of
inl x ⇒ 3 @ Bob;
inr y ⇒ 4 @ Bob

Clearly, Bob needs to know which branch is taken, since he needs to store a different
return value in each branch. However, only Alice knows which whether M evaluates to
inrInt@Alice V or inlInt@Alice V (here inl and inr are used to denote that a value is either
the right or left part of a sum and annotated with the type of the other part of the sum
to ensure type principality). Thus, this choreography cannot correspond to any network
programme. Using the terminology found in the literature of choreographic languages, we
might say that the choreography is unrealisable because there is insufficient knowledge of
choice (Castagna et al., 2012; Montesi, 2023).

In order to enable programmes where a process’s behaviour differs depending on other
processes data, such as how Bob behaved differently depending on Alice’s data, we pro-
vide select terms. These allow one process to tell another which branch has been taken,
preventing knowledge from “appearing out of nowhere.” For instance, we can extend the
programme above to:

case M of
inl x ⇒ selectAlice,Bob Left (3 @ Bob);
inr y ⇒ selectAlice,Bob Right (4 @ Bob)

This represents the same programme as above, except Alice tells Bob whether the left or the
right branch has been taken. Unlike the previous version of this example, it does represent
a (deadlock-free) network programme. In general, we allow arbitrary labels to be sent by
select terms, so semantically-meaningful labels can be chosen.

While com and select both transfer information between two processes, they differ in
what information they transfer. com moves a value, e.g., as an integer or a function, from
the sender to the receiver. select on the other hand uses a label to inform the receiver of
a choice made by the sender. Some choreographic languages combine the two, so both a
label and a value is communicated at the same time, but like most choreographic languages
PolyChorλ keeps the two separate.

Syntax Additions over Chorλ. In order to achieve (both type and process) polymorphism
in PolyChorλ, we add several features based on System Fω (Girard, 1972). In particular,
we add kinds and universal types ∀X :: K. τ along with type abstraction and application.
From System Fω, we inherit the kind ∗, which is the kind of types. We additionally inherit
the kind K1 ⇒ K2 which represents functions from types to types.

Moreover, we inherit type-level functions λX :: K. τ from System Fω. These represent
the definition of type constructors. We also have type-level function application τ 1 τ 2.
Since types contain computation, we also define type values, which are simply types
without application.

We use type-level functions for two primary purposes. First, we can use it to denote
types which depend on process names, such as λX :: Proc. Int @ X and λX :: Proc ⇒
∗. X P. Second, we use type-level functions to type communications, as we will see in
Section 3.1.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 11

Note that the base types () @ ν and Int @ ν, like local values, are syntactically restricted
to only allow type values as subterms. This allows us to use a type variable to compute
the location of a value dynamically, but not arbitrary terms, which would make it much
harder to tell at time of projection where the value is located. Thus, we can write (λX ::
Proc. Int @ X) (Y P) to compute the location of an integer dynamically (Y P has to reduce
to a type value before X can be instantiated), but we cannot write Int @ (Y P) directly.
This way, our projected calculus can tell when instantiating X (at runtime) whether it gets
instantiated as P. It would be more complicated to create runtime checks for whether Y
gets instantiated as a function type that outputs P or not.

In addition to the kinds ∗ and K1 ⇒ K2 of System Fω, we also have the kind Proc of
process names. Thus, process names are types, but they cannot be used to type any terms.

Additionally, we have Without kinds K \ ρ, which represents types of kind K which
do not mention any of the processes in the set ρ. We also refer to this kind as having a
restriction of the processes in ρ. Since we restrict the types that can be communicated
based on which processes they contain, as we will see soon, the Without kind can be used
to define polymorphic functions which contain communication. For instance, the term

� X :: Proc. � Y :: Proc \ {X }. comInt@X
X ,Y (5 @ X)

defines a function which, given distinct processes X and Y , causes X to send 5 to Y . As we
will see in Section 3.2, restricting the processes involved in a type (and therefore the term
being typed) is essential for typing communications. In particular, we need to ensure that a
sender never tries to send something located at the receiver. Moreover, we need to ensure
that every part of the communicated value located at the sender actually gets moved to the
receiver, even if its location is an uninstantiated type variable.

In the rest of this section, we explore the semantics of PolyChorλ. First, we look at its
static semantics, both in the form of typing and kinding. Second, we describe its operational
semantics. Throughout, we will continue to give intuitions based on the concurrent inter-
pretation of PolyChorλ, though the semantics we give here does not correspond directly to
that interpretation.

3.1 Typing

We now turn to the type system for PolyChorλ. As before, our type system builds on that
for Chorλ. Here, we focus on the rules that are new in this work. Thus, we focus on rules
related to polymorphism, and those that have had to change due to polymorphism.

Typing judgements for PolyChorλ have the form 	;
 	 M : τ , where 	 is the set of
process names—either names in N or type variables with kind Proc—used in M or the
type of M . The typing environment
 is a list associating variables and function names to
their types and type variables and process names to their kinds. We sometimes refer to the
pair 	;
 as a typing context.

Selected rules for our type system can be found in Figure 3. The full collection of rules
are given in Appendix A. Again, many of the rules are inherited directly from Chorλ (Cruz-
Filipe et al., 2022); we thus focus on the rules that have changed due to our additions.
Many, if not most, of these rules are inspired by System Fω. However, the addition of

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

12 E. Graversen et al.

[TUNIT]
	;
 	 ν :: Proc

	;
 	 () @ ν : () @ ν
[TINT]

	;
 	 ν :: Proc

	;
 	 n @ ν : Int @ ν

[TAPP]
	;
 	 N : τ 1 →ρ τ 2 	;
 	 M : τ 1

	;
 	 N M : τ 2

[TABS]

	;
 	 τ 1 :: ∗ 	;
′ 	 ν :: Proc for all ν ∈ ρ

	 ∩ (ρ ∪ ip(τ 1) ∪ ip(τ 2) ∪ ftv(τ 1) ∪ ftv(τ 2));
, x : τ 1 	 M : τ 2

	;
 	 λ x : τ 1. M : τ 1 →ρ τ 2

[TSEL]
	;
 	 ν1 :: Proc 	;
 	 ν2 :: Proc 	;
 	 M : τ

	;
 	 selectν1,ν2 � M : τ

[TCOM]

	;
 	 τ :: Proc ⇒ ∗
	;
 	 ν1 :: Proc \ (mp(τ) ∪ ftv(τ)) 	;
 	 ν2 :: Proc \ (mp(τ) ∪ ftv(τ))

	;
 	 comτ
ν1,ν2

: (τ ν1 →∅ τ ν2)

[TAPPT]
	;
 	 M : ∀X :: K. τ 1 	;
 	 τ 2 :: K

	;
 	 M τ 2 : τ 1[X �→ τ 2]

[TABST1]
	, X ;
 + X & ρ \ {X }, X :: Proc \ ρ 	 M : τ

	;
 	 � X :: Proc \ ρ. M : ∀X :: Proc \ ρ. τ

[TABST2]
	, X ;
 + X , X :: Proc 	 M : τ

	;
 	 � X :: Proc. M : ∀X :: Proc. τ

[TABST3]
	;
 + X & ρ \ {X }, X :: K \ ρ 	 M : τ K = Proc

	;
 	 � X :: K \ ρ. M : ∀X :: K \ ρ. τ

[TABST4]
	, X ;
 + X , X :: K 	 M : τ K = Proc �K′, ρ. K = K′ \ ρ

	;
 	 � X :: K. M : ∀X :: K. τ

[TEQ]
	;
 	 M : τ 1 τ 1 ≡ τ 2 	;
 	 τ 2 :: ∗

	;
 	 M : τ 2

Fig. 3. Typing rules (Selected).

the kind of processes and Without kinds—i.e., kinds of the form K \ ρ—also lead to some
changes.

The rules [Tunit] and [Tint] give types to values of base types. Here, we have to ensure
that the location of the term is a process. Intuitively, then, we want the location to have
kind Proc. However, it might be a Without kind—that is, it might be of the form Proc \ ρ.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 13

In this case, our subkinding system (which you can find details about in Section 3.2) still
allows us to apply the rule.

We express function application and abstraction via the [Tapp] and [Tabs] rules, respec-
tively. The application rule [Tapp] is largely standard—the only addition is the addition
of a set ρ on the function type, as discussed earlier. The abstraction rule [Tabs], on the
other hand, is more complicated. First, it ensures that the argument type, τ 1, has kind ∗.
Then, it ensures that every element in the set decorating the arrow is a process name—i.e.,
that it has kind Proc. Finally, it checks that, in an extended environment, the body of the
function has the output type τ 2. As is usual, this extended environment gives a type to the
argument. However, it restricts the available process names to those in the set ρ and those
mentioned in the types τ 1 and τ 2.

There are two ways that a type τ can mention a process: it can either name it directly,
or it can name it via a type variable. Thus, in the rule [Tabs] we allow the free variables of
τ 1 and τ 2 to remain in the process context, computing them using the (standard) free-type-
variable function where ∀X :: K. M and λX :: K. M both bind X . However, we must also
identify the involved processes in a type, which we write ip(τ) and compute as follows:

ip(X) =∅ ip(P) = P ip(() @ ν) = ip(Int @ ν) = ip(ν)

ip(ν1 →ρ ν2) = ip(ν1) ∪ {P | P ∈ ρ} ∪ ip(ν2)

ip(∀X :: K \ ρ. τ) = ip(λX :: K \ ρ. τ) = ip(τ) ∪ (N \ ρ)

ip(∀X :: K. τ) = ip(λX :: K. τ) = N if �K′, ρ. K = K′ \ ρ

The involved processes of other types are defined homomorphically.
The communication primitives select and com are typed with [Tsel] and [Tcom], respec-

tively. A term selectν1,ν2 � M behaves as M , where the process ν1 informs the process ν2

that the � branch has been taken, as we saw earlier. Thus, the entire term has type τ if M
does. Moreover, ν1 and ν2 must be processes.

The rule [Tcom] types com terms. So far we have been simplifying the type used in
comτ

P,Q for readability. We have been using τ to denote the input type, but as it turns
out to type comτ

P,Q correctly, we have to complicate things a little. Intuitively, a term
comτ

ν1,ν2
M represents ν1 communicating the parts of M on ν1 to ν2. Thus, we require that

τ be a type transformer requiring a process. Moreover, ν1 and ν2 cannot be mentioned in
τ ; otherwise, not every part of the type of M on ν1 in our example above would transfer to
ν2. For this, we use the following notion of mentioned processes:

mp(X) =∅ mp(P) = P mp(() @ ν) = mp(Int @ ν) = mp(ν)

mp(ν1 →ρ ν2) = mp(ν1) ∪ {P | P ∈ ρ} ∪ mp(ν2)

mp(∀X :: K \ ρ. τ) = mp(λX :: K \ ρ. τ) = mp(τ) ∪ ρ

mp(∀X :: K. τ) = mp(λX :: K. τ) = mp(τ) if �K′, ρ. K = K′ \ ρ

Again, with other types being defined homomorphically. The difference between involved
and mentioned processes is subtle. If there is no polymorphism, they are the same, but
when dealing with polymorphism with restriction they are opposites: involved processes

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

14 E. Graversen et al.

includes every process not in the restriction (the variable could be instantiated as something
involving those processes and thus they may be involved), while mentioned names includes
the processes mentioned in the restriction. Mentioned names is used only when typing com.
If we have such a type-level function, τ , and two type values ν1 and ν2 which are not and
will not be instantiated to anything mentioned in τ then we can type comτ

ν1,ν2
as a function

from τ ν1 to τ ν2. Since this is direct communication, no intermediaries are necessary and
we can associate this arrow with the empty set ∅.

It is worth noting at this point that the communication rule inspired our use of System Fω

rather than plain System F, which lacks type-level computation. In Chorλ and other pre-
vious choreographic languages, communicated values must be local to the sender. In
PolyChorλ, this would mean not allowing the communicated type to include type vari-
ables or processes other than the sender. Since we are introducing the idea of using
communication as a means of delegation, we have slackened that restriction. This means
that PolyChorλ programmes can communicate larger choreographies whose type may
involve other processes, and importantly other type variables. We see this in the delega-
tion example Listing (1.5), where we have the communication comSeller,Seller2

. Adding in
the required type annotation (which we had suppressed in the introduction), this becomes
comλX ::Proc. String@X→∅()@B

Seller,Seller2
. Note that this still leaves us with a free type variable B, repre-

senting the unknown process that Seller is telling Seller2 to interact with! Since we cannot
ban free type variables in communicated types, we must create a typing system that can
handle them, and this requires type-level computation.

To see why this led us to type-level computation, consider the alternative. In Chorλ
and other choreographic works, we would have a type communication using pro-
cess substitution instead of communication. The annotated programme would then be
comString@Seller→∅()@B

Seller,Seller2
. When applied to a programme of appropriate type, the result would

have type

(String @ Seller →∅ () @ B)[Seller �→ Seller2] = String @ Seller2 →∅ () @ B

Note that, because B is a type variable, it was ignored by the substitution. If B is later
instantiated as Seller, then we must substitute B with Seller2 in the output type. Thus, we
need some mechanism to delay this substitution; rather than use a mechanism like explicit
substitutions, we instead reached for the standard tool of System Fω. The communication
winds up instead being written as comλX ::Proc. String@X→∅()@B

Seller,Seller2
with X being instantiated as

Seller in the input type and Seller2 in the output type. This seemed more elegant and less
ad-hoc; moreover, it adds features which a real-world implementation of PolyChorλ would
want anyway. To ensure that B does not get instantiated incorrectly, we use our Without
kinds. Rule [Tcom] requires that both Seller and Seller2 are restricted on B, which, thanks
to our restrictions being symmetric, means that B cannot be instantiated as either of them.
The Without kinds here prevent nonsensical typings of com where, in the type, part of
the output does not get moved from the sender to the receiver. This can happen if a type
variable present in the type of the communicated value is instantiated during execution
before the communication takes place, but has not yet been instantiated when we type the
choreography. Where it not for the restrictions imposed by Without kinds, we would allow
the choreography

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 15

(� B :: Proc. λ f : String @ Seller →∅ () @ B. (comλX ::Proc. String@X→∅()@B
Seller,Seller2

f)) Seller

to be typed as (String @ Seller →∅ () @ Seller) →∅ (String @ Seller2 →∅ () @ Seller),
which implies that part of the function is still at Seller after the communication is exe-
cuted. This is not what will happen when actually executing the choreography, so the type
is wrong. The Without kinds ensure that the choreography cannot be typed: the kind of B
must be Proc \ {Seller, Seller2}, and therefore, it cannot be instantiated as Seller.

Returning now to the typing rules of Figure 3, we next have the [TappT], [TabsT1],
[TabsT2], [TabsT3] and [TabsT4] rules, which type universal quantification. The [TappT]
rule is completely standard, while the others are 4 cases of what to do with a type abstrac-
tion. Each of these rules have a different definition for the typing context of M , depending
on the kind of X . As is standard, we check if the body of the function has the right type
when the parameter X has kind K. But first, if X is a process as in [TabsT1] and [TabsT2],
then we need to extend 	 with X . In addition, we must further manipulate the context in
order to ensure that the types whose kinds are restricted on X correspond to the restriction
on the kind of X .

