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Abstract. Let D > 0 be the fundamental discriminant of a real quadratic field, and 4(D) its class
number. In this paper, by refining Ono’s idea, we show that for any prime p > 3,

X
{0 < D < X | (D) # 0 (mod p)} >>p%~
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1. Introduction

Let D > 0 be the fundamental discriminant of the real quadratic field Q(v/D), and
h(D) its class number. Let p be prime, Z, the ring of p-adic integers, and
)LP(Q(«/B)) the Iwasawa Z-invariant of the cyclotomic Z,-extension of Q/D).
Let R,(D) denote the p-adic regulator of Q/D), and |- | , denote the usual
multiplicative p-adic valuation normalized so that |p[, = 1/p.

Although the ‘Cohen—Lenstra heuristics’ [3] predict that for any prime p, there are
infinitely many real quadratic fields Q(v/D) with p f h(D), it is proved only for the
case p < 5000 ([4, 14]).

On the other hand, Greenberg [6] conjectured that )vp(Q(«/E)) = 0 for any real
quadratic field Q(v/D) and any prime number p. However, very little is known (cf.
[14]). In particular, Greenberg recently asked the question whether there exist
infinitely many real quadratic fields Q(+/D) with p splitting and ip(Q(\/B)) vanishing
for a given odd prime p (cf. [17]). This problem is solved only for the case p = 3 ([17]).

In this direction, in this paper we shall prove the following theorem:

THEOREM 1.1. Let p > 3 be prime and 6 = —1 or 1. If 6 = —1, then for any p =3
(mod 4), and if 0 = 1, then for any p,

D 1 VX
ﬁ{O <D < X | (D) # 0 (mod p), (;) =9, and |R,(D)|, :;} >>, @.
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For the case (D/p) = —1, i.e., p remains prime in the real quadratic field Q(+/D),
and p [ h(D), we have /IP(Q(\/B)) =0 by a criterion of Iwasawa [12]. Further
for the case (D/p) =1, i.e., p splits in the real quadratic field Q(+/D), p [ h(D),
and |R,(D)|, = 1/p, we also have ip(Q(\/ﬁ)) =0 by a criterion of Fukuda and
Komatsu [5]. Thus, by Theorem 1.1 we immediately have the following theorem:

THEOREM 1.2. Let p > 3 be prime and 6 = —1 or 1. If 6 = —1, then for any p =3
(mod 4), and if 6 = 1, then for any p,

D JX
tt{O <D< X | 1(QWD) =0, (;) _ 5} o i

To prove Theorem 1.1, first we shall refine Ono’s idea [14] and prove the following
theorem.

THEOREM 1.3. Let p > 3 be prime and 6 = —1 or 1. If there is a fundamental dis-
criminant Dy coprime to p of a real quadratic field Q(y/Dy) such that

o ()=
V4

(i) /(Do) # 0 mod p,

1

(i) [R,(Do)l, =5

then for each 6,

VX

D 1
Finally, we shall show that the condition in Theorem 1.3 holds for any p = 3 (mod
4) if 0 = —1 and for any p if 6 = 1.

Remark. Similar works for imaginary quadratic fields can be found in [1, 7-9, 13,
15].

2. Proof of Theorem 1.3

To prove Theorem 1.3, we shall basically follow the proof of Theorem 1 in [14].
Consult [14] for more details.

Let D be the fundamental discriminant of a quadratic number field, y,: = (D/-) the
usual Kronecker character, and y, the trivial character. Let My (I'o(N), x) denote the
space of modular forms of weight k& on I'g(N) with character y. Let r and N be
nonnegative integers with r > 2. If N #£0, 1 (mod 4), then let H(r, N)=0. If
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N =0, then let H(r,0): = {(1 — 2r). If Dn*> = (—1)'N, then define H(r, N) by

H(r, N):=L(1 =1, 1p) > i)y p(d)d" " a2r-1(n/d),
dln

where o,(n): = de d’. Cohen [2] proved that for every r > 2,

F(z):= ) H(r,N)g" (g:=") € M, (To), 10).
N=0

By the similar arguments as in the proof of Proposition 2 in [14], which use the
construction of the Kubota—Leopoldt p-adic L-function L,(s, yp), the Kummer con-
gruences, and the p-adic class number formula (cf. [18]), we have the following
proposition.

