ON QUASI-ESSENTIAL SUBGROUPS OF PRIMARY ABELIAN GROUPS

KHALID BENABDALLAH AND JOHN M. IRWIN

All groups considered in this paper are abelian. A subgroup N of a group G is said to be a quasi-essential subgroup of G if $G = \langle H, K \rangle$ whenever H is an N-high subgroup of G and K is a pure subgroup of G containing N. We started the study of such subgroups in [5]; in particular, we characterized subsocles of a primary group which were both quasi-essential and centres of purity. In this paper we show that quasi-essential subsocles of a primary group are necessarily centres of purity answering thus in the affirmative a question raised in [5].

We obtain the following theorem: A subsocle S of a p-group G is quasiessential if and only if either $S \subset G^1$ or $(p^nG)[p] \supset S \supset (p^{n+1}G)[p]$ for some non-negative integer n. The notation is that of [1]. If G is a group, then

$$G^1 = \bigcap_{n=1}^{\infty} nG$$
 and $p^{\omega}G = \bigcap_{n=1}^{\infty} p^nG$,

where p is a prime integer. G_t is the torsion subgroup of G. For p-groups we have $G^1 = p^{\omega}G$. Let N be a subgroup of G. If all N-high subgroups of G are pure, we say that N is a centre of purity. All topological references are to the p-adic topology.

1. The algebra of N-high subgroups of a group. In this section we list without proof some general facts about N-high subgroups of a group. These properties are of a set-theoretic nature and can be visualized by appropriate Venn diagrams. Group-theoretic properties of N-high subgroups such as neatness, purity, etc., can be found in the papers listed in the references (see, e.g. [4; 6]).

Definition 1.1. Let G be a group and N a subgroup of G. A subgroup H of G is said to be an N-high subgroup of G if it is a maximal subgroup of G with respect to the property $H \cap N = 0$.

LEMMA 1.2. Let G be a group and $M \subset N$ subgroups of G. Let H be an M-high subgroup of G. Then $H \cap N$ is an M-high subgroup of N. Conversely, let K be an M-high subgroup of N; then $K = H \cap N$ whenever H is an M-high subgroup of G containing K.

Received February 4, 1970.

- Lemma 1.3. Let G be a group and $M \subset N$ subgroups of G. Let H be an M-high subgroup of G. Then every $(H \cap N)$ -high subgroup of H is an N-high subgroup of G.
- Lemma 1.4. Let G be a group, $M \subset N$ subgroups of G, and K an M-high subgroup of N. Then a subgroup H containing K is an M-high subgroup of G if and only if H/K is an (N/K)-high subgroup of G/K.
- Lemma 1.5. Let G be a group and let N and K be subgroups of G such that $N \cap K = 0$. Then a subgroup H containing K is an N-high subgroup of G if and only if H/K is an $((N \oplus K)/K)$ -high subgroup of G/K.
- **2. Some results on pure subgroups of a group.** We prove here a few simple lemmas which might be of independent interest and will be used throughout the paper.
- **Lemma 2.1.** Let G be a group, $R \subset S \subset T$ subgroups of G, where S is a pure subgroup of G. Then T/R is a pure subgroup of G/R if and only if T is a pure subgroup of G.
- *Proof.* Let $f: G/R \to G/S$ be the canonical map. Then f(T/R) = T/S and ker $f \subset T/R$, and therefore T/S is a pure subgroup of G/S. Since S is a pure subgroup of G, so is T. The converse is obvious.
- COROLLARY. Let G be a group and R a subgroup of G_t . Suppose that K/R is a pure subgroup of G/R. Then $\langle K, G_t \rangle$ is a pure subgroup of G.
- *Proof.* Since G_t/R is the torsion subgroup of G/R, it follows that $\langle (K/R), (G_t/R) \rangle = \langle K, G_t \rangle / R$ is a pure subgroup of G/R (see [1, p. 94]). Letting $G_t = S$ and $\langle K, G_t \rangle = T$ in Lemma 2.1, the result follows.

A somewhat surprising and very useful fact is the following.