First, the new type variable X may shadow a previously defined X . Thus, we need to
remove X from any Without kinds already in the context. We do this using the following
operation K + ν:

(K \ ρ) + ν = (K + ν) \ (ρ \ {ν})
We define + on other kinds homomorphically and extend this to contexts as usual:

 + ν = {x : τ | x : τ ∈
} ∪ {X : K + ν | X : K ∈
}
Furthermore, in [TabsT1] and [TabsT4] if X itself has a Without kind—that is, X ’s

kind tells us it cannot be any of the processes in ρ—then we need to symmetrically add a
restriction on X to every type in ρ. Otherwise, we would not be able to use the roles in ρ

in any place where we cannot use X , even though we know X will not be instantiated with
them. We do this with the operation
 & ρ \ X , which we define as follows:

 & ρ \ X = {x : τ | x : τ ∈
} ∪ {τ :: K | τ :: K ∈
 and τ /∈ ρ}
∪ {τ :: K \ (ρ2 ∪ {X }) | τ :: K \ ρ2 ∈
 and τ ∈ ρ}
∪ {τ :: K \ {X } | τ :: K ∈
, K = K2 \ ρ2, and τ ∈ ρ}

With these operations in place, we can now fully understand how to type the type
abstractions. When K is actually a Without kind, then we must handle both shadowing and
symmetrical restrictions. However, when it is not a Without kind, we must only handle
shadowing. We show an example where every possible complication

Example 1 (Typing complex type abstractions). Consider the following choreography,
which takes a process A and sends an integer communication with A from P to Q:

M = � A :: Proc \ {P, Q}. com� X ::Proc. Int@X→∅Int@A
P,Q com� Y ::Proc. Int@Y

P,A

That A has a Without kind and the fact that A is a process means that we will need to use
Rule [TabsT1] when typing M . In order to illustrate the necessity of shadowing, we will

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

16 E. Graversen et al.

include an unnecessary process P2 in our environment. Setting 	 = {P, Q, P2}, we start
with the following judgement:

	; P : Proc, Q : Proc, P2 : Proc \ {A} 	 M : ∀A :: Proc \ {P, Q}. Int @ Q →∅ Int @ A

We need to take into account both that A is a process and that it has a Without kind in order
to make the choreography typeable. First, we shadow, obtaining the following:

(P : Proc, Q : Proc, P2 : Proc \ {A}) + A = P : Proc, Q : Proc, P2 : Proc

so we get rid of any restrictions on previous variables called A. We then add the new
symmetric restrictions necessary for typing the communication, as follows:

(P : Proc, Q : Proc, P2 : Proc) &{P, Q} \ A = P : Proc \ {A}, Q : Proc \ {A}, P2 : Proc

Continuing on, we can abbreviate K = Proc \ {A}. Finally, we add A to the environment
and 	 (writing 	′ = 	 ∪ {A}), giving:

	′; P : K, Q : K, P2 : Proc, A : Proc \ {P, Q} 	 N : Int @ Q →∅ Int @ A

where M = � A :: Proc \ {P, Q}. N . Because of the restrictions in Rule [Tcom], N would
not be typable if we had not made sure to add the symmetric restrictions. We will fur-
thermore see in Section 3.2 that adding A to the set process names is also necessary when
kinding it with the Proc kind.

On the other hand, although the rule looks bigger at first glance, it is much simpler to
use Rule [TabsT4].

Example 2 (Typing simple type abstractions). Consider the following type abstraction,
which takes a type A and applies a variable of that type to a function which also returns
something of the same type:

� A :: ∗. λ x : A. λ f : A →∅ A. f x

We can type this as

∅; ∅ 	 � A :: ∗. λ x : A. λ f : A →∅ A. f x : ∀A :: ∗. A →∅ A →∅ A →∅ A

Since we have no shadowing, the only way we have to manipulate our environment when
entering the type abstraction is to add A : ∗ to the environment, giving us

∅; A : ∗ 	 λ x : A. λ f : A →∅ A. f x : A →∅ A →∅ A →∅ A

Rules [TabsT2] and [TabsT3] are for cases of middling complexity. In Rule [TabsT2],
we have to add the type variable to 	, as in [TabsT1]. However, since we have no restric-
tions, we do not need to consider symmetric conflict. In Rule [TabsT3], we do consider
symmetric conflicts, but do not add to 	 (since we are not dealing with a process).

The final addition to our type system is the rule [Teq]. This is another standard rule from
System Fω; it tells us that we are allowed to compute in types. More specifically, it tells us
that we can replace a type with an equivalent type, using the following equivalence:

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 17

τ ≡ τ

τ 1 ≡ τ 2

τ 2 ≡ τ 1

τ 1 ≡ τ 2 τ 2 ≡ τ 3

τ 1 ≡ τ 3

τ 1 ≡ τ 1
′ τ 2 ≡ τ 2

′

τ 1 →ρ τ 2 ≡ τ 1
′ →ρ τ 2

′
τ 1 ≡ τ 1

′ τ 2 ≡ τ 2
′

τ 1 + τ 2 ≡ τ 1
′ + τ 2

′
τ 1 ≡ τ 1

′ τ 2 ≡ τ 2
′

τ 1 × τ 2 ≡ τ 1
′ × τ 2

′

τ ≡ τ ′

λX :: K. τ ≡ λX :: K. τ ′ (λX :: K. τ 1) τ 2 ≡ τ 1[X �→ τ 2]

τ 1 ≡ τ 1
′ τ 2 ≡ τ 2

′

τ 1 τ 2 ≡ τ 1
′ τ 2

′

τ ≡ τ ′

∀X :: K. τ ≡ ∀X :: K. τ ′

In addition to the rules in Figure 3 for typing choreographies, our type system needs
one more rule for typing the definitions of our recursive functions. We also add an extra
judgement of the form 	;
 	 D where 	;
 is a typing context as before, and D is a set of
definitions for function variables—i.e., D = {f1 = M1, . . . fn = Mn}. We write D(f) for the
term associated with f in D. The only rule for this judgement is [Tdefs], which says that
a set of definitions is well-formed if every variable in D is associated with a type τ in
,
and the body of f in D can be given be given type τ in the context ∅;
. We require that
the body of f can be typed with an empty set of roles because they are global predefined
functions, and as such they should not be local to any one process.

[TDEFS]
∀f ∈ domain(D). f : τ ∈
 ∧ ∅;
 	 D(f) : τ

	;
 	 D

3.2 Kinding

We finish our discussion of the static semantics of PolyChorλ by looking at our kinding
system. Our kinding system uses only one judgement, 	;
 	 τ :: K, which says that in the
typing context 	;
, the type τ has kind K. You can find the rules of our kinding system in
Figure 4. These are mostly directly inherited from System Fω. However, we must account
for Proc and Without kinds.

For instance, the rules [Kunit] and [Kint] check that the type representing which process
is storing the data indeed has the kind Proc. Similarly, [Kfun] ensures that all of the types
in the set of possible intermediaries are processes. The rule for type variables, [Kvar],
ensures that if a type variable X is assigned kind Proc, then X must also be in 	.

One of the biggest differences between our kinding system and that of System Fω,
however, is the rule [Ksub] which tells us that our system enjoys subkinding. The sub-
kinding rules come from the subset ordering on Without kinds. We also consider any
kind equivalent to the same kind restricted on the empty set due to [SKEmpty] and
[SKWithoutL].

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

18 E. Graversen et al.

[KVAR]
X :: K ∈
 if K ∈ {Proc, Proc \ ρ} then X ∈ 	

	;
 	 X :: K

[KROLE]
P :: K ∈
 K ∈ {Proc, Proc \ ρ} P ∈ 	 if K = Proc \ ρ then P /∈ ρ

	;
 	 P :: K

[KUNIT]
	;
 	 τ :: Proc \ ρ

	;
 	 () @ τ :: ∗ \ ρ
[KINT]

	;
 	 τ :: Proc \ ρ

	;
 	 Int @ τ :: ∗ \ ρ

[KFUN]
	;
 	 τ 1 :: ∗ \ ρ2 	;
 	 τ 2 :: ∗ \ ρ2 ∀ν ∈ ρ1. 	;
 	 ν :: Proc \ ρ2

	;
 	 τ 1 →ρ1 τ 2 :: ∗ \ ρ2

[KABS]
	;
, X :: K1 	 τ :: K2

	;
 	 λX :: K1. τ :: K1 ⇒ K2
[KALL]

	;
, X :: K 	 τ :: ∗ \ ρ

	;
 	 ∀X :: K. τ :: ∗ \ ρ

[KARR]
	;
 	 τ :: (K1 \ ρ) ⇒ (K2 \ ρ)

	;
 	 τ :: (K1 ⇒ K2) \ ρ
[KSUB]

	;
 	 τ :: K1 K1 <: K2

	;
 	 τ :: K2

[KSUM]
	;
 	 τ 1 :: ∗ \ ρ 	;
 	 τ 2 :: ∗ \ ρ

	;
 	 τ 1 + τ 2 :: ∗ \ ρ

[KPROD]
	;
 	 τ 1 :: ∗ \ ρ 	;
 	 τ 2 :: ∗ \ ρ

	;
 	 τ 1 × τ 2 :: ∗ \ ρ

Fig. 4. Kinding rules.

The rules for subkinding are as follows:

[SKREFL]
K <: K

[SKTRANS]
K1 <: K2 K2 <: K3

K1 <: K3

[SKARR]
K′

1 <: K1 K2 <: K′
2

K1 ⇒ K2 <: K′
1 ⇒ K′

2
[SKEMPTY]

K <: K \∅

[SKWITHOUTL]
K1 <: K2

K1 \ ρ <: K2
[SKWITHOUTUNION]

K1 <: K2

K1 \ (ρ1 ∪ ρ2) <: K2 \ ρ1

Lemma 1. Let τ be a type. If there exists a typing context 	;
 such that 	;
 	 τ :: K
then there exists a unique type value ν such that τ ≡ ν.

Proof The existence of ν follows from induction on 	;
 	 τ :: K and its uniqueness from
induction on τ ≡ ν. �

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 19

Lemma 2 (Type restriction). Let τ be a type. If there exists a typing context 	;
 such
that 	;
 	 τ :: K \ ρ then (ip(τ) ∪ ftv(τ)) ∩ ρ = ∅.

Proof Follows from kinding rules. �

Theorem 1 (Kindable types). Let M be a choreography and τ be a type such that 	;
 	
M : τ . Then 	;
 	 τ :: ∗.

Proof Follows from induction on the derivation of 	;
 	 M : τ and the kinding rules. �

We also find that types have the same kinds as their equivalent type values. Due to β-
expansion, a kindable type can be equivalent to an unkindable type, but not an unkindable
type value.

Theorem 2 (Kind Preservation). Let τ be a type. If there exists a typing context 	;
 such
that 	;
 	 τ :: K, then 	;
 	 ν :: K for any type value ν such that τ ≡ ν.

Proof Follows from the kinding and type equivalence rules. The only way that a kindable
type τ can be equivalent to a type which is not kindable is when we have types τ 1 and τ 2

such that τ = τ 1[X �→ τ 2]. In that case, if we use the rule (λX :: K. τ 1) τ 2 ≡ τ 1[X �→ τ 2]
to create an unkindable τ ′ ≡ τ with an extra application. However, this unkindable type
is not a type value, and in fact, we must also use the same rule to remove this new type
application before we get to a type value. �

Example 3. We return to the delegation example (Listing (1.5)) and try to type it. As B
appears free in the type of a value, F, being communicated between Seller and Seller2, B
must actually have the Without kind Proc \ {Seller, Seller2}. The choreography therefore
gets the type

∀B :: Proc \ {Seller, Seller2}.
String @ B →{Seller,Seller2} ((Int @ B →∅ Bool @ B) →{Seller,Seller2} () @ B)

This type shows both the input, output, and involved roles of the choreography.

3.3 Operational semantics

Finally, we consider the operational semantics of PolyChorλ. In practice, the semantics of
a choreographic language can be used to simulate a choreography and check if it specifies
the expected collective behaviour. Its key role, however, is to prove properties about the
projected local code. Specifically, we are going to prove that the projected code is com-
pliant to the choreography (an operational correspondence result) and that as a result it is
deadlock-free. The semantics of PolyChorλ are mostly a standard call-by-value reduction
semantics for a typed λ calculus. However, the reduction semantics must also carry a set D
of function definitions. Only a few rules are unusual or must be modified; those can be
found in Figure 5. You can find the rest of the rules in Appendix B.

The rules [AppTAbs] and [MTApp1] come from System Fω. The rule [AppTAbs] is
similar to ordinary CBV β reduction, but tells us how to reduce a type abstraction applied

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

20 E. Graversen et al.

[APPTABS]
τ ≡ ν

(� X :: K. M) τ →D M[X �→ ν]
[MTAPP1]

M1 →D M2

M1 τ →D M2 τ

[DEF]
f →D D(f)

[SEL]
selectP,Q � M →D M

[COM]
comτ

P,Q V →D V [P �→ Q]

Fig. 5. Semantics of PolyChorλ (selected rules).

to a type value, but with the caveat that if we do not have a type value we must use type
equivalence to get one before reducing. The rule [MTApp1] tells us that we can reduce a
type function applied to any argument.

The rule [Def] allows us to reduce function names by looking up their definition in the
set D.

Finally, we have the rules for communication. The rule [Sel] says that select acts as
a no-op, as we stated earlier. While this may seem redundant, such terms are vital for
projection, as we will see in the next section. More importantly, the [Com] rule tells us
how we represent communication at the choreography level: via substitution of roles. This
also helps explain some of the restrictions in [Tcom]. Since we replace all mentions of P
with Q in V , we cannot allow other mentions of P in the type transformer of V . Otherwise,
there could be some mentions of P which should not be replaced during communication,
which we do not model. Unlike when typing comτ

P,Q V , when executing a communication
we know (since we only consider choreographies without free variables) that any type
variables in τ or V have already been instantiated and as such do we do not need to consider
how to substitute variables which may later be instantiated to P or Q.

It may be surprising to learn that our semantics are simply call-by-value reduction
semantics, especially for those readers familiar with choreographies. After all, choreogra-
phies are supposed to represent concurrent programmes, and so multiple redices should
be available at any time. Indeed, previous works on choreographic programming (e.g.,
Carbone & Montesi, 2013; Cruz-Filipe & Montesi, 2020; Hirsch & Garg, 2022) provided
a semantics with out-of-order execution, so that the operational semantics of the chore-
ographies matched with all possible reductions in the concurrent interpretation. We use
these simpler semantics, without out-of-order execution, instead. In exchange, our result
in Section 5 will be weaker: we only promise that any value which the choreography can
reduce to, so can the concurrent interpretation.