PROPOSITION 2.1. Let p be an odd prime number and D(# 1) be the fundamental
discriminant of a real quadratic field. Then H(p(p — 1), D) is p-integral and

2h(D)R,(D)
JD

Let ep > 1 be the fundamental unit of the real quadratic field Q(v/D). Then
R,(D) =log,(ep). Let p > 3 be prime and p a prime ideal of QD) over p. Let
n(p, D) be a non negative integer satisfying that

Hp(p-1),D)= (mod p?).

pn(li,D) | Sg(ll)—l —1 but pn@aD)-‘rl /rsg(l))—l 1

’

where N is the absolute norm of Q(+/D). Note that n(p, D) > 1. Since |sg(")71—

1], = |10gp(8g(")71)|p, we have that

—n(p,D) if p is unramified
R,(D). =17 o npt ; ’
IR,(D)l, {p—”(l”D)/2, if p is ramified.

Thus, by Proposition 2.1 we immediately have the following proposition:

PROPOSITION 2.2. Let p > 3 be prime and D(# 1) be the fundamental discriminant
of the real quadratic field Q(~/D) in which p is unramified. Then H(p(p — 1), D)/p is
p-integral and

H(p(p —1), D) _ 2h(D)R,(D)
p -~ pJD

Let 6 = —1 or 1. Let p > 3 be prime and define G,(z) € Mp(p_l)+%(l"0(4p2), %o) by

Gy(2): = Fyp1)(2) ® (;) = Z(f;)H(p(p — 1.0,
n=0

(mod p).
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and A)(z) € Myp—n112(To(4p*), 10) by

: Gp(2) ® (5) + 0Gp(2)
Aoy =TT S Hpp— 1) m)g”

=5

Similary, for a prime Q # p, define Ci(z) € M, ,, +%(F0(4p4Q4), %) by
Cz:= Y Hpp-1.nq"
@=0.G=-1

If [ # p is prime, then define (U;|C2)(2) and (Vi|C))(z) € M,,(, ), 1(To(4p* 0*1), () by

(UICH):= ) "wb ("= > Hpp—1).Ing",
n=1

@=0.(5)=1

VICHE):=Y v mg"= > Hpp—1),nq".
n=1

(¢)=0.p)=—1

By the similar arguments as in the proof of Proposition 3 in [14] and Proposition
2.2, we know that there exist a(p) € Z coprime to p such that (oz(p))/p(U;|Cg)(z)
and (oc(p))/p(V1|C§)(z) have integer Fourier coefficients.

Now we assume that there is a fundamental discriminant of real quadratic field of

Q(+/Dy) for which
(2) =5 wa Ho0=D.20

p

Let D, be the fundamental discriminant of the real quadratic field Q({/n) and S,
denote the set of those D, with

n<kp):=2pp—1)+Dp’Qp+1)Q+1)/4

for which

()= )

Let / be a sufficiently large prime satisfying yp (/) = 1 and

#£ 0 (mod p).

(1) xp,() =1 for every D, € S,

(2) (é):l and G):l,

(3) 11 (mod p).