- Lemma 2.2. Let G be a group, H a subgroup of G, and B a pure subgroup of H such that $G/B = (H/B) \oplus (K/B)$. Then K is a pure subgroup of G.
- *Proof.* Suppose that $ng \in K$ where $g \in G$ and $n \in Z^+$. We have g + B = (h + B) + (k + B) for some $h \in H$ and $k \in K$, and for some $b \in B$, g h k = b and thus $nh = ng nk nb \in H \cap K = B$. Since B is a pure subgroup of H, there exists $b' \in B$ such that nh = nb', therefore ng = n(b' + b + k) and $b' + b + k \in K$, and K is a pure subgroup of G as claimed.
- COROLLARY. Let G be a p-group, H a subgroup of G, and B a pure dense subgroup of H. Then there exists a pure dense subgroup K of G such that $K \cap H = B$.
- *Proof.* $G/B = (H/B) \oplus (K/B)$ since H/B is divisible. K is pure by Lemma 2.2 and $G/K \simeq H/B$. Note that K can be chosen to contain any subgroup of G disjoint from H.

This last corollary generalizes a result in [2] about cobounded subgroups of primary groups. The next lemma is a very useful one; it has numerous applications.

Lemma 2.3. Let G be a group and S a subgroup of G[p] such that $S \not\subset p^{\omega}G$. Let K be a maximal pure subgroup of G such that $K[p] \subset S$. Then $\langle S, K \rangle / K$ is contained in the reduced part of $p^{\omega}(G/K)$.

Proof. Since S has an element of finite p-height, there exists at least one pure subgroup K of G such that $K[p] \subset S$ and by Zorn's Lemma there exists a maximal one. Clearly $\langle S, K \rangle / K \subset (G/K)[p]$ and if it had an element of finite p-height, G/K would have a summand K'/K such that

$$(K'/K)[p] \subset \langle S, K \rangle / K$$

but this implies that $K'[p] \subset S$, and since K' is a pure subgroup of G this would contradict the maximality of K. Therefore $\langle S, K \rangle / K \subset \bigcap p^{\omega}(G/K)$. Using the absolute summand property of divisible groups, a similar argument shows that the subgroup in question is actually contained in the reduced part of $p^{\omega}(G/K)$.

3. Quasi-essential subgroups of primary groups. Our aim in this section is to answer in the affirmative a question raised in [5], namely: Are quasi-essential subsocles of a p-group G also centres of purity of G?

Definition 3.1. Let G be a group and N a subgroup of G. We say that N is a quasi-essential subgroup of G (q.-e.) if $G = \langle H, K \rangle$ whenever H is an N-high subgroup of G and K is a pure subgroup of G containing N.

We next establish a characterization of quasi-essential subgroups which is needed in the proof of later results.

LEMMA 3.2. Let G be a group and N a subgroup of G. Then N is a quasiessential subgroup of G if and only if K/H is an absolute summand of G/H whenever K is a pure subgroup of G containing N and H is an N-high subgroup of K.

Proof. Let M/H be a (K/H)-high subgroup of G/H. Then by Lemma 1.4, M is an N-high subgroup of G and if N is q.-e., we have $\langle M, K \rangle = G$; therefore $G/H = K/H \oplus M/H$. Conversely, let M be an N-high subgroup of G. Then $M \cap K$ is an N-high subgroup of G by Lemma 1.2. Thus $K/(M \cap K)$ is an absolute summand of $G/(M \cap K)$ and by Lemma 1.4, $M/(M \cap K)$ is a $(K/(M \cap K))$ -high subgroup of $G/(M \cap K)$; therefore $G/(M \cap K) = (M/(M \cap K)) \oplus (K/(M \cap K))$ and $G = \langle M, K \rangle$.

The following lemma is needed for the next theorem, which has some topological implications.

Lemma 3.3. Let G be a group and N a subgroup of G such that

(*) G/H is divisible for all N-high subgroups H of G. Then every subgroup of N has the property (*).

Proof. Let M be a subgroup of N and let H be an M-high subgroup of G. By Lemma 1.3, H contains an N-high subgroup of G, therefore G/H is divisible being a homomorphic image of a divisible group.

The next theorem is useful to solve the question on quasi-essential subsocles of primary groups, although it is stated for arbitrary groups.