To see why we chose to obtain this weaker result, consider the choreography

f ((comλX ::Proc. Int@X
Q1,Q2

(3 @ Q1)), (4 @ P))

Here we have a function f which needs to be instantiated with a distributed pair. P is
ready to feed its part of the argument into f and start computing the result, while Q1 and
Q2 are still working on computing their part of the argument. There are two ways we
could interpret PolyChorλ concurrently: we can synchronise when all processes enter a
function or we can allow P to enter the function early. We take the second, more practical,

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 21

route. However, this means it is not possible to reflect at least one evaluation order into
the semantics of the choreography without banning distributed values or allowing us to
somehow call a single value in multiple steps. This insight led to us adopting the weaker
guarantee discussed above.

As is standard for call-by-value λ-calculi, we are able to show that our type system
is sound with respect to our operational semantics, as expressed in the following two
theorems:

Theorem 3 (Type Preservation). Let M be a choreography and D a function mapping
containing every function in M. If there exists a typing context 	;
 such that 	;
 	 M : τ
and 	;
 	 D, then 	;
 	 M ′ : τ for any M ′ such that M →D M ′.

Proof Follows from the typing and semantic rules and Theorem 2. �

Theorem 4 (Progress). Let M be a closed choreography and D a function mapping con-
taining every function in M. If there exists a typing context 	;
 such that 	;
 	 M : τ
and 	;
 	 D, then either M = V or there exists M ′ such that M →D M ′.

Proof Follows from the typing and semantic rules. �

4 Endpoint projection

We now proceed to the most important result for any choreographic programming lan-
guage: endpoint projection. Endpoint projection gives a concurrent interpretation to our
language PolyChorλ by translating it to a parallel composition of programmes, one for
each process. In order to define endpoint projection, though, we must define our process
language, which we refer to as a local language. The syntax of the local language can be
found in Figure 6. There you can also find the syntax of local transition labels and net-
work transition labels, both of which will be described when we describe the operational
semantics of networks.

As in PolyChorλ, our local language inherits much of its structure from System Fω. In
particular, we have products, sums, functions, universal quantification, and λ types, along
with their corresponding terms. In fact, some types look more like standard System Fω

than PolyChorλ: function types do not need a set of processes which may participate in the
function, and base types no longer need a location.

However, not everything is familiar; we have introduced new terms and new types.
The terms sendv and recvv allow terms to send and receive values, respectively. We also
split select terms into two terms: an offer term &v {�1 : L1, . . . , �n : Ln} which allows v to
choose how this term will evolve. We represent such choices using choice terms of the
form ⊕v � L. This term informs the process represented by v that it should reduce to its
subterm labelled by �, and then itself reduces to the term L. While these are unusual pieces
of a polymorphic language like System Fω, they are familiar from process languages like
π calculus. We also add undefined types and terms, written ⊥ and ⊥, respectively. These
represent terms which are ill-defined; we use them to represent data which does not exist
on some process P, but which needs to be written structurally in P’s programme. For

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

22 E. Graversen et al.

Variables x, y, . . .
Type Variables X , Y , . . .
Process Names P
Local Transition Labels μ ::= τ | P | sendP L L′ | recvP L′ L

| ⊕P � | &P �

Network Transition Labels μ ::= τP

Process labels P ::= P | P, Q
Local Types t ::= v | t1 t2 | AmI v ? t1 & t2 | t1 → t2

| t1 + t2 | t1 × t2 | ∀X. t | λX. t
Local Type Values v ::= X | () | Int | v1 → v2 | P | ⊥

| v1 + v2 | v1 × v2 | ∀X. v | λX. v
Local Expressions B ::= x | () | n | λ x : t. B | � X. B

| B1 B2 | B t | inlt B | inrt B
| case B of inl x ⇒ B1; inr y ⇒ B2

| (B1,B2) | fst B | snd B
| sendv | recvv

| &v {�1 : B1, . . . , �n : Bn} | ⊕v � B
| sub[v1 �→ v2] | f | AmI v ? B1 & B2

Local Values L ::= x | () | n | ⊥ | λ x : t. B | � X. B
| inlt L | inrt L | (L1,L2)
| sendv | recvv | sub[v1 �→ v2]

Fig. 6. Local language syntax.

instance, ⊥ is the result of sending a value without process polymorphism. We also use it
as the input of recv, since both send and recv are functions which require an input. More
generally, if a process P participates in a function but the input and/or output is located
elsewhere, we will use ⊥ to represent that input and/or output. The type ⊥ is only used for
the term ⊥.

We also include a more unusual feature: explicit substitutions of processes. The
term sub[v1 �→ v2] is a function which, when applied, replaces the role denoted by v1

with that denoted by v2 in its argument. This function allows us to represent the view of
communication according to third parties: the roles simply change, without any mechanism
necessary. For instance, imagine that Alice wants to tell Bob to communicate an integer to
Cathy. She can do this by sending Bob the function comλX ::Proc. Int@X

Alice,Cathy . In PolyChorλ, this
corresponds to the choreography

comλX ::Proc. Int@X→∅Int@Cathy
Alice,Bob

(
comλX ::Proc. Int@X

Alice,Cathy

)
In order to project this choreography, we need to be able to project the communication
function above even when it is not applied to any arguments. This is where we use explicit
substitutions: we project the communication function to sub[Alice �→ Bob].

Finally, we introduce our unique feature: AmI terms and their corresponding type.
These represent the ability of a process to know its own identity and to take actions
based on that knowledge. Process polymorphism requires an instantiation of a process

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 23

variable at process P to be accompanied by a conditional determining whether the variable
has been instantiated as P or as some other process P may interact with. In particular,
the term AmI v ? B1 & B2 reduces to B1 if the term is run by the process denoted by v,
and B2 otherwise. Since B1 and B2 may have different types, we provide types of the
form AmI v ? t1 & t2, which represent either the type t1 (if typing a term on the process
denoted by v) or t2 (otherwise). These terms form a backbone of endpoint projection for
PolyChorλ: every � term binding a process gets translated to include an AmI term. For
instance, consider projecting the choreography

� X :: Proc. comλX ′::Proc. Int@X ′
Q,X 4 @ Q

to some process P. Depending on the argument to which this function is applied, P should
behave very differently: if it is applied to P itself, it should receive something from Q.
However, if it is applied to any other term, it should do nothing. We therefore project the
choreography above to the following programme for P:

� X. AmI X ? recvQ ⊥ & ⊥
Note that the AmI construct is necessary for process polymorphism in general, unless
process variables cannot be instantiated to the process they are located at. It, and the
combinatorial explosion caused by having multiple process abstractions, is not caused
by the choreographic language but instead the choreographic language hides it and lets
programmers avoid explicitly describing both sides of the AmI separately.

Note that we do not have a kinding system for local programmes. In fact, we do not
check the types of local programmes at all. However, because types have computational
content, we need to project them as well. In order to preserve that computational content,
we again use an equivalence of types which corresponds to β, η-equivalence. However, in
order to accommodate AmI types, we must index that equivalence with a process. Then,
we have two rules regarding AmI types:

[IAM]
AmI P ? t1 & t2 ≡P t1

[IAMNOT]
P = Q

AmI Q ? t1 & t2 ≡P t2

We use these equivalence rules with process annotation to ensure that processes only
use equivalences indexed with their own name and do not pick the wrong branch of an
AmI type. This way we project the type (λX :: Proc. Int @ X) P as (λX. AmI X ? Int & ⊥) P
which is equivalent to Int and P but ⊥ everywhere else.

Now that we have seen the syntax of the programmes which run on each process, we
can look at whole networks:

Definition 1. A network N is a finite map from a set of processes to local programmes.
We often write P1[L1] | · · · | Pn[Ln] for the network where process Pi has behaviour Li.

The parallel composition of two networks N and N ′ with disjoint domains, N | N ′,
simply assigns to each process its behaviour in the network defining it. Any network is
equivalent to a parallel composition of networks with singleton domain, as suggested by
the syntax above.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

24 E. Graversen et al.

We now consider the operational semantics of local programmes and networks. These
are given via labelled-transition systems; the syntax of both sorts of label can be found in
Figure 6. The network transitions are labelled with τP where P is the set of involved
processes (either one for a local action or two for a synchronisation). The local transitions
have more options for labels. The label τ denotes a normal local computation. We use the
process name P as a label for an action which can only take place at P. The label sendP L L′

denotes sending the value L to P, leaving L′ after the send—we will explain what a label
left behind after the send does when we discuss the semantics of local communication in
detail. The label recvP L′ L is the dual: it denotes receiving L′ from P, with L being the
value the receiver had before receiving. Again, we explain the semantics of receiving in
detail later. Finally, the label ⊕P � denotes sending a label � to P, while the label &P �

denotes receiving the label � from P.
Selected rules for both operational semantics can be found in Figures 7 and 8. As before,

transitions are indexed by a set d of function definitions. Function variables reduce by
looking up their definition in d. Since this transition involves no communication, it is
labelled with the empty transition, τ .

Perhaps surprisingly, undefined arguments to functions do not immediately cause the
application to be undefined. To see why, think about choreographies of the form (λ x :
Int @ P. M) N where some process Q = P is involved in both M and N . We project this
to an application on Q of the form (λ x : ⊥. �M�Q) �N�Q. Note that because we know that
N has type Int @ P, the projection �N�Q has type ⊥ and eventually evaluates to ⊥. Thus,
if (λ x : ⊥. �M�Q) ⊥ immediately evaluated to ⊥, the process Q could not participate in
M , as they need to do! We therefore allow this to evaluate to �M�Q. However, when the
function is also undefined, we evaluate this to ⊥ with the empty label τ , as you can see in
the rules [NBot] and [NBott]

As mentioned earlier, the explicit substitutions sub[P �→ Q] are functions which, when
applied, perform the requested substitution in the value to which they are applied. This is
implemented in the rule [NSub].

The AmI terms are given meaning via the rules [NAmIR] and [NAmIL]. The
rule [NAmIR] says that the term AmI P ? L1 & L2 can evaluate to L1 with label P, while
the rule [NAmIL] says that it can instead reduce to L2 with label Q where Q = P. We will
see later that in the network semantics, we only allow transitions labelled with the process
performing the transition.

Choice and offer terms reduce via the rules [NCho] and [Noff]. The first, [Ncho], tells
us that a choice term simply reduces to its continuation with a transition label indicating
the choice that has been made. The second, [Noff], tells us that an offer term can reduce to
any continuation, with a transition label indicating the label of the continuation it reduced
to. We will see later that the semantics of networks only allows the offer term to reduce to
the continuation chosen by a matching choice term.

Finally, the send and recv terms are given meaning via [NSend] and [NRecv], respec-
tively. However, these rules behave somewhat-differently than might be expected: rather
than acting as a plain send and receive, they behave more like a swap of information.

In a plain send, the sender would not have any information after the send—perhaps
the term would come with a continuation, but this would not be related to the send.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 25

[NDEF] f
τ−→d d(f) [NABSAPP] (λ x : t. B) L

τ−→d B[x �→ L]

[NBABS]
t ≡P v

(� X. B) t
P−→d B[X �→ v] [NBOT] ⊥ ⊥ τ−→d ⊥

[NSUB] sub[P �→ Q] L
τ−→d L[P �→ Q] [NBOTT] ⊥ ⊥ τ−→d ⊥

[NAMIR] AmI P ? L1 & L2
P−→d L1

[NAMIL]
Q = P

AmI P ? L1 & L2
Q−→d L2

[NCHO] ⊕P � L
⊕P �−−−→d L [NOFF] &P {�1 : L1, . . . , �n : Ln} &P �i−−−→d Li

[NSEND] sendP L1
sendP L1 L2−−−−−−→d L2 [NRECV] recvP L1

recvP L2 L1−−−−−−→d L2

[NAPP1]
B1

μ−→d B2

B1 B′ μ−→d B2 B′ [NAPP2]
B

μ−→d B′

L B
μ−→d L B′ [NTAPP1]

B
μ−→d B′

B t
μ−→d B t

[NINL]
B

μ−→d B′

inlt B
μ−→d inlt B′ [NINR]

B
μ−→d B′

inrt B
μ−→d inrt B′

[NCASE]
B

μ−→d B′

case B of inl x ⇒ B1; inr y ⇒ B2
μ−→d case B′ of inl x ⇒ B1; inr y ⇒ B2

[NCASEL] case inlt L of inl x ⇒ B1; inr y ⇒ B2
τ−→d B1[x �→ L]

[NCASER] case inrt L of inl x ⇒ B1; inr y ⇒ B2
τ−→d B2[x �→ L]

[NPAIR1]
B1

μ−→d B′
1

(B1,B2)
μ−→d (B′

1,B2)
[NPAIR2]

B2
μ−→d B′

2

(B1,B2)
μ−→d (B1,B′

2)

[FST]
B1 →D B2

fst B1 →D fst B2

[SND]
B1 →D B2

snd B1 →D snd B2 [NPROJ1] fst (L1,L2)
τ−→d L1

[NPROJ2] snd (L1,L2)
τ−→d L2

Fig. 7. Semantics of local processes.

Moreover, the receiver would not provide any information, but merely receive the informa-
tion from the sender. However, when sending a choreography with process polymorphism,
the sender may need to participate in the continuation, depending on how polymorphic
functions are applied. For instance, consider the following choreography, where P sends a

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

26 E. Graversen et al.

[NCOM]
L1

sendP L (L′[Q �→P])−−−−−−−−−−→d L′
1 L2

recvQ (L[Q�→P]) L′
−−−−−−−−−−→d L′

2

Q[L1] | P[L2]
τQ,P−−→d Q[L′

1] | P[L′
2]

[NSEL]
L1

⊕P �−−−→d L′
1 L2

&Q �−−−→d L′
2

Q[L1] | P[L2]
τQ,P−−→d Q[L′

1] | P[L′
2]

[NPROAM]
L

P−→d L′

P[L]
τP−→d P[L′]

[NPRO]
L

τ−→d L′

P[L]
τP−→d P[L′]

[NPAR]
N1

τP−→d N2

N1 | N ′ τP−→d N2 | N ′

Fig. 8. Semantics of networks.

polymorphic function to Q, and the resulting polymorphic function is applied to P:

(comλY ::Proc. ∀X ::Proc. Int@X
P,Q (� X :: Proc. comλY ′::Proc. Int@Y ′

P,X (5 @ P))) P

The polymorphic function that results from the com above is as follows:

� X :: Proc.
(
comλY ′::Proc. Int@Y ′

Q,X (5 @ Q)
)

Applying this to P leads to a programme where P receives from Q. Since P needs to
participate in this programme, P must have a programme remaining after sending the
polymorphic function to Q.

While this explains why send terms cannot simply, for instance, return unit, it does not
explain why send and recv terms swap results. To see this, consider what happens when a
term is sent from a process P to another process Q. We know from our type system that
Q is not mentioned in the type of the term being sent, and we know that after the send all
mentions of P are changed to mentions of Q. Hence, after the send, P’s version of the term
should be the view of a process not involved in the term. This is exactly what Q’s version
of the term is before the send. Thus, sends and recvs behaving as swaps leads to the correct
behaviour.

