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1. In a recent note Sneddon (3) has proved that the solution of the dual
integral equations

r ¥y~ 'g(y) cos (xy)dy = f(x), 0<xZ1,
0 (4)

_[ g(y) cos (xy)dy = 0, x>1,
0

where f (x) can be represented in a series of Jacobi polynomials in the form

f(x)= 21 A F 0,4, %), e, )]
and satisfies the condition

Jl A=x)"H@X)dx =0, ccoevvrieeeeieeeiiieeean, 2

. 0
18

glx)=2 Z na,J 3,(X). e, 3
If in (A), cos (xp) is replaced by sin (xy) and f(0) = 0, the solution is
analogous to the above. Here
Fo, B, x)= 2 Fi(—n,a+n; B X) oveeiiiiiiiiieiianns )
is Jacobi’s polynomial (2).

2. By the analysis used by Sneddon, we can demonstrate that the solution
of the dual integral equations

j " y-1g(9) cos (xp)dy = f(x), 0=x<l,

° ®
J 9(y) cos (xy)dy =0, x>1,
[1]
where f (x) can be represented in a series of Jacobi polynomials in the form
Jf(x) = Zl @, F k1 X2y e, %)
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and satisfies the condition

'[l A=x"3H(x)dx =0, cccvvvvveeeeeeeeeiiinnn, (6)
is °
9(x) = 21 P (4 DT 4K % ™ g 4o overrerenn. %)

provided —3<k<3/,.
The solution of the dual integral equations

r y*~1g(y) sin (xy)dy = f(x), 0<x<1,

° (©)
J. g(y) sin (xy)dy =0, x>1,
1]
where f (x) can be represented in a series of Jacobi polynomials
)= 3% axF (k+1,% %3 i 8)
n=1
and satisfies the conditions
1
@) f(0)=0, (i) ‘[ x(1=x2F " H(x)dx =0, .ccveennnne )
is .
g = Y 2 T(m+DI(n+k+ D] 'a,x g ans1(x)s oo (10)
n=1

provided —i<k<3/,.
For k = 0, we get the results obtained by Sneddon.

3. Next consider the dual integral equations with Bessel function kernel.
Given the dual integral equations

r Y= 2g(y)(xp)H (xy)dy = f(x), 0=x<1,
0 (D)

r gy (xy)dy = 0, x>1;
)

if f (x) can be represented in a series of Jacobi polynomials in the form

S =Y ax" " F vk, vEL X7, e 1D
1

n=

and satisfies the conditions
1
@) f(0)=0, (i) f X1 —-xD U (x)dx =0, ...l (12)
0
then the solution to (D) is

9@ = T 62T+ DN+ DT+ D],y

provided 0<k <2 and v> —4.
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In the case when v = —1, the condition f(0) = 0 is dropped. The above
result is true even in the case —1<v< —4, provided in the first equation of
(D) the condition 0L x< 1 is replaced by 0<x< 1.

It is interesting to note that the results obtained by Sneddon and those
given in the Section 2 are particular cases of the results given above. The
results in Section 2 are obtained by replacing k by k+4 and v by +41.

4. A formal verification of the solution given in Section 3 is given below.
Taking v> —1, n a positive integer and k real and positive, the integral

J yl _ka+ 2n+ kI (xy)dy
)

converges and its value is given by Watson (4(a)). For x>1 the integral
vanishes and the value of g(x) as given in (13) automatically satisfies the second
equation of (D). Again from Watson (4(a)), we have

©° 2T (v+n+k)
L S J(xy)dy = ~— T 7T g
L y + 2046 (xY)dy Tt DIt

for 0<k<2,v>—1and O<x<1. Since

vk, v+1, x?)

f)= Y ax"ttF (v+k, v+1, x?),
n=1

the first equation of (D) is also satisfied. The cases when vz —1, O<k<2
and x = Qor 1, can be varied by using the tables of integral transforms (1, 6.8 (1),
6.8 (11), (33)). Multiplying the first equation of (a) by x"**(1—x%)*"1, in-
tegrating between the limits (0, 1) and interchanging the order of integration,
we get

fl x' 31— x2)F " (x)dx
0

-3 n/2
= J yz""‘}g(y)dyJ. J (v sin 0)(sin 8)"*'(cos 0)*~1d0

0 0o

PR f‘” g0, i)y
[+)

21 T+ )(n+ D[[(v+k+n)] 'a, r S SO ()Y N ()T |

0
=0.

Here use has been made of the following results given in Watson (4(b), 4(c)):

©
J- y-1Jv+2n+k(y)‘]v+2m+k(y)dy = Oa m 9& n,
0

nf2 k-1
j 7y sin B)(sin 8)"**(cos 0)*~1do = 2L v i),
0 y
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With the value of g(y) given in (13) all the conditions are satisfied. The results
given in Section 2 can be verified in the same way.

The results of Section 2 are true even in the case when the condition
0<x<1 in the first equations of (B) and (C) is replaced by 0<x <1, provided
that —3<k<4. Similarly the result of Section 3is true when the condition
0=<x<1 in the first equation of (D) is replaced by 0<x <1, provided O<k<]1.
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