Theorem 3.4. Let G be a group and N a subgroup of G such that G/H is divisible for every N-high subgroup H of G. Then $N[p] \subset p^{\omega}G$.

Proof. Suppose that $x \in N[p]$; then by Lemma 3.3, $\langle x \rangle$ has the same property as N. If $x \notin p^{\omega}G$, then there exists a summand K of G such that $G = K \oplus H$ and $K[p] = \langle x \rangle$ and clearly H is an $\langle x \rangle$ -high subgroup of G and G/H is not divisible, contrary to the hypothesis. Therefore $x \in p^{\omega}G$ and $N[p] \subset p^{\omega}G$.

COROLLARY. Let G be a p-group and N a subgroup of G. Then G/H is divisible for every N-high subgroup H if and only if $N[p] \subset p^{\omega}G$.

Theorem 3.5. Let G be a p-group and N a quasi-essential subgroup of G where $N[p] \not\subset p^{\omega}G$. Then every pure subgroup K of G containing N is a cobounded summand of G.

Proof. Let K be a pure subgroup of G containing N. Then by Lemma 3.2, K/H is an absolute summand of G/H for every N-high subgroup H of K. Since $N[p] \not\subset p^{\omega}G$, Theorem 3.4 implies that K/H is not divisible for some N-high subgroup H of K, because $p^{\omega}K \subset p^{\omega}G$. Now by [5, Theorem 4.4], there exists $n \in Z^+$ such that

$$p^{n+1}(G/H)[p] \subset (K/H)[p] \subset p^n(G/H)[p];$$

in particular, $p^{n+1}G[p] \subset K$ and it follows that K is a cobounded summand of G.

The previous theorem suggests the following question: What subgroups N of a group G have the property: K is a summand of G whenever K is a pure subgroup of G containing N? The next theorems answer this question for subsocles of primary groups.

Theorem 3.6. Let G be a p-group, S a subsocle of G^1 . Then every pure subgroup of G containing S is a summand of G if and only if G is the direct sum of a bounded group and a divisible group.

Proof. Let H be a high subgroup of G. Suppose that H is unbounded; then H contains a proper basic subgroup B of H, and $G/B = (H/B) \oplus (M/B)$, where M can be chosen to contain G^1 . By Lemma 2.2, M is a pure subgroup

of G, and M contains S; therefore $G = M \oplus K$ and K is divisible which is a contradiction. Thus H is bounded and therefore $G = H \oplus D$, where D is a divisible group. For the converse, refer to Lemma 4.2.

Theorem 3.7. Let G be a p-group and S a subsocle of G. Then the following are equivalent:

- (i) $S \supset G^1[p]$ and every pure subgroup of G containing S is a summand of G;
- (ii) Every pure subgroup of G containing S is a cobounded summand of G;
- (iii) $S \supset p^nG[p]$ for some $n \in \mathbb{Z}^+$.

Proof. We show: $(ii) \Rightarrow (i) \Rightarrow (iii) \Rightarrow (ii)$.

- (ii) \Rightarrow (i). Suppose that $x \in G^1[p]$ and $x \notin S$. Let H be an $\langle x \rangle$ -high subgroup of G containing S. Then H is a pure subgroup of G and G/H is divisible, a contradiction; therefore $x \in S$ and $G^1[p] \subset S$.
- (i) \Rightarrow (iii). If $S = G^1$, then by Theorem 3.6, $G = B \oplus D$, where B is bounded and D is divisible and clearly $S \supset p^nG[p]$ if $p^nB = 0$. If $S \neq G^1$, let K be a maximal pure subgroup of G such that $K[p] \subset S$; then $(K+S)/K \subset (G/K)^1$ by Lemma 2.3. Now every pure subgroup M/K of G/K containing (K+S)/K is a summand of G/K since M is a pure subgroup of G containing G/K is the direct sum of a bounded group and a divisible group. Thus G/K is pure complete which leads to a contradiction. Therefore G/K is bounded. We conclude that $S \supset p^nG[p]$, where $p^n(G/K) = 0$.
- (iii) \Rightarrow (ii). Let K be a pure subgroup of G containing S. Then $K \supset p^n G$, and thus K is a cobounded summand of G.