Example 4 (Send And Receive). We now show the local projection (formalised in
Section 4.1) and desired behaviour of

(comλY ::Proc. ∀X ::Proc. Int@X
P,Q (� X :: Proc. comλY ′::Proc. Int@Y ′

P,X (5 @ P))) P

This choreography generates the network:

P[(sendQ (� X. AmI X ? (λ x : λY ′. AmI Y ′ ? Int & ⊥ P. x) & (sendX 5))) P]|
Q[(recvP (� X. AmI X ? (recvP ⊥) & (⊥))) P]

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 27

Using our semantics, we get the following reductions:

P[(sendQ (� X. AmI X ? (λ x : λY ′. AmI Y ′ ? Int & ⊥ P. x) & (sendX 5))) P]|
Q[(recvP (� X. AmI X ? (recvP ⊥) & (⊥))) P]
τP,Q−−→∅
P[(� X. AmI X ? (recvQ ⊥) & (⊥)) P]|
Q[(� X. AmI X ? (λ x : λY ′. AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)) P]
τP−→∅
P[(AmI P ? (recvQ ⊥) & (⊥))]|
Q[(� X. AmI X ? (λ x : λY ′. AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)) P]
τP−→∅
P[recvQ ⊥]|
Q[(� X. AmI X ? (λ x : λY ′. AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)) P]
τQ−→∅
P[recvQ ⊥]|
Q[AmI P ? (λ x : λY ′. AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)]
τQ−→∅
P[recvQ ⊥]|Q[(sendX 5)]
τQ,P−−→∅
P[5]|Q[⊥]

Now that we have discussed the semantics of local programmes, we discuss the seman-
tics of networks. Each transition in the network semantics has a silent label indexed with
the processes participating in that reduction: τP , where P consists of either one process
name (for local actions at that process) or two process names (for interactions involving
these two processes). We treat P as a set, implicitly allowing for exchange.

For instance, the rule [NCom] describes communication. Here, one local term must
reduce with a send label, while another reduces with a recv label. These labels must match,
in the sense that the value received by the recv must be the value sent by the send—though
with the receiver in place of the sender—and vice-versa. Then, a network in which the
local terms are associated with the appropriate processes, Q and P, can reduce with the
label τQ,P. Similarly, the rules [NSel] reduces matching choice and select terms, resulting
in the label τQ,P.

While [NCom] and [NSel] describe communication, the rest of the rules describe how
a single process’s term can evolve over time in a network. Particularly interesting is
[NProam], which says that a AmI term can reduce only according to the process it is asso-
ciated with. We can see here that the resulting label is τP, indicating that this reduction
step only involves P.

The rules [NPro] tells us how to lift steps with an empty label τ . Such steps make no
assumptions about the network, and so such terms can be associated with any process P.
When such a reduction takes place in a network, we label the resulting transition τP.

Finally, the rule [NPar] says that if one part of a network can reduce with a label τP ,
then the entire network can reduce with that same label. This allows the other rules, which
assume minimal networks, to be applied in larger networks.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

28 E. Graversen et al.

In the future. we will use →∗ and →+ to denote respectively a sequence and a sequence
of at least one action with arbitrary labels.

4.1 Projection

We can now define the endpoint projection (EPP) of choreographies. This describes a
single process’s view of the choreography; the concurrent interpretation of a choreography
is given by composing the projection to every process in parallel. Endpoint projection to a
particular process P is defined as a recursive function over typing derivations 	;
 	 M : τ .
For readability, however, we write it as a recursive function over the term M , and use the
notation typeof(N) to refer to the types assigned to any term N in the implicit typing
derivation. Similarly, we use kindof(τ) to refer to the kind of a type τ in the implicit typing
derivation. We write �M�P to denote the projection of the term M (implicitly a typing
derivation for M , proving that it has some type) to the process P.

Intuitively, projection translates a choreography term to its corresponding local
behaviour. For example, a communication action projects to a send (for the sender), a
receive (for the receiver), a substitution (for the other processes in the type of the value
being communicated) or an empty process (for the remaining processes). However, this is
more complicated for case statements. For instance, consider the following choreography,
which matches on a sum type which is either an integer on Alice or a unit on Alice. If it
is an integer, then Bob receives that integer from Alice and the choreography returns the
integer now located at Bob. Otherwise, the choreography returns the default value 42 also
located at Bob. Alice informs Bob of which branch she has taken using select terms.⎛

⎜⎜⎜⎜⎝
λ z : (Int @ Alice) + (() @ Alice).
case z of
inl x ⇒ selectAlice,Bob Just (comλX. Int@X

Alice,Bob x);
inr y ⇒ selectAlice,Bob Nothing (42 @ Bob)

⎞
⎟⎟⎟⎟⎠ inl()@Alice (3 @ Alice)

Imagine projecting this to Bob’s point of view. He does not have any of the information
in the sum, so he cannot participate in choosing which branch of the case expression gets
evaluated. Instead, he has to wait for Alice to tell him which branch he is in. If we naïvely
translate just the first branch of the case expression, Bob waits for Alice to send him the
label Just and then waits for Alice to send him an integer. Similarly, in the second branch
Bob waits for Alice to send him the label Nothing before returning the default value 42.
Somehow, we need to combine these so that Bob waits for either label, and then takes the
corresponding action.

We do this by merging Bob’s local programmes for each branch (Carbone et al., 2012;
Honda et al., 2016; Cruz-Filipe & Montesi, 2020). Merging is a partial function which
combines two compatible local programmes, combining choice statements. In other words,
the key property of merging is:

&P {�i : Bi}i∈I � &P {�j : B′
j}j∈J =

&P

(
{�k : Bk � B′

k}k∈I∩J ∪ {�i : Bi}i∈I\J ∪ {�j : B′
j}j∈J\I

)

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 29

Merging is defined homomorphically on other terms, though it is undefined on incom-
patible terms. Thus, for example, inlt B � inlt B′ = inlt (B � B′), but inlt1 B � inrt2 B′ is
undefined.

We can then use this to project the choreography above to Bob as:

(λ z : ⊥.&Alice {Just : (recvAlice ⊥), Nothing : 42}) ⊥
where ⊥ represents a part of the choreography executed by Alice.

Definition 2. The EPP of a choreography M for process P is defined by the rules in
Figures 9, 10 and 11.

To project a network from a choreography, we therefore project the choreography for
each process and combine the results in parallel: �M� =∏

P∈ip(M) P
[�M�P].

Intuitively, projecting a choreography to a process that is not involved in it returns a ⊥.
More-complex choreographies, though, may involve processes that are not shown in their
type. This explains the first clause for projecting an application: even if P does not appear
in the type of M , it may participate in interactions inside M . A similar observation applies
to the projection of case, where merging is also used.

Selections and communications follow the intuition given above, with one interesting
detail: self-selections are ignored, and self-communications project to the identity func-
tion. This is different from many other choreography calculi, where self-communications
are not allowed—we do not want to impose this in PolyChorλ, since we have process poly-
morphism and therefore do not want to place unnecessary restrictions on which processes
a choreography can be instantiated with.

Any process P must prepare two behaviours for a process abstraction � X :: Proc. M :
one for when X is instantiated with P itself, and one for when X is instantiated with another
process. To do this, we use AmI terms, which allow P to use its knowledge of its identity to
select which behaviour takes place. (This also holds when X has a Without kind, as long as
the base kind is Proc, though if P is excluded from the type of X and P does not participate
in M then we simply project to ⊥.) However, type abstractions � X :: K. M do not use AmI
terms if K is not a kind of processes, since P cannot instantiate X .

When projecting an application, we may project both the function and its argument,
either one but not the other, or neither. While it may seem simple—just project both sides,
and get rid of any ⊥s or ⊥s that come up—it turns out to be somewhat complicated. In
order to ensure every process performs actions in the same order and avoid communication
mismatches, we must project an abstraction for any process involved in the computation,
even if they do not have the input (Cruz-Filipe et al., 2023, Example 6). To see why this
causes complications, consider M = λ x : Int @ P. 5 @ Q. When M gets projected to Q, it
becomes λ x. 5. However, applying M to an argument—say, M 2 @ P—needs to lead to a
function application on Q! Thus, we project this to (λ x. 5) ⊥, allowing Q to instantiate its
function. We use the type system to identify the cases where we need to keep ⊥ or ⊥ and
those where we should only project the function part of an (type) application.

Type applications work a bit differently. Since there is no chance of communication hap-
pening while computing a type, we can project only the body of a type abstraction without
the actual abstraction to P when we know the argument is not located at P. In addition, we

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

30 E. Graversen et al.

�x�P =
{ ⊥ if �typeof(x)�P = ⊥

x otherwise
�f �P = f

�() @ ν�P =
{

() if �ν�P = P
⊥ otherwise

�n @ ν�P =
{

n if �ν�P = P
⊥ otherwise

�λ x : τ. M�P =
⎧⎨
⎩ ⊥ if �M�P = ⊥

and �τ�P = ⊥
λ x : �τ�P . �M�P otherwise

�M N�P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⊥ if �M�P = �N�P = ⊥
�M�P �N�P if P ∈ ip(typeof(M))

or �M�P = ⊥ = �N�P�M�P if �N�P = ⊥
�N�P otherwise

�� X :: K. M�P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� X. AmI X
? �M[X �→ P]�P
& �M�P

if K ∈ {Proc, Proc \ ρ}

�M�P if K = K′ \ {P} ∪ ρ

� X. �M�P otherwise

�M τ�P =

⎧⎪⎪⎨
⎪⎪⎩

⊥ if �M�P = �τ�P = ⊥
�M�P if �τ�P = ⊥

and P /∈ ip(typeof(M))
�M�P �τ�P otherwise

�inlτ M�P
=

⎧⎪⎪⎨
⎪⎪⎩

⊥ if �M�P = ⊥ and
kindof(τ) = K \ ρ

�M1�P if �typeof(M)�P = ⊥
inl�τ�P �M1�P otherwise

�inrτ M�P
=

⎧⎪⎪⎨
⎪⎪⎩

⊥ if �M�P = ⊥ and
kindof(τ) = K \ ρ

�M1�P if �typeof(M)�P = ⊥
inr�τ�P �M1�P otherwise

Fig. 9. Projection of PolyChorλ programmes.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 31

�case M of inl x ⇒ N1; inr y ⇒ N2�P =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

case �M�P of inl x ⇒ �N1�P ; inr y ⇒ �N2�P if P ∈ ip(typeof(M))
⊥ if �M�P = �N1�P = �N2�P = ⊥
�M�P if �N1�P = �N2�P = ⊥
�N1�P � �N2�P if �M�P = ⊥(
λ z : ⊥.

(�N1�P � �N2�P)) �M�P (z fresh) otherwise

�(M1, M2)�P =
{ ⊥ if �M1�P = �M2�P = ⊥

(�M1�P , �M2�P) otherwise

�fst M�P =
⎧⎨
⎩

⊥ if �M�P = ⊥
�M1�P if �typeof(M)�P = ⊥
fst �M1�P otherwise

�snd M�P =
⎧⎨
⎩

⊥ if �M�P = ⊥
�M1�P if �typeof(M)�P = ⊥
snd �M1�P otherwise

�selectQ1,Q2 � M�P =
⎧⎨
⎩

⊕Q′ � �M�P if P = Q1 = Q2

&S {� : �M�P} if P = Q2 = Q1�M�P otherwise

�
comτ

Q1,Q2

�
P

=⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ x : �τ P�P . x if P = Q1 = Q2

sendQ2 if P = Q1 = Q2

recvQ1 if P = Q2 = Q1

sub[Q1 �→ Q2] if �τ�P = ⊥
⊥ otherwise

Fig. 10. Projection of PolyChorλ programmes (ctd.).

do not have a case for projecting only the argument, since the context surrounding a type
abstraction will not expect a type.

In general, projecting a type yields ⊥ at any process not used in that type. We use the
restrictions on kinds to avoid projecting type variables and type abstractions when we
know we do not need to and project all process names to themselves, but otherwise the
projection of type constructs is similar to that of corresponding process terms.

Finally, to execute a projected choreography, we need to project the set of definitions of
choreographic functions to a set of definitions of local functions. Since these functions are
all parametrised over every involved process, this is as simple as projecting the definitions

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

32 E. Graversen et al.

�X �P =
{ ⊥ if kindof(X) = K \ ({P} ∪ ρ) for K = Proc

X otherwise
�Q�P = Q

�() @ Q�P =
{

() if P = Q
⊥ otherwise

�Int @ Q�P =
{

Int if P = Q
⊥ otherwise

�τ 1 × τ 2�P =
{ ⊥ if �τ 1�P = �τ 2�P = ⊥

�τ 1�P × �τ 2�P otherwise

�τ 1 + τ 2�P =
{ ⊥ if �τ 1�P = �τ 2�P = ⊥

�τ 1�P + �τ 2�P otherwise

�τ 1 →ρ τ 2�P =
{ �τ 1�P → �τ 2�P if P ∈ ρ or �τ 1�P = ⊥ = �τ 2�P

⊥ otherwise

�∀X :: K. τ�P =
⎧⎨
⎩

⊥ if �τ�P = ⊥ and K = K′ \ ({P} ∪ ρ)
∀X. AmI X ? �τ [X �→ P]�P & �τ�P if K ∈ {Proc, Proc \ ρ}
∀X. �τ�P otherwise

�τ 1 τ 2�P =

⎧⎪⎪⎨
⎪⎪⎩

⊥ if �τ 1�P = �τ 2�P = ⊥
�τ 1�P if �τ 2�P = ⊥ and kindof(τ 2) = K \ ({P} ∪ ρ)
�τ 2�P if �τ 1�P = ⊥
�τ 1�P �τ 2�P otherwise

�λX :: K. τ�P =
⎧⎨
⎩

⊥ if �τ�P = ⊥ and K = K′ \ ({P} ∪ ρ)
λX. AmI X ? �τ [X �→ P]�P & �τ�P if K ∈ {Proc, Proc \ ρ}
λX. �τ�P otherwise

Fig. 11. Projection of PolyChorλ types.

onto an arbitrarily chosen process name.

�D� = {f �→ �D(f)�P | f ∈ domain(D)}}
Note that function names always get projected everywhere. This means that if we have
a function which does not terminate when applied to some value in any process, then it
diverges when applied to that value in the choreography and in every other process.

Example 5. We will now show how to project the bookseller service example Equation
(1.3). As in that example we use let x = B in B′ as syntactic sugar for λ x : t. B′ B for some
t and if B1 then B2 else B3 as syntactic sugar for case B1 of inl x ⇒ B2; inr x ⇒ B3 for
some x /∈ (fv(B2) ∪ fv(B3)). We project for Seller and get the following process:

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 33

� B.
AmI B
? λ title.