Then by the properties of / and the similar arguments in the proof of Theorem 2 in
[14], which use a theorem of Sturm [16] on the congruence of modular forms, we have

https://doi.org/10.1023/A:1017561005538 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017561005538

CLASS NUMBERS AND IWASAWA /-INVARIANTS 253

that there must be an integer 1 < n < x(p)/ coprime to / for which

Up) 5 «p)
p

up_,(n) = 7

H(p(p —1),nl) # 0 (mod p).
Thus, by Proposition 2.2, we have the following proposition:

PROPOSITION 2.3. Let p > 3 be prime and 6 = —1 or 1. Assume that there is a
Sfundamental discriminant Dy coprime to p of a real quadratic field Q(/Dy) such that

o ()=
p

(i) h(Do) # 0 mod p,
1
(i) [Ry(Do)l, =5

If Lis a sufficiently large prime satisfying yp,(l) = 1 and (1), (2), (3), then for each o,
there is a positive fundamental discriminant D;: = dil with d; < k(p)! such that

WD) # 0 (mod p), <l;l> =0, and [R,(D)), :i,

Proof of Theorem 1.3. Let r, (mod t,) be an arithmetic progression with (r,, 1,) = 1
and p|t, such that for every prime / = r, (mod 1,), [ satisfies y (/) = 1 and (1), (2), (3).
Then, by the similar arguments as in the proof of Theorem 1 in [14], which use
Dirichlet’s theorem on primes in arithmetic progression, Theorem 1.3 easily follows
from Proposition 2.3. O

3. Proof of Theorem 1.1

Theorem 1.1 follows immediately from Theorem 1.3 and the following proposition.
PROPOSITION 3.1. Let p > 3 be prime and 6 = —1 or 1. If 6 = —1, then for any
p=3 (mod 4), let D be the fundamental discriminant of the real quadratic field
QG/p*— 1) and if 6 = 1, then for any p, let D be the fundamental discriminant of

the real quadratic field Q(y/p* +4). Then for each 5, D satisfies the condition in
Theorem 1.3, i.e.,

o ()=
p

(ii) h(Do) # 0 mod p,

(iii) [R,/(Do)l, =1§,

To prove Proposition 3.1, we need the following lemmas:
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LEMMA 3.2 (L. K. Hua [10]). Let D be the fundamental discriminant of the real
quadratic field Q(~/D) and L(s, yp) be the Dirichlet L-function with character yp.
Then

log D

L1, yp) < + 1.

LEMMA 3.3 ([11]). Let p be an odd prime andp a prime ideal of the real quadratic field
QD) over p. If o is an element of Q(v/D) such that o' = 1 mod p but o # 1 mod p?
for some integer n, then we have o> ®~! £ 1 mod p>.

Proof of Proposition 3.1. (). If 6 = 1, then since
Df? 244 4
(5)-(57) =)= ven
D p
we have (D/p) =1 for any p. If 6 = —1, then since

() C5)-6) v

we have (D/p) = —1 for any p = 3 (mod 4).
(i1) Dirichlet’s class number formula says that

\/BL(I, XD) )

(D) =
(D) 2logep

By Lemma 3.2, we have that

Q2+logvD) 5 (2+logVD)

hD) < /D Alogep 2log(D/4)

because &p > v/ D/2.

Let D be the fundamental discriminant of Q(/p? — 1) or Q(y/p* +4). Then by
easy computation, we have 4(D) < p if p > 11. Since we can also easily check that
h(D) < p, if p < 11, we prove that p } h(D) for any p.

(iii) Let 6 = 1 and D be the fundamental discriminant of the real quadratic field

Q(Wp*+4). Let ep>1 be the fundamental unit of Q(y/p>+4) and a:=
(p + +/p? +4)/2. Since NQ(@)/Q(a) = —landa > 1,0 = ¢}, for some oddj > 0. Since

() ol )

2

we have that

ol = dg’_l) =1mod p, but o« != d}{"” £ 1 mod p°.
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Thus, by Lemma 3.3 and the discussion above in Proposition 2.2, we have that

|Rp(D)|p =1

Now, we consider the case 6 = —1 and D is the fundamental discriminant of
Q(/p? —1). In this case, if we let o:=p+./p?> —1, then by the same method,
we can also prove that |R,(D)|, = 1. O
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