J. Austral. Math. Soc. (Series A) 66 (1999), 189-200

A RADON-NIKODÝM THEOREM FOR VECTOR POLYMEASURES F. J. FERNÁNDEZ, P. JIMÉNEZ GUERRA and M. T. ULECIA

(Received 30 April 1998; revised 5 October 1998)

Communicated by P. G. Dodds

Abstract

A Radon-Nikodým theorem for Banach valued polymeasures is proved.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 28B05, 46G10.

1. Introduction

A Radon-Nikodým theorem for (scalar) Radon polymeasures was given in [5]. The aim of this paper is to give a Radon-Nikodým theorem for (general) Banach valued polymeasures. Despite the fact that the Radon-Nikodým theorem proved here extends that of [9], Example 6 points out that a Radon-Nikodým theorem for polymeasures (inclusive, for scalar bimeasures) cannot be stated using a condition of localization which is just an extension of the Maynard's condition of localization in compacts. The integrable *d*-tuples used here belong to the first integrable class of [3], and their integrals coincide with that of [3].

Finally, let us point out that, as predicted in [7], polymeasures that do not determine a measure in the product space are increasingly appearing in areas as diverse as nonstationary processes, harmonic analysis, operator theory and quantum physics (see [6]).

2. Notation and preliminaries

In the following, d will be a fixed positive integer, Σ_i , i = 1, ..., d, will be σ -algebras of subsets of non empty sets Ω_i , X_i , i = 1, ..., d, Y and Z will be

© 1999 Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

given Banach spaces over the same scalar field K of real or complex numbers, and $\phi: X_1 \times \cdots \times X_d \times Y \to Z$ will be a continuous multilinear mapping, that without loss of generality, can be supposed to be such that $\|\phi\| \leq 1$. We also consider two fixed polymeasures (in the usual sense of [2]) $\alpha: \Sigma_1 \times \cdots \times \Sigma_d \to Y$ and $\gamma: \Sigma_1 \times \cdots \times \Sigma_d \to Z$.

Denote by $S_i(\Omega_i)$, i = 1, ..., d, the normed linear space of Σ_i -simple functions $f_i : \Omega_i \to X_i$ with the sup norm $||f_i||_{\Omega_i} = \sup\{|f_i(t_i)| : t_i \in \Omega_i\}$. Let $f_i \in S_i(\Omega_i)$, i = 1, ..., d, be of the form $f_i = \sum_{j_i=1}^{r_i} x_{i,j_i} \chi_{A_i,j_i}$ with $x_{i,j_i} \in X_i$, and with pairwise disjoint $A_{i,j_i} \in \Sigma_i$. Then the integral of the *d*-tuple $(f_1, ..., f_d) \in S_1(\Omega_1) \times \cdots \times S_d(\Omega_d)$ over $(A_1, A_2, ..., A_d) \in \Sigma_1 \times \cdots \times \Sigma_d$ is defined (see [2]) by

$$\int_{(A_1,A_2,\ldots,A_d)} (f_1,\ldots,f_d) \, d\alpha = \sum_{j_1=1}^{r_1} \cdots \sum_{j_d=1}^{r_d} \phi \left(x_{1,j_1},\ldots,x_{d,j_d}, \alpha \left(A_{1,j_1},\ldots,A_{d,j_d} \right) \right).$$

In the sequel, if there is no confusion, we will simply write S_i , $||f_i||$, $\int_{(A_i)} (f_i) d\alpha$, $(f_i) \in X S_i$ and $(A_i) \in X \Sigma_i$.

Following [2], we define the semivariation $\hat{\alpha} : \Sigma_1 \times \cdots \times \Sigma_d \to [0, +\infty]$ and the variation $|\alpha| : \Sigma_1 \times \cdots \times \Sigma_d \to [0, +\infty]$, of the polymeasure α , by

$$\hat{\alpha}(A_1, \ldots, A_d) = \sup \left\{ \left\| \int_{(A_i)} (f_i) \, d\alpha \right\| : f_i \in S_i, \ \|f_i\| \le 1, \ i = 1, \ldots, d \right\}$$

and

$$|\alpha|(A_1, \dots, A_d) = \sup \left\{ \sum_{j_1=1}^{r_1} \cdots \sum_{j_d=1}^{r_d} \left\| \alpha(A_{1,j_1}, \dots, A_{d,j_d}) \right\|, \\ A_{i,j_i} \in \Sigma_i \text{ pairwise disjoint with } A_i = \bigcup_{j_i=1}^{r_i} A_{i,j_i} \right\}.$$

Let us also consider the set function $\|\hat{\alpha}\| : X \Sigma_i \to [0, +\infty]$ defined by

$$\|\hat{\alpha}\|\|(A_1,\ldots,A_d)=\sum_{i=1}^d |\hat{\alpha}|(\Omega_1,\ldots,A_i,\ldots,\Omega_d).$$

In the following, let us assume that $\hat{\alpha}(\Omega_1, \ldots, \Omega_d) < +\infty$.