λ buyAtPrice?.
let x = (λ y. y) title
in let y = (λ z. z) (price_lookup x)

in if buyAtPrice? y
then ()
else ()

& λ title.
λ buyAtPrice?.
let x = recvB ⊥
in let y = sendB (price_lookup x)

in &B {Buy : (), Quit : ()}
Here we can see that if the buyer B turns out to be Seller itself, then all the com-

munications become identity functions, and the seller does not inform itself of its
choice. Otherwise, we get a function which, after being instantiated with a buyer,
also needs to be instantiated with two ⊥s representing values existing at B. It then
waits for B to send a title, returns the price of this title, and waits for B to decide
whether to buy or not. It might seem strange to have a function parametric on two
values that are located at B and will therefore here be instantiated with ⊥s, but this
example actually illustrates why when projecting we cannot in cases like this remove
the first two λs from the process without causing a deadlock. Consider that let y =
sendB (price_lookup x)in &B {Buy : (), Quit : ()} is syntactic sugar for (λ y. &B {Buy :
(), Quit : ()}) (sendB (price_lookup x)). Here we need to have the abstraction on y even
though it gets instantiated as ⊥ after Seller sends the result of price_lookup x to B. If
instead we only had (&B {Buy : (), Quit : ()}) (sendB (price_lookup x)), then the first part
of the application would not be a value, and would be waiting for B to choose between
Buy and Quit while B has the abstraction on y and therefore considers the first part of the
application a function which must wait to be instantiated. B therefore expects to receive
the result of price_lookup x, and we get a deadlock in our system. This is why we never
want to project a value to a non-value term and need to keep any abstractions guarding a
part of the choreography involving Seller.

5 The correctness of endpoint projection

We now show that there is a close correspondence between the executions of choreogra-
phies and of their projections. Intuitively, this correspondence states that a choreography
can execute an action if, and only if, its projection can execute the same action, and both
transition to new terms in the same relation. However, this is not completely true: if a
choreography M reduces by rule [CaseL], then the result has fewer branches than the
network obtained by performing the corresponding reduction in the projection of C.

In order to capture this we revert to the branching relation (Cruz-Filipe & Montesi, 2020;
Montesi, 2023), defined by M � N iff M � N = M . Intuitively, if M � N , then M offers the

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

34 E. Graversen et al.

same and possibly more behaviours than N . This notion extends to networks by defining
N � N ′ to mean that, for any role P, N (P) � N ′(P).

Using this, we can show that the EPP of a choreography can do all that (com-
pleteness) and only what (soundness) the original choreography does. For traditional
imperative choreographic languages, this correspondence takes the form of one action
in the choreography corresponding to one action in the projected network. We instead
have a correspondence between one action in the choreography and multiple actions in
the network due to allowing choreographies to manipulate distributed values in one action
such as in λ x : Int @ Bob × Int @ Alice. M (3 @ Bob,3 @ Alice) where both Bob and Alice
independently take the first part of the pair.

Theorem 5 (Completeness). Given a closed choreography M, if M →D M ′, 	;
 	 D,
	;
 	 M : τ , and �M� is defined, then there exists network N and choreography M ′′

such that: �M� →+
�D� N and N � �M ′�.

Proof We prove this by structural induction on M →D M ′. We take advantage of the fact
that type values project to ⊥ at processes not involved in them, while choreographic values
correspondingly project to ⊥ at processes not involved in their type. See Appendix C for
full details. �

Theorem 6 (Soundness). Given a closed choreography M and a function mapping D,
if 	;
 	 M : τ , 	;
 	 D, and �M� →∗

�D� N for some network N , then there exist a
choreography M ′ and a network N ′ such that: M →∗

D M ′, N →∗
�D� N ′, and N ′ � �M ′�.

Proof We prove this by structural induction on M in the accompanying technical report,
taking advantage of the fact that thanks to projecting function names everywhere, a
choreography that diverges at one role diverges at every role. See Appendix D for full
details. �

From Theorems 3 to 6, we get the following corollary, which states that a network
derived from a well-typed closed choreography can continue to reduce until all roles
contain only local values.

Corollary 1. Given a closed choreography M and a function environment D con-
taining all the function names of M, if 	;
 	 M : T and 	;
 	 D, then: whenever

�M� →∗
�D� N for some network N , either there exists P such that N

τP−→�D� N ′ or
N = ∏

P∈ip(M)
P[VP].

6 Case study

We now show how our language can be used in an extended example (Figure 12).
This example involves three processes: a client C, an edge computer E, and a server S.
Intuitively, C wants to request that E does some computation. However, E may not have
the resources to perform the computation; in this case, it will forward the request to S.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 35

λ HandleHere : (Int @ E→∅ Int @ E)→∅ Bool @ E.⎛
⎜⎜⎝

λ x : Int @ E→∅ Int @ E.

LogRequest E S C x⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

case HandleHere x of

inl y ⇒

⎛
⎜⎝

selectE,C here
selectE,S here

comλX ::Proc\{S}. Int@X
E,C (Compute x)

⎞
⎟⎠ ;

inr y ⇒ selectE,C atS
selectE,S you

case

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

comλY ::Proc\{S}. Int@Y→∅Bool@S
E,C⎛

⎜⎝
comλY ::Proc\{C}.∀X ::Proc. Int@Y→∅Bool@X

S,E
Λ Z :: Proc. λ z : Int @ S. Authenticate

comλ X ::Proc. Int@X
S,Z z

⎞
⎟⎠

S

⎞
⎟⎟⎟⎟⎟⎟⎠

AuthKey

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

of

inl y ⇒

⎛
⎜⎜⎜⎝

selectS,E go
selectS,C go

comλ X ::Proc\{E}. Int@X
S,C

Compute (comλ X ::Proc\{C}. Int@X→∅Int@X
E,S x)

⎞
⎟⎟⎟⎠ ;

inr y ⇒ selectS,E no
selectS,C no
0 @ C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎠

comλ X ::Proc\{C}. Int@X→∅Int@X
C,E task

Fig. 12. Code of the case study on edge computing.

Whenever S receives a request, then C must first perform an authentication protocol.
Whether or not the task is outsourced to S, S logs the request.

Here we assume the following data:

• A task (of type Int @ C →∅ Int @ C) located at C
• For each of E and S, a local function Compute which executes a task
• An authentication choreography Authenticate between S and a another process Z.

This choreography takes a key AuthKey and checks if the holder of that key is
authorised to run a task on S.

• A key AuthKey for C
• A logging choreography LogRequest involving two roles, provocatively called E

and S. This choreography takes a client, a task, and the result of executing the task
(at C) as input. It then creates a log entry at S.

• A local function HandleHere, which E uses to determine whether it can handle a
task locally. If HandleHere returns false, then the task must be shipped to S. Unlike
other data, this is represented as input to the choreography.

The choreography begins with C sending the task to E; we call the resulting task x. (Note
that x is the name of the task on E, not the name of the task on C.) E then checks whether
it can handle x using HandleHere. If so, E informs S and C that it is computing the task.
After performing the task, E sends the result to C. It furthermore informs S so that it knows
that it needs to log the task.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

36 E. Graversen et al.

If E cannot handle the task, then it again informs C and S. S then makes a decision on
whether C has authorisation to request a task from S. To make this decision, S sends an
authentication protocol to E. Because communications swap the sender and the receiver in
the communicated value, we write this authentication protocol with S playing the role of
the client. The protocol is therefore parameterised on the authenticator. Once E receives
the authentication protocol, it can instantiate the authenticator as S. E finally sends the
(now complete) protocol to C; running this protocol will have C send its key to S, possibly
among other actions required for authentication. If the authentication procedure succeeds,
then S informs E and C of this. E can then send the task to S, who computes it and returns
the result to C. If authentication fails, then S informs E and C of this and the task fails,
resulting in a 0 on C. Either way, we finish the choreography by logging the task and its
result using the function LogRequest.

For S to send an authentication protocol which it is itself involved with requires a bit of
trickery. Usually, we would expect every part of the sent value located at S to be moved
to the receiver (first E and then after another communication C) but obviously that would
mean S cannot be involved. We therefore send an authentication protocol that is parametric
on the authenticator, Z, and only instantiate Z as S after the first communication from S to
E has taken place.

Projecting this protocol to C leads to the following code:

λ HandleHere :⊥.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ x :⊥.

LogRequest E S C ⊥

&E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

here : recvE ⊥,

atS :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ y : ⊥.&S {go : recvS ⊥, no : 0}⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

recvE sub[S �→ E]

⎛
⎜⎜⎜⎜⎜⎝

Λ Z :: Proc.
AmI Z
? λ z :⊥. Authenticate

recvS ⊥
& sub[S �→ Z] ⊥

⎞
⎟⎟⎟⎟⎟⎠

S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

AuthKey

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

sendE task
(6.1)

We see that the second case gets projected as an application of a new abstraction on the
new variable y, with C’s part of the condition as the right side of the application. Since
the condition contains a delegation, we get some process substitutions representing values
with unknown locations being communicated between other processes. Because of the
AmI in the second branch, none of the substituted processes are ever reached. Therefore,
these substitutions do nothing. Since C is not involved in E’s decision to delegate to S
(or not), we do not see any of the code involved in the decision here. Instead, we get a
straightforward offer as the result of merging the projection of each branch of the involved
conditional.

We now show the projection for E:

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 37

λ HandleHere : Int→ Int→ Bool.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ x : Int→ Int.

LogRequest E S C x
case HandleHere x of

inl y ⇒
⎛
⎝

⊕C here
⊕S here
sendC Compute x

⎞
⎠ ;

inr y ⇒⊕C atS
⊕S you⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ y :⊥.&S {go : send x, no :⊥}⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

sendC

⎛
⎜⎜⎝recvS

⎛
⎜⎜⎝

Λ Z :: Proc. AmI Z
? λ z :⊥. Authenticate

recvZ ⊥
& sub[S �→ Z] ⊥

⎞
⎟⎟⎠

⎞
⎟⎟⎠

S

⎞
⎟⎟⎟⎟⎟⎠

⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

recvC ⊥
(6.2)

Note that we treat the second case almost the same as in C, except that E is involved
in both communications of the delegation. Since the condition of the first case is located
at E, it gets projected as a case. Keep in mind that since we model communication as an
exchange, what will actually be executed at S after the delegation takes place is the right
branch of the AmI in the projection of E.

Finally, we show the projection for S:

λ HandleHere :⊥.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ x :⊥.

LogRequest E S C ⊥

&E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

here :⊥,

you :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

case

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sub[E �→C]

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sendE Λ Z :: Proc.
AmI Z
? λ z : Int. Authenticate

l y : Int. y z
& λ z : Int. Authenticate

sendZ z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

of

inl y ⇒
⎛
⎝

⊕E go
⊕C go
sendC (Compute (recvE ⊥))

⎞
⎠ ;

inr y ⇒⊕E no
⊕C no
⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊥
(6.3)

Here we finally see the projection of what S actually wants C to do in order to authen-
ticate. We also see that in the case where Z gets instantiated as the same process it is
communicating with, which would be S if the protocol did not get communicated before Z
is instantiated, the communication gets replaced by an identity function λ y : Int. y.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

38 E. Graversen et al.

7 Related work

7.1 Choreographies

Choreographies are inspired by the “Alice-and-Bob” notation for security protocols
by Needham & Schroeder (1978), which included a term for expressing a communica-
tion from a participant to another. The same idea inspired later several graphical notations
for modelling interactions among processes, including sequence diagrams and message
sequence charts (International Telecommunication Union, 1996; Object Management
Group, 2017).

A systematic introduction to theory of choreographic languages and their historical
development can be found in Montesi (2023). We recap and discuss relevant recent devel-
opments. The first sophisticated languages for expressing choreographies were invented to
describe interactions between web services. The Web Services Choreography Description
Language (WS-CDL) by The World Wide Web Consortium (W3C) (2004) is a chore-
ographic language which describes the expected observable interactions between web
services from a global point of view (Zongyan et al., 2007). Carbone et al. (2012) later
formalised endpoint projection for a theory of choreographies based on WS-CDL, and
in particular introduced the merging operator (which we adjusted and extended to our
setting). This inspired more work on choreographies and projection and eventually the
birth of choreographic programming—where choreographies are programmes compiled
to executable code—and the first choreographic programming language, Chor (Montesi,
2013). As choreographic programming languages became more complex, Cruz-Filipe &
Montesi (2020) developed a core calculus of choreographies (CC). Montesi (2023) revis-
ited and generalised CC in his text on foundations of choreographic languages. Cruz-Filipe
et al. (2021) then formalised this new version and its properties in the Coq theorem
prover (The Coq Development Team, 2004). Later, Pohjola et al. (2022) developed a cer-
tified end-to-end compiler from another variation of CC to CakeML by using the HOL
theorem prover.

One of the primary design goals of all of choreographic programming languages is
deadlock-freedom by design (Carbone & Montesi, 2013)—the operational correspon-
dence between the choreography and the distributed network ensures deadlock-freedom
for the network. PolyChorλ achieves this goal. Montesi (2023) discusses restrictions for a
procedural imperative choreographic language in order to obtain a stronger liveness prop-
erty (starvation-freedom). The idea is to prove that processes eventually get involved in
transitions at the choreographic level and then leverage the correctness of endpoint pro-
jection to obtain the same result about choreography projections. This idea might work
for PolyChorλ as well, but whether and how the technical devices for starvation-freedom
in Montesi (2023) can be adapted to PolyChorλ is not clear due to the different nature
of our language (functional instead of imperative). Alternatively, one could adapt static
analyses for lock-freedom—like that in Kobayashi (2006)—to choreographies. We leave
explorations of liveness properties other than deadlock-freedom in PolyChorλ to future
work.

The first choreographic language with limited process polymorphism was Procedural
Choreographies (PC) (Cruz-Filipe & Montesi, 2017b). In PC, a choreography comes with
an environment of predefined procedures parametric on process names which may be

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 39

called by the choreography. These procedures have a number of limitations compared to
the process polymorphism of PolyChorλ: they cannot contain any free processes, they can-
not be partially instantiated, and they are lower-order—that is, they must be defined in the
environment rather than as part of a larger choreography. These limitations allow the pro-
jection function to know how the procedure will be instantiated, whereas in PolyChorλ we
may need to compute the processes involved first. This has major implications for projec-
tion: in PC, it is easy to tell when projecting a procedure call which processes are involved
and therefore need a local copy of the call. However, PolyChorλ’s full process polymor-
phism allows the function and process names to each be enclosed in a context. While this
allows greater flexibility for programmers, it forces us to project a process-polymorphic
functions to every process and let each process determine at runtime whether it is involved.

Recently, there has been a fair amount of interest in higher-order and functional pro-
gramming for choreographies (Hirsch & Garg, 2022; Cruz-Filipe et al., 2022; Shen et al.,
2023; Giallorenzo et al., 2023). The first higher-order choreographic programming lan-
guage, Choral (Giallorenzo et al., 2023) is an object-oriented choreographic language
compiled to Java code. Thus, Choral choreographies can depend on other choreographies,
allowing programmers to reuse code. Choral was also the first choreographic language to
treat comτ

P,Q as a first-class function.
While Choral gave a practical implementation of higher-order choreographies, it did not

establish their theoretical properties. Two different—but independently developed—works
filled this gap, including Chorλ, the basis of PolyChorλ. Chorλ is a functional choreo-
graphic calculus based on the λ-calculus. In this work, we extended Chorλ with type and
process polymorphism and the ability to send non-local values such as choreographies.
Chorλ, and hence PolyChorλ, provides a core language for higher-order choreographies,
thus allowing us to establish their properties. Since the original Chorλ has parametric pro-
cedures like PC and Choral, it lacks PolyChorλ’s property that a choreography diverging
in one process must diverge in every process. This forces Chorλ to have both a complex
notion of out-of-order execution and a more lax correspondence between actions in the
network and the choreography.