COROLLARY 1. Let G be a reduced p-group and S a subsocle of G; then every pure subgroup K of G containing S is a summand of G if and only if $S \supset p^nG[p]$ for some $n \notin Z^+$.

Proof. It suffices to show that $S \supset G^1[p]$. Let $x \in G^1[p]$ and suppose that $x \notin S$. Let H be an $\langle x \rangle$ -high subgroup of G containing S. Then H is a pure subgroup of G and $G = H \oplus D$, where $D \simeq G/H$ is divisible but G is reduced. Therefore $x \in S$ and $S \supset G^1[p]$.

COROLLARY 2. Let G be a p-group and S a subsocle of G satisfying any of the three conditions in Theorem 3.7. Then S supports a pure subgroup of G.

Proof. $S \supset p^nG[p]$ for some $n \in \mathbb{Z}^+$ and the result follows from [5, corollary to Lemma 4.3].

COROLLARY 3. Let G be a p-group and S a quasi-essential subsocle of G. Then S supports a pure subgroup of G or $S \subset G^1$.

Proof. Suppose that $S \not\subset G^1$. Then by Theorem 3.5, S satisfies condition (ii) of Theorem 3.7; thus S supports a pure subgroup by Corollary 2.

This last corollary shows that quasi-essential subsocles of primary groups are centres of purity. In fact, they support pure subgroups which are absolute summands. Thus we have the following complete characterization.

THEOREM 3.8. A subsocle of a p-group G is quasi-essential if and only if either $S \subset G^1$ or $(p^nG)[p] \supset S \supset (p^{n+1}G)[p]$ for some non-negative integer n.

The next section contains some applications of the results in §§ 2 and 3.

4. Some applications. We first prove a result due to Hill and Megibben [3, Theorem 2] as an application of our results. We will need the next lemma, the proof of which relies heavily upon Lemma 2.2.

Lemma 4.1. Let G be a p-group and N a subgroup of G such that no proper pure subgroup of G contains N. Then every pure subgroup containing N[p] is a cobounded summand of G.

Proof. Let H be a subgroup of G such that $H \cap N = 0$. Then H is bounded, otherwise H has a proper basic subgroup B and $G/B = (H/B) \oplus (K/B)$, where, by Lemma 2.2, K is a proper pure subgroup of G and $K \supset N$, a contradiction. Now let K be a pure subgroup of G containing N[p]; then G/K has a bounded basic subgroup. Otherwise let B/K be an unbounded basic subgroup of G/K; then $B = K \oplus M$ where $M \simeq B/K$ (see [8, Theorem 5]) and $M \cap N = 0$, a contradiction since M is unbounded. Therefore $G/K = (B/K) \oplus (D/K)$, where B/K is a bounded subgroup of G/K and D/K is a divisible subgroup of G/K. Now we show that D/K = 0 otherwise G/B is divisible, and B a pure subgroup of G implies that B[p] is proper dense in G[p] and $B[p] \supset N[p]$, which is a contradiction. Therefore G/K is bounded and K is a summand of G.

This lemma has the following interesting corollary about minimal pure subgroups containing a given subgroup of a primary group.

COROLLARY [3, Theorem 2]. Let N be a subgroup of G and H a minimal pure subgroup of G containing N. Then $H = B \oplus K$, where B is bounded and K[p] = N[p].

Proof. From Lemma 4.1 and Theorem 3.7, N[p] supports a pure subgroup K of H and H/K is bounded; therefore $H = B \oplus K$.

The proof of Lemma 4.1 suggests the following question: What primary groups G have the property

(**) $G/K = (B/K) \oplus (D/K)$, where B/K is bounded and D/K is divisible whenever K is a pure subgroup of G containing G^1 ?

If G^1 is divisible, clearly $G = B \oplus D$, where $D = G^1$ and B is a bounded subgroup of G. In this section we answer the question for certain classes of groups.

LEMMA 4.2. Let $G = B \oplus D$ be a p-group, where B is bounded and D is divisible. Then every pure subgroup K of G is the direct sum of a bounded and a divisible group.