DEFINITION 1. A function $f_i : \Omega_i \to X_i$ is said to be *u*-simple if it is a uniform limit of a sequence of simple functions from Ω_i into X_i . Denote by U_i , i = 1, ..., d, the space of the *u*-simple functions $f_i : \Omega_i \to X_i$.

If $(f_i) \in X U_i$, then the integral of the *d*-tuple $(f_1, \ldots, f_d) \in U_1 \times \cdots \times U_d$ over $(A_i) \in X \Sigma_i$ is defined by

$$\int_{(A_1,A_2,\ldots,A_d)} (f_1,\ldots,f_d) \, d\alpha = \lim_{n\to\infty} \int_{(A_1,A_2,\ldots,A_d)} (f_1^n,\ldots,f_d^n) \, d\alpha$$

where $(f_i^n)_{n \in \mathbb{N}}$, i = 1, ..., d, is any sequence in S_i which is uniformly convergent to f_i . It is easily proved that this integral is well defined and it has all properties of the integral of *d*-tuples of simple functions.

A *d*-tuple of functions $f_i : \Omega_i \to X_i$, i = 1, ..., d, is said to be α -measurable, if for every $\varepsilon > 0$ there exists $(A_i) \in X \Sigma_i$ such that $|||\alpha||| (\Omega_1 - A_1, ..., \Omega_d - A_d) < \varepsilon$ and $(f_i \chi_{A_i}) \in X U_i$.

An α -measurable *d*-tuple (f_i) is said to be α -integrable, if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every *d*-tuple $(A_i) \in X \Sigma_i$ satisfying $\hat{\alpha}(A_1, \ldots, A_d) < \delta$ and $(f_i \chi_{A_i}) \in X U_i$, we have that

$$\left\|\int_{(A_i)}(f_i)\,d\alpha\right\|<\varepsilon.$$

If the *d*-tuple (f_i) is α -integrable, then the integral of (f_i) over $(A_i) \in X \Sigma_i$ is defined by

$$\int_{(A_1,A_2,\ldots,A_d)} (f_1,\ldots,f_d) \, d\alpha = \lim_{\substack{(B_i)\in \times \Sigma_i\cap \mathcal{P}(A_i)\\(f_i,X_i)\in \times U_i\\(f_i,X_i)\in \times U_i}} \int_{(B_i)} (f_i) \, d\alpha,$$

where $\wp(A_i)$ denotes the family of all subsets of A_i (i = 1, ..., d).

It is easily proved that the above integral is well defined. Furthermore, every α -integrable *d*-tuple belongs to the first integrable class, defined in [3, pp. 592, 593], and its integrals in both senses coincide. Let us also point out, that this integral coincides, when d = 1, with the vector integration introduced in [4].

3. A Radon-Nikodým theorem

Suppose that $0 < |\alpha|(\Omega_1, \ldots, \Omega_d) < +\infty$.

DEFINITION 2. Let $(A_1, \ldots, A_d) \in (\Sigma_1 \times \cdots \times \Sigma_d)^+ = \{(B_i) \in X \Sigma_i : |\alpha|(B_1, \ldots, B_d) > 0\}$. A mapping $\varphi : (0, +\infty) \to X S_i(A_i)$ will be a *localization* for (A_1, \ldots, A_d) if the following assertions hold:

(2.1) $\left\|\gamma(B_1,\ldots,B_d) - \int_{(B_i)}\varphi(\varepsilon)\,d\alpha\right\| \leq \varepsilon$, for every $\varepsilon \in (0,+\infty)$ and every d-tuple $(B_i) \in X \Sigma_i$ such that $(B_i) \subseteq (A_i)$ (that is, $B_i \subseteq A_i, i = 1,\ldots,d$).