The other work establishing the theoretical properties of higher-order choreographic
programming is Pirouette (Hirsch & Garg, 2022), which is also a functional choreo-
graphic programming language based on simply-typed λ calculus. Unlike Chorλ (and thus
PolyChorλ), Pirouette does not allow processes to send messages written in Pirouette.
Instead, it takes inspiration from lower-order choreographic programming languages in
which (the computations to produce) messages are written in their own separate language.
Like other choreographic languages (Cruz-Filipe et al., 2021; Montesi, 2023), Pirouette’s
design is parametrised by the language for writing messages. Thus, Pirouette can describe
communication patterns between processes that draw from a large swath of languages
for their local computations. Nevertheless, this design means that Pirouette fundamentally
cannot allow programmes to send choreographic functions, unlike PolyChorλ.

Moreover, unlike Chorλ and PolyChorλ, Pirouette forces every process to synchro-
nise when applying a function. This allows Pirouette to establish a bisimulation relation
with its network programming language, a result formalised in Coq. This result allows a
traditional—and verified—proof of deadlock-freedom by construction. However, this con-
stant synchronisation would be a bottleneck in real-world systems; PolyChorλ’s choice

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

40 E. Graversen et al.

to obtain a weaker—but strong-enough—connection between the languages allows it to
avoid this high cost.

7.2 Concurrent functional programming

Functional concurrent programming has a long history, starting with attempts to parallelise
executions of functional programmes (Burton, 1987). The first language for functional pro-
gramming with communications on channels was Facile (Giacalone et al., 1989) which,
unlike later choreographic languages, had an abstraction over process IDs very similar to
process polymorphism. A more recent work, which more closely resembles choreographic
programming, is Links (Cooper et al., 2006), with the RPC calculus (Cooper & Wadler,
2009) as its core language. Links and the RPC calculus, like choreographies, allow a pro-
grammer to describe programmes where different parts of the computation takes place at
different locations and then compile it to separate code for each location. Interestingly,
though Links has explicit communication, in the RPC calculus the top level does not, and
communications are created only when projecting a function located at a different process.
Moreover, the RPC calculus does not feature multiple threads of computation; instead,
on communication the single thread of computation moves to a new location while other
locations block. The RPC calculus was later extended with location polymorphism, very
similar to our and Facile’s process polymorphism (Choi et al., 2020). However, as the
RPC calculus only deals with systems of 2 processes, a client and a server, they project a
process abstraction as a pair and then the location as picking the correct part of this pair.
This solution creates a simpler network language but is not suitable for a framework with
an arbitrary number of participants such as PolyChorλ. Moreover, the RPC calculus—like
PolyChorλ but unlike traditional choreographic languages—does not have out-of-order
execution at the top level.

Session types were applied to a concurrent functional calculus with asynchronous com-
munication by Gay & Vasconcelos (2010). Though initially this language did not guarantee
deadlock-freedom, only runtime safety, later versions of GV (Wadler, 2012; Lindley &
Morris, 2015) did. Jacobs et al. (2022) extended GV with global types (Honda et al., 2016),
which generalise session types to protocols with multiple participants. Similarly to chore-
ographic programming, global types offer a global viewpoint on interactions. However,
they are intended as specifications and thus cannot express computation. Global types
are typically projected onto local types, which manually-written programmes can later be
checked against. In choreographic programming, by contrast, choreographies are projected
directly to programmes. Some works mix the approaches (e.g., Scalas et al., 2017): given
a global type, a compiler produces typestate-oriented libraries (Aldrich et al., 2009) that
help the users with following the global type correctly (but not with performing the right
computations at the right time).

Session types have also been used to study global higher-order programming outside of
functional settings. Mostrous & Yoshida (2007) describe the challenges associated with
obtaining subject reduction when sessions can pass other sessions between them. Based on
this, Mostrous & Yoshida (2009) define the higher-order π -Calculus with asynchronous
sessions, a calculus combining elements of the π -calculus and λ-calculus.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 41

Castellani et al. (2020) propose a notion of session types with delegation. They write
delegation by enclosing a part of the global type in brackets. During the execution of such
a part, one process acts on another’s behalf by temporarily taking its name. This means that
they do not need to inform other participants in the delegated computation that delegation
is happening. However, nested delegations can cause deadlocks.

ML5 (Murphy VII et al., 2007; Licata & Harper, 2010) is a functional concurrent pro-
gramming language based on the semantics of modal logic. However, instead of the send
and recv terms of choreographic languages, they have a primitive get[w] M , which makes
another process w evaluate M and return the result. Since M may include other gets, this
construct gives ML5 something resembling PolyChorλ’s ability to send a full choreogra-
phy. However, the result of evaluating this “choreography” must be at the receiver and
then returned to the sender.

Multitier programming languages, like ScalaLoci (Weisenburger & Salvaneschi, 2020),
offer another paradigm for describing global views of distributed systems. Like Choral,
ScalaLoci is built on top of an existing object-oriented language: in this case, Scala. In
ScalaLoci and other tierless languages, an object describes a whole system containing
multiple processes and functions. Differently from choreographic programming, multitier
programming does not allow for modelling the intended flow of communications. Rather,
communication happens implicitly through remote function calls and the concrete protocol
to be followed is largely left to be decided by a runtime middleware. For a more detailed
comparison of choreographic and multitier languages, see the work of Giallorenzo et al.
(2021).

8 Conclusion

In this paper, we presented PolyChorλ, the first higher-order choreographic programming
language with process polymorphism. PolyChorλ has a type and kind system based on
System Fω, but extended such that process names are types of kind Proc. Moreover, we
showed how to obtain a concurrent interpretation of PolyChorλ programmes in a process
language by using a new construct corresponding by the ability of a process to know its
identity. We found that this construct was necessary if process variables are able to be
instantiated as the process they are located at, but using a choreographic language abstracts
from this necessity. Our explorations of process polymorphism also allowed PolyChorλ to
describe a communication of a non-local value from P to Q as sending the part of the
message owned by P to Q. These non-local values include full choreographies, creating
a simple and flexible way to describe delegation by communicating a distributed function
describing the delegated task. This innovation required a new notion of communication
as an exchange in which the delegator rather than being left with an empty value after
sending a choreography is left with a function which will allow it to potentially take part
in the delegated task, e.g., by receiving a result at the end.

Process polymorphism fills much of the gap between previous works on the theory of
higher-order choreographies and practical languages. However, there is still more work to
do. For instance, currently PolyChorλ does not support recursive types.

Our current results rely on types normalising to a type value, which recursive types
may not do. System Fω does not have our restriction of type abstractions only being
instantiated with type values. However, PolyChorλ needs to ensure that communications

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

42 E. Graversen et al.

are only undertaken between processes, rather than complicated type expressions resulting
in processes. Thus, we need to treat our type system as call-by-name, leading to the
restriction above.

In order to support recursive types, we would need to either make endpoint projec-
tion capable of projecting to a possibly-nonterminating description of a process, or limit
recursive types ability to make type computations fail to terminate.

Furthermore, one can imagine allowing processes to send types and process names as
well as values. This would, for example, allow us to programme a server to wait to receive
the name of a client which it will have to interact with. Since this form of delegation
is common in practice, understanding how to provide this capability in a choreographic
language, while retaining the guarantees of choreographic programming, would enable
programmers to apply their usual programming patterns to choreographic code.

We project local type despite lacking a typing system for local processes. Our unusual
network communication semantics have made it difficult to define local typing rules for
sends and recvs, and we therefore leave local typing (or alternatively type erasure) as
future work.

Certain, instant, and synchronous communication is convenient for theoretical study,
but such assumptions do not match real-world distributed systems. Cruz-Filipe & Montesi
(2017a) model asynchronous communication in choreographies via runtime terms rep-
resenting messages in transit. We could adapt this method to PolyChorλ by having the
communication primitive reduce in two steps: first to a runtime term and then to the deliv-
ered value. However, this extension would be nontrivial, since it is not obvious how to
represent messages in transit when those messages are non-local values such as chore-
ographies. In addition, the way we represent a communication at the local level (swapping
values rather than only moving a value from sender to receiver) might require additional
machinery (e.g., new runtime terms) to capture its asynchronous execution.

We also leave practical implementation of PolyChorλ’s new features to future work.
This could be achieved by extending Choral (Giallorenzo et al., 2023), the original inspi-
ration for Chorλ. Communication primitives in Choral are user-defined—not fixed by
any middleware or compiler—so it is possible to define new communication abstractions
involving multiple roles. However, we need to manipulate roles at runtime in our local
semantics, while the Choral compiler erases roles when projection code to Java. We may
be able to overcome this issue by reifying roles in projected code or by using reflection.

While these gaps between theory and practice persist, process polymorphism in
PolyChorλ brings us much closer to realistic choreographic languages for distributed sys-
tems. Choreographic programmes promise to provide easier and cleaner concurrent and
distributed programming with better guarantees. With higher-order choreographic pro-
gramming and process polymorphism, the fulfilment of that promise is nearly within
reach.

Acknowledgements

We thank the anonymous reviewers for their useful comments.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 43

Funding

This work was supported by Villum Fonden (F.M., grant numbers 29518, 50079) and
Independent Research Fund Denmark (F.M., grant number 0135-00219).

Conflicts of interest

The authors report no conflict of interest.

References

Aldrich, J., Sunshine, J., Saini, D. & Sparks, Z. (2009) Typestate-oriented programming. In
Companion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2009, October 25–29, 2009, Orlando, Florida,
USA. ACM, pp. 1015–1022.

Burton, F. (1987) Functional programming for concurrent and distributed programming. Comput. J.
30(5), 437–450.

Caires, L. & Pfenning, F. (2010) Session types as intuitionistic linear propositions. In Concurrency
Theory (CONCUR).

Carbone, M., Honda, K. & Yoshida, N. (2012) Structured communication-centered programming for
web services. Trans. Program. Lang. Syst. (TOPLAS) 34(2), 1–78.

Carbone, M. & Montesi, F. (2013) Deadlock-freedom-by-design: Multiparty asynchronous global
programming. In Principles of Programming Languages (POPL).

Castagna, G., Dezani-Ciancaglini, M. & Padovani, L. (2012) On global types and multi-party session.
Log. Methods Comput. Sci. 8(1), 1–45.

Castellani, I., Dezani-Ciancaglini, M., Giannini, P. & Horne, R. (2020) Global types with internal
delegation. TCS 807, 128–153.

Choi, K., Cheney, J., Fowler, S. & Lindley, S. (2020) A polymorphic RPC calculus. SCP 197,
102499.

Cooper, E., Lindley, S., Wadler, P. & Yallop, J. (2006) Links: Web programming without tiers. In
Formal Methods for Components and Objects (FMCO).

Cooper, E. E. & Wadler, P. (2009) The RPC calculus. In Principles and Practice of Declarative
Programming (PPDP).

Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F. & Peressotti, M. (2022) Functional
choreographic programming. In ICTAC.

Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F. & Peressotti, M. (2023) Modular compilation
for higher-order functional choreographies. In ECOOP.

Cruz-Filipe, L. & Montesi, F. (2017a) On asynchrony and choreographies. In Interaction and
Concurrency Experience (ICE).

Cruz-Filipe, L. & Montesi, F. (2017b) Procedural choreographic programming. In Formal
Techniques for Distributed Objects, Components, and Systems (FORTE).

Cruz-Filipe, L. & Montesi, F. (2020) A core model for choreographic programming. Theor. Comput.
Sci. 802, 38–66.

Cruz-Filipe, L., Montesi, F. & Peressotti, M. (2021) Formalizing a turing-complete choreographic
language in coq. In Interactive Theorem Proving (ITP).

Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I. & Mauro, J. (2017) Dynamic choreogra-
phies: Theory and implementation. Logical Methods Comput. Sci. (LMCS) 13(2), 1–57.

Dardha, O., Giachino, E. & Sangiorgi, D. (2012) Session types revisited. In Principles and Practice
of Declarative Programming (PPDP).

DeYoung, H., Caires, L., Pfenning, F. & Toninho, B. (2012) Cut reduction in linear logic as
asynchronous session-typed communication. In Computer Science Logic (CSL).

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

44 E. Graversen et al.

Gay, S. J. & Vasconcelos, V. T. (2010) Linear type theory for asynchronous session types. J. Funct.
Program. (JFP) 20(1), 19–50.

Giacalone, A., Mishra, P. & Prasad, S. (1989) Facile: A symmetric integration of concurrent and
functional programming. Int. J. Parallel Program. 18, 121–160.

Giallorenzo, S., Montesi, F. & Peressotti, M. (2023) Choral: Object-oriented choreographic program-
ming. ACM Trans. Program. Lang. Syst. Just Accepted.

Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G. & Weisenburger, P. (2021)
Multiparty languages: The choreographic and multitier cases (pearl). In European Conference on
Object-Oriented Programming (ECOOP).

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures de l’artihmétique
d’ordre supérieur. PhD Thesis. Université Paris 7.

Hirsch, A. K. & Garg, D. (2022) Pirouette: Higher-order typed functional choreographies. In
Principles of Programming Languages (POPL).

Honda, K. (1993) Types for dyadic interaction. In Concurrency Theory (CONCUR).
Honda, K., Vasconcelos, V. T. & Kubo, M. (1998) Language primitives and type discipline

for structured communication-based programming. In European Symposium on Programming
(ESOP).

Honda, K., Yoshida, N. & Carbone, M. (2016) Multiparty asyncrhonous session types. J. ACM 63(1),
1–67.

International Telecommunication Union. (1996) Recommendation Z.120: Message sequence chart.
Jacobs, J., Balzer, S. & Krebbers, R. (2022) Multiparty GV: Functional multiparty session types with

certified deadlock freedom. Proc. ACM Program. Lang. 6(ICFP), 466–495.
Jongmans, S. & van den Bos, P. (2022) A predicate transformer for choreographies - computing

preconditions in choreographic programming. In European Symposium on Programming (ESOP).
Kobayashi, N. (2006) A new type system for deadlock-free processes. In CONCUR 2006 -

Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August
27–30, 2006, Proceedings. Springer, pp. 233–247.

Licata, D. R. & Harper, R. (2010) A monadic formalization of ML5. In Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP).

Lindley, S. & Morris, J. (2017) Lightweight functional session types. In Behavioural Types: from
Theory to Tools, Gay, S. & Ravara, A. (eds). River Publishers. chapter 12.

Lindley, S. & Morris, J. G. (2015) A semantics for propositions as sessions. In Programming
Languages and Systems.

López, H. A., Nielson, F. & Nielson, H. R. (2016) Enforcing availability in failure-aware com-
municating systems. In Formal Techniques for Distributed Objects, Components, and Systems
(FORTE).

Montesi, F. (2013) Choreographic Programming. PhD Thesis. IT University of Copenhagen.
Montesi, F. (2023) Introduction to Choreographies. Cambridge University Press.
Mostrous, D. & Yoshida, N. (2007) Two session typing systems for higher-order mobile processes.