Proof. Let K be a pure subgroup of G; then $K \cap D = K^1$. Let H be a high subgroup of K; then $H \cap D = 0$ and H is therefore bounded. It follows that $K = H \oplus (K \cap D)$, where $K \cap D$ is divisible.

A primary group G is said to be essentially finitely indecomposable (e.f.i.) if it has no unbounded direct sum of cyclic groups summand. The next theorem shows that groups with property (**) must be e.f.i.

THEOREM 4.3. Let G be a p-group. If G satisfies property (**), then every pure subgroup of G containing G^1 is e.f.i.

Proof. Let M be a pure subgroup of G containing G^1 . Then M satisfies (**). For, let K be a pure subgroup of M containing $M^1 = G^1$; then M/K is a pure subgroup of G/K and the assertion follows from Lemma 4.2. Suppose that M is not e.f.i.; then $M = S \oplus T$ where S is an unbounded direct sum of cyclic groups. Therefore T is a pure subgroup of M containing M^1 and M/T is unbounded, a contradiction.

COROLLARY. Let G be a p-group satisfying (**) and suppose that $|G^1| \leq \aleph_0$. Then $G = B \oplus D$, where B is a bounded group and D is divisible.

Proof. Embed G^1 in a pure subgroup K such that $|K| = \mathbf{X}_0$. Let $K = R \oplus D$, where D is the divisible subgroup of K and R is a reduced subgroup of K. We claim that R is bounded for otherwise R is an unbounded reduced countable p-group and by [1, p. 143, Exercise 19 (a)], R is not e.f.i., contradicting Theorem 4.3. Therefore R is bounded and $G^1 = K^1 = D$. Now $G = B \oplus D$ and B must be bounded since it is reduced.

After reading this last corollary, one might be tempted to conjecture that a p-group G satisfies (**) if and only if $G = B \oplus D$ where B is bounded and D is divisible; however, the next theorem shows that this is not the case.

Theorem 4.4. Let G be a p-group such that G/G^1 is a quasi-closed group and some high subgroup of G is countable. Then G satisfies (**).

Proof. Let K be a pure subgroup of G containing G^1 and let H be a high subgroup of G. Then G = H + K by [5, Theorem 2.4]; thus

$$G/K = (H + K)/K \simeq H/(H \cap K)$$

but H is countable since one high subgroup is countable (see [6]). Therefore $H/(H \cap K)$ is countable. Now $G/K \simeq (G/G^1)/(K/G^1)$ and as such it is a homomorphic image of a quasi-closed group with unbounded pure kernel so that G/K is the direct sum of a closed group and a divisible group (see [9]), but a countable closed group is necessarily bounded.

Example. Theorem 4.4 would be meaningless without a concrete example. In [10], the following group is studied. Let $B = \sum C(p^n)$ and consider \bar{B} , the torsion completion of B, that is to say the torsion subgroup of the product of $C(p^n)$. Let $G = \bar{B}/(B[p])$; then $G^1 = (\bar{B}[p]/(B[p]))$ and a high subgroup of G is B/(B[p]) which is countable. Furthermore, $G/G^1 \simeq p\bar{B}$; now $p\bar{B}$ is a torsion complete group and thus it is quasi-closed. This group G satisfies the hypothesis of Theorem 4.4.

5. Examples. In discussing quasi-essential subgroups of a primary group G we have obtained a complete characterization of the quasi-essential subgroups of G which are contained in G[p]. However, we have not considered arbitrary subgroups of G. Trivially, the fact that the socle of a subgroup is quasi-essential implies that the subgroup is quasi-essential, but the converse is not true as the following example shows.

Example 5.1. Let G be an unbounded reduced p-group and let $\langle x \rangle$ be a finite cyclic summand of G such that O(x) = n + 1, $n \in Z^+$, and $n > k = \text{Min}\{h(g): g \in G[p]\}$. Now since $h(x) < \infty$ and G is unbounded, $\langle x \rangle$ is not a centre of purity of G, therefore there exists an $\langle x \rangle$ -high subgroup H of G which is not pure in G. This subgroup H is quasi-essential because whenever K is a pure subgroup containing H, K contains G[p] and therefore K = G. Now H[p] is not quasi-essential because $H[p] \oplus \langle p^n x \rangle = G[p] = (p^k G)[p]$ and if H[p] were quasi-essential, then $H[p] \supset (p^{k+1}G)[p]$, a contradiction.