In TLCA. Springer, pp. 321–335.
Mostrous, D. & Yoshida, N. (2009) Session-based communication optimisation for higher-order

mobile processes. In TLCA. Springer, pp. 203–218.
Murphy VII, T., Crary, K. & Harper, R. (2007) Type-safe distributed programming with ML5. In

Trustworthy Global Computer (TGC).
Needham, R. M. & Schroeder, M. D. (1978) Using encryption for authentication in large networks

of computers. Commun. ACM 21(12), 993–999.
Object Management Group. (2017) Unified modelling language, version 2.5.1.
Pohjola, J. Å., Gómez-Londoño, A., Shaker, J. & Norrish, M. (2022) Kalas: A verified, end-to-end

compiler for a choreographic language. In 13th International Conference on Interactive Theorem
Proving, ITP 2022, August 7–10, 2022, Haifa, Israel. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, pp. 27:1–27:18.

Scalas, A., Dardha, O., Hu, R. & Yoshida, N. (2017) A linear decomposition of multiparty sessions
for safe distributed programming. In 31st European Conference on Object-Oriented Programming,

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 45

ECOOP 2017, June 19–23, 2017, Barcelona, Spain. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, pp. 24:1–24:31.

Scalas, A. & Yoshida, N. (2019) Less is more: Multiparty session types revisited. In Principles of
Programming Languages (POPL).

Shen, G., Kashiwa, S. & Kuper, L. (2023) Haschor: Functional choreographic programming for all
(functional pearl). CoRR. abs/2303.00924.

The Coq Development Team. (2004) The Coq proof assistant reference manual. LogiCal Project.
Version 8.0.

The World Wide Web Consortium (W3C). (2004) Ws choreography model overview. Accessed
January 29, 2021.

Wadler, P. (2012) Propositions as sessions. In International Conference on Functional Programming
(ICFP).

Weisenburger, P. & Salvaneschi, G. (2020) Implementing a language for distributed systems:
Choices and experiences with type level and macro programming in scala. ASEP 4(3), 17.

Zongyan, Q., Xiangpeng, Z., Chao, C. & Hongli, Y. (2007) Towards the theoretical foundation of
choreography. In The Web Conference (WWW).

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

46 E. Graversen et al.

A Full PolyChorλ typing rules

[TUNIT]
	;
 	 ν :: Proc

	;
 	 () @ ν : () @ ν
[TINT]

	;
 	 ν :: Proc

	;
 	 n @ ν : Int @ ν

[TAPP]
	;
 	 N : τ 1 →ρ τ 2 	;
 	 M : τ 1

	;
 	 N M : τ 2

[TABS]

	;
 	 τ 1 :: ∗ 	;
′ 	 ν :: Proc for all ν ∈ ρ

	 ∩ (ρ ∪ ip(τ 1) ∪ ip(τ 2) ∪ ftv(τ 1) ∪ ftv(τ 2));
, x : τ 1 	 M : τ 2

	;
 	 λ x : τ 1. M : τ 1 →ρ τ 2

[TSEL]
	;
 	 ν1 :: Proc 	;
 	 ν2 :: Proc 	;
 	 M : τ

	;
 	 selectν1,ν2 � M : τ

[TCOM]

	;
 	 τ :: Proc ⇒ ∗
	;
 	 ν1 :: Proc \ (ip(τ) ∪ ftv(τ)) 	;
 	 ν2 :: Proc \ (ip(τ) ∪ ftv(τ))

	;
 	 comτ
ν1,ν2

: (τ ν1 →∅ τ ν2)

[TAPPT]
	;
 	 M : ∀X :: K. τ 1 	;
 	 τ 2 :: K

	;
 	 M τ 2 : τ [X �→ τ 2]

[TABST]

	′;
′, X :: K 	 M : τ
if ∃K′, ρ. K = K′ \ ρ then
′ = (
 + X) & ρ \ X else
′ =
 + X

if K = Proc or ∃ρ. K = Proc \ ρ then 	′ = 	, X else 	′ = 	

	;
 	 � X :: K. M : ∀X :: K. τ

[TEQ]
	;
 	 M : τ 1 τ 1 ≡ τ 2 	;
 	 τ 2 :: ∗

	;
 	 M : τ 2

[TDEFS]
∀f ∈ domain(D). f : τ ∈
 ∧ ∅;
 	 D(f) : τ

	;
 	 D
[TVAR]

x : τ ∈

	; �;
 	 x : τ

[TCASE]

 	 N : τ 1 + τ 2 	;
, x : T1 	 M ′ : τ 	;
, x′ : T2 	 M ′′ : τ

	;
 	 case N of inl x ⇒ M ′; inr x′ ⇒ M ′′ : τ

[TFUN]
f : τ ∈

	;
 	 f : τ
[TPAIR]

	;
 	 M : τ 1 	;
 	 N : τ 2

	;
 	 (M ,N) : τ 1 × τ 2

[TPROJ1]
	;
 	 M : τ 1 × τ 2

	;
 	 fst M : τ 1
[TPROJ2]

	;
 	 M : τ 1 × τ 2

	;
 	 snd M : τ 2

[TINL]
	; �;
 	 M : τ 1

	; �;
 	 inlM τ 2 : τ 1 + τ 2
[TINR]

	; �;
 	 M : τ 2

	; �;
 	 inrM τ 2 : τ 1 + τ 2

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 47

B Full PolyChorλ operational semantics

[APPABS]
(λ x : τ. M) V →D M[x �→ V]

[APP1]
M1 →D M2

M1 N →D M2 N
[APP2]

N1 →D N2

V N1 →D V N2

[APPTABS]
τ ≡ ν

(� X :: K. M) τ →D M[X �→ ν]
[MTAPP1]

M1 →D M2

M1 τ →D M2 τ

[MTAPP2]
τ 1 →D τ 2

V τ 1 →D V τ 2

[INL]
M1 →D M2

inlτ M1 →D inlτ M2

[INL]
M1 →D M2

inrτ M1 →D inrτ M2

[CASE]
N1 →D N2

case N1 of inl x ⇒ M1; inr y ⇒ M2 →D case N2 of inl x ⇒ M1; inr y ⇒ M2

[CASEL]
case inlτ V of inl x ⇒ M1; inr y ⇒ M2 →D M1[x �→ V]

[CASER]
case inrτ V of inl x ⇒ M1; inr y ⇒ M2 →D M1[x �→ V]

[PAIR1]
M1 →D M2

(M1,N) →D (M2,N)
[PAIR2]

N1 →D N2

(V ,N1) →D (V ,N2)

[FST]
M1 →D M2

fst M1 →D fst M2

[SND]
M1 →D M2

snd M1 →D snd M2

[PROJ1]
fst (V1,V2) →D V1

[PROJ2]
snd (V1,V2) →D V2

[DEF]
f →D D(f)

[SEL]
selectP,Q � M →D M

[COM]
comτ

P,Q V →D V [P �→ Q]

C Proof of Theorem 5

In the foregoing, we use L to denote local expressions and U to denote local values in order
to make the proofs more readable, as we will be switching back and forth between layers
a lot.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

48 E. Graversen et al.

Before we can prove completeness, we need a few lemmas. First, we show that
choreographic values always project to local values.

Lemma 3. For any choreographic value V and process P, if 	;
 	 V : τ then �V�P is
either a value or undefined.

Proof Straightforward from the projection rules. �

We then prove the same for type values.

Lemma 4. Given a type value ν, if 	;
 	 ν :: K then for any process P in ip(ν), �ν�P = ν.

Proof Straightforward from the projection rules. �

We then show that type values are projected to ⊥ at uninvolved processes.

Lemma 5. Given a type value ν = P, for any process Q /∈ ip(ν), �ν�Q = ⊥.

Proof Straightforward from induction on ν. �

And similarly, we show that choreographic values project to ⊥ at processes not involved
in their type.

Lemma 6. Given a value V, if 	;
 	 V : τ then for any process P /∈ ip(τ), we have
�V�P = ⊥ or �V�P is undefined.

Proof Follows from Lemmas 3 and 5 and the projection rules. �

Finally, we show that equivalent types are projected to equivalent local types.

Lemma 7. Given a closed type τ , if τ ≡ τ ′ and 	;
 	 τ :: K, then for any process P,
�τ�P ≡P �τ ′�P.

Proof We prove this by structural induction on τ ≡ τ ′. All but one case follow by simple
induction.

The one interesting case is if τ = λX. Kτ 1 ν and τ ′ = τ 1[X := ν]. Then (1) if K =
K′ \ ({R} ∪ ρ) and �τ 1�P = ⊥, we have �τ�P = �τ ′�P = ⊥. (2) If K ∈ {Proc, Proc \ ρ}
then �τ�P = (∀X. AmI X ? �τ 1[X := P]�P & �τ 1�P) �ν�P and �τ ′�P = �τ 1[X := ν]�P. Since
τ is a closed type and 	;
 	 ν :: K, ν must be a process. If ν = P then obviously
(∀X. AmI X ? �τ 1[X := P]�P & �τ 1�P) �ν�P ≡P �τ 1[X := ν]�P. If ν = P then (∀X. AmI X ?
�τ 1[X := P]�P & �τ 1�P) �ν�P ≡P �τ 1�P [X := �ν�P], but since ν is a process Q, �ν�P = Q
and �X �P = X , and therefore we get �τ�P ≡P �τ ′�P. And (3) otherwise we have �τ�P =
(λX. �τ 1�P) �ν�P and �τ ′�P = �τ 1�P[X := �ν�P]. We therefore get �τ�P ≡P �τ ′�P. �

We also need to prove that performing a substitution before and after projection yield
the same result.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 49

Lemma 8. Given a choreography M with a free variable x, a value V, and a type τ

such that 	;
 	 λ x : τ. M V : τ ′ and �λ x : τ. M V� is defined, we get �M[x := V]�P =
�M�P [x := �V�P].

Proof If τ = ⊥ then by definition �x�P = ⊥ and by Lemma 6, �V�P = ⊥. If τ = ⊥
then �x�P = x and since we use α-conversion when substituting, we can guarantee that
typeof(V) = τ anywhere it gets substituted into M , meaning the projection will always
be the same as it does not depend on context, only on syntax and type. We therefore get
�M[x := V]�P = �M�P [x := �V�P]. �

We are now ready to prove completeness.

Proof [Proof of Theorem 5] We prove this by structural induction on M →D M ′.

• Assume M = (λ x : τ. N) V and M ′ = N[x := V]. Then for any process P such
that �N�P = ⊥ or �τ�P = ⊥, we have �M�P = (λ x : �τ�P . �N�P) �V�P and
�M ′�P = �N�P[x := �V�P], and for any other P′, we have P′ /∈ ip(typeof(V))
and therefore �M�P′ = �M ′�P′ = ⊥. We therefore get P[�M�P]

τ−→�D� �M ′�P
for all P ∈ ip(typeof(λ x : τ. N)) and define N = ∏

P∈ip(typeof(λ x:τ. N))
P[�M ′�P] |∏

P′ /∈ip(typeof((λ x:τ. N))

P′[⊥] and the result follows.

• Assume M = (� X :: K. N) τ , τ ≡ ν, and M ′ = N[X := ν]. Then if K ∈ {P, P \ ρ},
for any process P, �M�P = (� X :: K. AmI X ? �N[t := P]�P & �N�P) �τ�P and the
result follows Lemmas 4 and 7, and Rules [NBabs], [NIamr], and [NIaml]. If K /∈
{Proc, Proc \ ρ} then for any process P such that �N�P = ⊥ and K = K′ \ ({P} ∪ ρ),
we have �M�P = �M ′�P = ⊥, for any other P′ we have �M�P′ = (� X. �N�P′) �τ�P′
and �M ′�P′ = �N�P′ [X := �ν�P′]. We therefore get P[�M�P] →∗

�D� �M ′�P for all P
and the result follows.

• Assume M = N M ′′, M ′ = N ′ M ′′, and N →D N ′. Then, for any process P such
that �N�P = �M ′′�P = ⊥, by induction we have �N ′�P = ⊥, and therefore �M�P =
�M ′�P = ⊥. For any process P′ such that P′ ∈ ip(typeof(N)) or �N�P′ = ⊥ = �M ′′�P′ ,
�M�P′ = �N�P′ �M ′′�P′ and �M ′�P′ = �N ′�P′ �M ′′�P′ . For any other process P′′ such
that �N�P′′ = ⊥, by induction we get �N ′�P′′ = ⊥ and therefore �M�P′′ = �M ′�P′′ =
�M ′′�P′′ . For any other process P′′′ such that �M ′′�P′′′ = ⊥, we get �M�P′′′ = �N�P′′′
and �M ′�P′′′ = �N ′�P′′′ . And by induction �N� →∗

�D� NN and NN � �N ′�. For any pro-

cess P we therefore get �N�P μ0−→�D�
μ1−→�D� . . . LP for LP � �N ′�P for some sequences

of transitions
μ0−→�D�

μ1−→�D� . . . , and from the network semantics we get

�M� →∗
�D�

∏
�N�P=�M ′′�P=⊥

P[⊥] | ∏
P′∈ip(typeof(N)) or �N�P′ =⊥=�M ′′�P′

P′[LP′ �M ′′�P′]

| ∏
�M�P′′=�M ′′�P′′

P′′[�M ′′�P′′] | ∏
�M�P′′′=�N�P′′′

P′′[LP′′]
=N

and M →D N ′ M ′′. And since �N� →∗
�D� N ′ and �N ′� →∗

�D� N ′
N , we know these

sequences of transitions can synchronise when necessary, and if �N�P′′′′ = �N ′�P′′′′ =
⊥ then we can do the extra application to get rid of this unit.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

50 E. Graversen et al.

• Assume M = V N , M ′ = V N ′, and N →D N ′. This is similar to the previous case,
using Lemma 3 to ensure every process can use Rule [NApp2].

• Assume M = case N of inl x ⇒ N ′; inr x′ ⇒ N ′′, M ′ = case M ′′ of inl x ⇒
N ′; inr x ⇒ N ′′, and N →D M ′′. Then for any process P such that
P ∈ ip(typeof(N)), we have �M�P = case �N�P of inl x ⇒ �N ′�P; inr x′ ⇒ �N ′′�P
and �M ′�P = case �M ′′�P of inl x ⇒ �N ′�P; inr x′ ⇒ �N ′′�P. For any other process
P′ such that �N�P′ = �N ′�P′ = �N ′′�P′ = ⊥, by induction we get �M ′′�P′ = ⊥, and
therefore �M�P′ = �M ′�P′ = ⊥. For any other process P′′ such that �N�P′′ = ⊥,
we get �M�P′′ = �M ′�P′′ = �N ′�P′′ � �N ′′�P′′ . For any other processes P′′′ such
that �N ′�P′′′ = �N ′′�P′′′ = ⊥, we have �M�P′′′ = �N�P′′′ and �M ′�P′′′ = �M ′′�P′′′ . For
any other process P′′′′, we have �M�P′′′′ = (λx : ⊥.�N ′�P′′′′ � �N ′′�P′′′′) �N�P′′′′ and
�M ′�P′′′′ = (λx.�N ′�P′′′′ � �N ′′�P′′′′) �M ′′�P′′′′ for x /∈ fv(N ′) ∪ fv(N ′′). The rest follows
by simple induction similar to the second case.