It is remarkable that if N is a quasi-essential subgroup of a reduced primary group G such that $N[p] \not\subset G^1$, then $N[p] \supset G^1[p]$ and every N-high subgroup of G is bounded. This can be shown as follows. From Theorem 3.5, every pure subgroup containing N is a cobounded summand of G. Now let G be an G-high subgroup of G and suppose that G is not bounded. Then G has a proper basic subgroup G and G and G be contain G. Now then G is a pure subgroup of G and this is a contradiction to the fact that G is cobounded. Thus all G-high subgroups of G are bounded. Note that G is established using a technique similar to the one used in Corollary 1 of Theorem 3.7.

In view of the preceding paragraph one might ask the following question. Let N be a subgroup of G and let H be an N-high subgroup of G. If H is bounded, are all N-high subgroups of G bounded?

The answer is no; in fact, the next example shows that N-high subgroups can be bounded by different bounds and also unbounded for a fixed subgroup N of G.

Example 5.2. Let P be the Prüfer group, let N be a high subgroup of P and let $P^1 = \langle x \rangle$. Then $G[p] = N[p] \oplus \langle x \rangle$. Now let $\{y_n\}$ be a sequence of elements of N[p] such that $h(y_n) = n$, $n \in \mathbb{Z}^+$. Then

$$\langle x + y_n \rangle \oplus N[p] = G[p]$$

and $\langle x + y_n \rangle$ supports a finite summand K_n of G since $h(x + y_n) < \infty$. Clearly K_n is an N-high subgroup of G for each n (see [5, Lemma 1]).

Let $G = \sum P_i$ be a countable direct sum of copies of P and let K_n be the N-high subgroup of P chosen in P_n . Then $\sum K_i$ is $(\sum N_i)$ -high in G where $N_i = N$ for each i, whereas K_i is of order p^i for each i. Thus $\sum K_i$ is an unbounded $\sum N_i$ -high subgroup of G. However, by choosing all K_i to be the same we obtain a $(\sum N_i)$ -high subgroup of G which is bounded.

Note that the construction in Example 5.2 can be carried out in any reduced group G by taking N to be a subgroup such that $G/N = Z(p^{\infty})$ and $N[p] \neq G[p]$.

References

- L. Fuchs, Abelian groups (Publishing House of the Hungarian Academy of Sciences, Budapest, 1958).
- P. Hill, On quasi-isomorphic invariants of primary groups, Pacific J. Math. 22 (1967), 257-265.
- 3. P. Hill and C. Megibben, Minimal pure subgroups in primary groups, Bull. Soc. Math. France 92 (1964), 251-257.
- 4. J. M. Irwin, High subgroups of Abelian torsion groups, Pacific J. Math. 11 (1961), 1375-1384
- J. M. Irwin and K. Benabdallah, On N-high subgroups of Abelian groups, Bull. Soc. Math. France 96 (1968), 337-346.
- J. M. Irwin and E. A. Walker, On N-high subgroups of Abelian groups, Pacific J. Math. 11 (1961), 1375-1384.
- J. M. Irwin, F. Richman, and E. A. Walker, Countable direct sums of torsion complete groups, Proc. Amer. Math. Soc. 17 (1966), 763-766.
- 8. I. Kaplansky, Infinite abelian groups (University of Michigan Press, Ann Arbor, 1954).
- C. Megibben and P. Hill, Quasi-closed primary groups, Acta Math. Acad. Sci. Hungar. 16 (1965), 271–274.
- R. Mitchell, Some properties of basic and semi-basic subgroups, Ph.D. Dissertation, New Mexico State University, Las Cruces, New Mexico, 1964.
- 11. R. S. Pierce, Centers of purity in Abelian groups, Pacific J. Math, 13 (1963), 215-219.
- 12. J. D. Reid, On subgroups of an Abelian group maximal disjoint from a given subgroup-Pacific J. Math. 13 (1963), 657-663.

Université de Montréal, Montréal, Québec; Wayne State University. Detroit, Michigan