• Assume M = case inlτ V of inl x ⇒ N ; inr x′ ⇒ N ′ and M ′ = N[x := V]. Then for
any process P ∈ ip(typeof(inlτ V)), we have �M�P = case inl�τ�P �V�P of inl x ⇒
�N�P; inr x′ ⇒ �N ′�P and �M ′�P = �N[x := �V�P]�P. By Lemma 6,
�N[x := �V�P]�P = �N�P[x := �V�P]. For any other process P′ /∈ ip(typeof(inlτ V)),
�inlV τP′�= ⊥, and therefore �M�P′ = �N�P′ � �N ′�P′ � �N�P′ = �M ′�P′ . The result
follows.

• Assume M = case inrτ V of inl x ⇒ N ; inr x′ ⇒ N ′ and M ′ = N ′[x′ := V]. This case
is similar to the previous.

• Assume M = comτ
P,Q V and M ′ = V [Q := P]. Then if Q = P, �M�P = recvQ �V�P,

�M ′�P = �V [Q := P]�P = �V�Q[Q := P], �M�Q = sendP �V�Q, �M ′�Q = �V [Q :=
P]�Q = �V�P[Q := P], and for any P′ such that �τ�P′ = ⊥, we have �M�P′ =
sub[Q �→ P] �V�P′ and �M ′�P′ = �V [Q := P]�P′ = �V�P′ [Q := P], and for any other

P′′, �M�P′′ = �M ′�P′′ = ⊥. We therefore get �M�P recvQ�V�Q[Q:=P] �V�P−−−−−−−−−−−−−−→�D� �M ′�P,

�M�Q sendP�V�Q �V�P[Q:=P]−−−−−−−−−−−−−−→�D� �M ′�Q, and �M�P′
τ−→�D� �M ′�P′ . We define N =

�M ′� and the result follows. If Q = P, then �M�P = (λx.x) �V�P and �M ′�P = �V�P
and N = �M ′� and the result follows.

• Assume M = selectQ,P � M ′. Then �M�Q = ⊕P � �M ′�Q, �M�P = &Q {� : �M ′�P},
and for any P′ /∈ {Q, P}, �M�P′ = �M ′�P′ . We therefore get �M� τP,Q−−→�D� �M� \
{P, Q} | P[�M ′�P] | Q[�M ′�Q] and the result follows.

• Assume M = (N ,N ′), N →D N ′′, and M ′ = (N ′′,N ′). Then, the result follows from
simple induction.

• Assume M = (V ,N), N →D N ′, and M ′ = (V ,N ′). Then, the result follows from
simple induction.

• Assume M = fst (V ,V ′) and M ′ = V . Then for any process P such that �V�P =
⊥ or �V�P = ⊥, �M�P = fst (�M ′�P,�V ′�P) and for any other process P′ /∈
ip(typeof((M ′,V ′)), we have �M�P′ = ⊥ and �M ′�P′ = ⊥. We define N = �M ′� and
the result follows.

• Assume M = snd (V ,V ′) and M ′ = V ′. Then, the case is similar to the previous.
• Assume M = f and M ′ = D(f). Then, the result follows from the definition of �D�.

�

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 51

D Proof of Theorem 6

As with completeness, we need some ancillary lemmas before we can prove soundness.
For this, we need a notion of removing processes from a network.

Definition 3. Given a network N = ∏
P∈ρ

P[LP], we have N \ ρ ′ = ∏
P∈(ρ\ρ′)

P[LP].

First we show that actions in a network do not affect the roles not mentioned in the
transition label.

Lemma 9. For any process P and network N , if N
τP−→d N ′ and P /∈ P then N (P) =

N ′(P).

Proof Straightforward from the network semantics. �

Then we show that removing processes from a network does not prevent it from
performing actions involving different processes.

Lemma 10. For any set of processes ρ and network N , if N
τP−→ N ′ and P ∩ ρ = ∅

then N \ ρ
τP−→d N ′ \ ρ.

Proof Straightforward from the network semantics. �

We finally show that if the projection of a choreographic type is equivalent to a local type
value, then the original choreographic type is equivalent to a choreographic type value.

Lemma 11. Given a closed type τ 1 and process P, if 	;
 	 τ 1 :: K and �τ 1�P ≡P ν, then
there exist a type ν ′ such that: τ 1 ≡ ν ′ and �ν ′�P = ν.

Proof We prove this by structural induction on τ 1. All but one case follows from simple
induction.

Assume τ 1 = τ 2 τ 3. Then if �τ 2�P = �τ 2�P = ⊥, we have �τ 1�P = ⊥, and therefore, ν =
⊥ = ν ′. Otherwise, if �τ 3�P′ = ⊥ and kindof(τ 3) = K \ ({P} ∪ ρ), we get �τ 1�P = �τ 2�P
and the result follows from induction. Otherwise if �τ 2�P = ⊥, we get �τ 1�P = �τ 3�P
and the result follows from induction. Otherwise, we get �τ�P = �τ 2�P �τ 3�P. By induc-
tion, �τ 2�P ≡P ν2 and there exists ν ′

2 such that τ 2 ≡ ν ′
2 and �ν ′

2�P = ν2 and �τ 3�P ≡P ν3

and there exists ν ′
3 such that τ 3 ≡ ν ′

3 and �ν ′
3�P = ν3. Because τ 1 is kindable, we have a

kind K′ such that 	;
 	 τ 2 :: K′ ⇒ K and 	;
 	 τ 3 :: K′. This means that ν ′
2 = λX :: K′. ν4

and if K′ ∈ {Proc, Proc \ ρ} then ν2 = λX. AmI X ? �ν4[X := P]�P & �ν4�P, otherwise ν2 =
λX. �ν4�P. We then get ν ≡P �ν ′

4[X := ν3]�P and ν ′ ≡ ν ′
4[X := ν ′

3], and since X and ν ′
3 are

both base types, so are �ν ′
4[X := ν3]�P and ν ′

4[X := ν ′
3]. �

We are then ready to prove soundness.

Proof [Proof of Theorem 6] We prove this by structural induction on M .

• Assume M = V . Then for any process P, �M�P = U , and therefore, �M� τP−→.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

52 E. Graversen et al.

• Assume M = N1 N2. Then for any process P such that �N1�P = �N2�P = ⊥, we
have �M�P = ⊥. For any process P′ such that P′ ∈ ip(typeof(N1)) or �N1�P′ = ⊥ =
�N2�P′ , �M�P′ = �N1�P′ �N2�P′ . For any other process P′′ such that �N2�P′′ = ⊥, we
get �M�P′′ = �N1�P′′ . For any other process P′′′, we get �M�P′′′ = �N2�P′′′ . We then
have 2 cases.

– Assume N2 = V . Then, �N2�P = U by Lemma 3, and for any P′ such that
P′ /∈ ip(typeof(N2)) ⊆ ip(typeof(N1)), by Lemma 6, �N2�P′ = ⊥, and therefore,
�M�P′ = �N1�P′ , and we have 5 cases.

* Assume N1 = λ x : τ. N3. Then for any process P such that �N3�P = ⊥ or
�τ�P = ⊥, �N1�P = λ x : �τ�P . �N3�P. And for any other process, �N1�P = ⊥.
The only transition available at any process, would then use Rule [NAbsApp].

This means for any transition M
τP−→, there exists P′′ such that P = P′′.

We then get �M� τP−→ �M� \ {P′′} | P′′[�N3�P′′ [x := �N2�P′′]]. We say that M ′ =
N3[x := N2], and the result follows from using Rule [NAbsApp] in every
process P such that �M�P = ⊥ and induction.

* Assume N1 = comτ
Q,P. Then if Q = P, �M�Q = sendP �N2�Q, �M�P =

recvP ⊥, for any P′ ∈ ip(τ), �M�P′ = sub[Q �→ P] �V�P′ , and for any other
process P′′, �N1�P′′ = ⊥ = �M�P′′ . And if Q = P then �N1�P = λx.x.
If P = Q, P then N = �M� \ {Q, P} | Q[�N2�P [Q := P]] | P[�N2�Q[Q := P]].

Because �N2�P = ⊥ and �N2�Q = U , N2 = V . Therefore ,M
P−→D V [Q := P]

and for any P′ ∈ ip(τ), by Rule [NSub], N (P′) τ−→�D� �V [Q := P]�P′ and the
result follows from induction.
If P = P then either Q = P or �N1�P = sub[Q �→ P]. If Q = P then N =
�M� \ {P} | P[�N2�P] and the rest is similar to above. If �N1�P = sub[Q �→ P]
then the case is similar to one of the other two.

* Otherwise, N1 = V and either P = P or P = P, Q.
If P = P then either �N1�P τ−→�D�P L and P ∈ ip(typeof(N1)), N = �M� \ {P} |
P[L �N2�P]. We therefore have �N1� τP−→�D�P �N1� \ {P} | P[L], and by induc-
tion, N1 →∗

D N ′
1 such that �N1� \ {P} | P[L] →∗

D N1 � �N ′
1�. Since all these

transitions can be propagated past N2 in the network and �N2�P′ in any process
P′ involved, we get the result for M ′ = N ′

1 N2.
If P = P, Q then the case is similar.

– If N2 = V then we have 2 cases.

* If P = P then either �N1�P τ−→�D�P L or �N1�P = U and �N2�P τ−→�D�P L and
the case is similar to the previous.

* If P = Q, P then there exists U such that either �N1�Q sendP U−−−−→�D�Q

LQ or �N2�Q sendP U−−−−→�D�Q LQ and �N1�P recvQ U[Q:=P]−−−−−−−−→�D�P LP or

�N2�P recvQ U[Q:=P]−−−−−−−−→�D�P LP.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

Alice or Bob?: Process polymorphism in choreographies 53

If �N1�Q sendP U−−−−→�D�Q LQ then �N1�Q = U ′ and therefore

�N1�P recvQ U[Q:=P]−−−−−−−−→�D�P LP and the case is similar to the pre-

vious. If �N2�Q sendP U−−−−→�D�Q LQ then �N1�Q = U ′, and therefore

�N2�P recvQ U[Q:=P]−−−−−−−−→�D�P LP and the case is similar to the previous.
• Assume M = N τ . Then for any process P such that �N�P = �τ�P = ⊥, we have

�M�P = ⊥. For any process P′ such that �τ�P′ = ⊥ and kindof(τ) = K \ ({P} ∪ ρ),
�M�P′ = �N�P′ . For any other process P′′ such that �τ�P′′ = ⊥, we get �M�P′′ =
�N�P′′ . For any other process P′′′, we get �M�P′′′ = �N�P′′′ �τ�P′′′ . This case is
similar to the previous unless N = � X :: K. N ′.
If N = � X :: K. N ′ and τ ≡ ν then we have two cases. Either K ∈ {Proc, Proc \ ρ} or
not. If K ∈ {Proc, Proc \ ρ} then for any P′, �M�P′ = � X. AmI X ? �N ′[t := P′]�P &
�N ′�P′ �ν�P′ . As �ν�P′ = P for some P, the only available transition is using
Rule [NBabs], and we therefore get P = P′′ for some P′′ and N = �M� \ {P′′} |
P′′[AmI P ? �N ′[X := P′′]�P′′ & �N ′�P′′]. We then define M ′ = N ′[X := ν] and see
that the result follows form using Rules [NIamr] and [NProam] on P′′ if P′′ = P
and otherwise using Rules [NIaml] and [NProam], at all other processes using
Rule [NBAbs] and then either Rules [NIamr] and [NProam] or Rules [NIaml]
and [NProam] and the result follows from induction.
If K /∈ {Proc, Proc \ ρ} then the case is similar to N1 = λ X : τ. N3 above.

• Assume M = fst N . Then either N = V and the result follows from induction, or
N = (V ,V ′) and for any process P ∈ ip(typeof((V ,V ′))), �M�P = fst (�V�P,�V ′�P)
and for any other process P′ /∈ ip(typeof((V ,V ′)), by Theorem 6 we have �M�P′ =
�N�P′ = ⊥, and therefore �M�P′ →�D�P′ .

If P = P ∈ ip(typeof((V ,V ′))) then N = �M� \ {P} | P[�V�P] and M
τP−→D V . The

result follows by use of Rule [NProj1] and Theorem 6 and induction.
• Assume N1 = snd N2. This case is similar to the previous.
• Assume M = (M1,M2). Then, the result follows from simple induction.
• Assume M = case N of inl x ⇒ N ′; inr x′ ⇒ N ′′. Then for any process P such that

P ∈ ip(typeof(N)), we have �M�P = case �N�P of inl x ⇒ �N ′�P; inr x′ ⇒ �N ′′�P.
For any other process P′ such that �N�P′ = �N ′�P′ = �N ′′�P′ = ⊥, �M�P′ = ⊥. For
any other process P′′ such that �N�P′′ = ⊥, we get �M�P′′ = �N ′�P′′ � �N ′′�P′′ . For
any other processes P′′′ such that �N ′�P′′′ = �N ′′�P′′′ = ⊥, we have �M�P′′′ = �N�P′′′ .
For any other process P′′′′, we have �M�P′′′′ = (λx : ⊥.�N ′�P′′′′ � �N ′′�P′′′′) �N�P′′′′ .
We have two cases.

– Assume P = P ∈ ip(typeof(N)). Then, we have three cases.

* Assume N = inlτ V . Then, �N�P = inl�τ�P �V�P and N = �M� \ {P} |
P[�N ′[x := �V�P]�P]. We define M ′ = N ′ and since �N ′�P′ � �N ′�P′ � �N ′′�P′
the result follows from using Rules [NAbsApp] and [NCasel] and induction.

* Assume N = inrτ V . Then, the case is similar to the previous.

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

54 E. Graversen et al.

* Otherwise, we use Rule [NCase] and we have a transition �N�P τ−→�D�P L such
that

N = �M� \ {P} | P[case L of inl x ⇒ �N ′�P; inr x′ ⇒ �N ′′�P]

and the result follows from induction similar to the last application case.
– Assume P = Q, P. Then, the logic is similar to the third subcases of the previous

case.
• Assume M = selectQ,P � N . This is similar to the N1 = comτ

Q,P case above.
• Assume M = f . Then for any process P, �M�P = f . We therefore have some process

P such that P = P and N = (�M� \ P) | P[�D�(f)]. We then define the required
choreography M ′ = D(f) and network N ′ = �M ′�, and the result follows.

�

https://doi.org/10.1017/S0956796823000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000114

	Alice or Bob?: Process polymorphism in choreographies
	Introduction
	System model
	Processes
	Communication
	Local programmes

	The polymorphic Chor language
	Typing
	Kinding
	Operational semantics

	Endpoint projection
	Projection

	The correctness of endpoint projection
	Case study
	Related work
	Choreographies
	Concurrent functional programming

	Conclusion
	Full typing rules
	Full operational semantics
	Proof of thm:ChorToNet
	Proof of thm:NetToChor