(2.2) $\|\pi_i\varphi(\varepsilon) - \pi_i\varphi(\varepsilon')\|_{A_i} \le \varepsilon$, for every $0 < \varepsilon' < \varepsilon < +\infty$ and i = 1, ..., d, where $\pi_i : X S_i(A_i) \to S_i(A_i)$, i = 1, ..., d, denotes the usual projection $(\pi_i(f_1, ..., f_d) = f_i)$.

We say that a *d*-tuple $(A_i) \in (X \Sigma_i)^+$ is *localized*, when there is a localization for it. A sequence of *d*-tuples $\{(A_i^n)\}_{n \in \mathbb{N}} \subseteq (X \Sigma_i)^+$ is said to be *localized* if (A_1^n, \ldots, A_d^n) is localized for every $n \in \mathbb{N}$.

If φ_j is a localization for $(A_i^j) \in (X \Sigma_i)^+$, j = 1, 2, and $(A_i^1) \subseteq (A_i^2)$, we will say that φ_1 and φ_2 are *consistent* if $\|\pi_i \varphi_1(\varepsilon) - \pi_i \varphi_2(\varepsilon) \chi_{A_i^1}\|_{A_i^1} \le \varepsilon$, i = 1, ..., d, for every $\varepsilon > 0$. Let $\{(A_i^n)\}_{n \in \mathbb{N}} \subseteq (X \Sigma_i)^+$ be an increasing localized sequence of *d*-tuples. If there exists a localization φ_n for (A_i^n) , $n \in \mathbb{N}$, such that φ_n and φ_m are consistent for all $n, m \in \mathbb{N}$ with m > n, then we say that $\{(A_i^n)\}_{n \in \mathbb{N}}$ is *consistent*.

REMARK 3. A *d*-tuple $(A_i) \in (X \Sigma_i)^+$ is localized if and only if there exist *d* non empty compact subsets $K_i \subseteq X_i$, i = 1, ..., d, such that for every $\varepsilon > 0$ and every finite family $\{K_i^j\}_{j \in J_i}$ of non empty compact subsets of X_i with diameter less than or equal ε , such that $K_i = \bigcup_{j \in J_i} K_i^j$, i = 1, ..., d, there exists $\lambda > 0$ (depending on ε and $\{K_i\}_{i=1}^d$) such that:

(3.1) For every i = 1, ..., d, there exists a measurable and finite partition $\{E_i^j\}_{j \in J_i}$ $\subseteq \Sigma_i$ of Ω_i and $x_i^j \in K_i^j$, $j \in J_i$, such that if $f_i = \sum_{j \in J_i} x_i^j \chi_{E_i^j}$ (i = 1, ..., d), then

$$\left\|\gamma(B_1,\ldots,B_d)-\int_{(B_i)}(f_i)\,d\alpha\right\|\leq \varepsilon\lambda\,|\alpha|\,(B_1,\ldots,B_d),$$

for every *d*-tuple $(B_i) \in X \Sigma_i$ with $(B_i) \subseteq (A_i)$.

(3.2) If (i) $0 < \varepsilon' < \varepsilon$, i = 1, ..., d, and $\{C_i^j\}_{j \in J_i'}$ is a finite family of non empty compact subsets of X_i , with diameter less than or equal ε' , such that $K_i = \bigcup_{j \in J_i'} C_i^j$, and (ii) for every i = 1, ..., d and every $j \in J_i'$, there exists $h_j \in J_i$, with $C_i^j \subseteq K_i^{h_j}$, then there exists a finite partition $\{F_i^j\}_{j \in J_i'} \subseteq \Sigma_i$ of Ω_i and $y_i^j \in C_i^j$ ($j \in J_i'$) such that if $g_i = \sum_{j \in J_i'} y_i^j \chi_{F_i^j}$ (i = 1, ..., d), then $||f_i - g_i|| \le 2\varepsilon$ for every i = 1, ..., d and $||\gamma(B_1, ..., B_d) - \int_{(B_i)} (g_i) d\alpha|| \le \varepsilon' \lambda |\alpha| (B_1, ..., B_d)$, for every $(B_i) \in X \Sigma_i$ with $(B_i) \subseteq (A_i)$.

THEOREM 4. The polymeasure γ has a Radon-Nikodým derivative with respect to α (that is, there exists an α -integrable d-tuple of functions (f_i) such that $\gamma(A_1, \ldots, A_d) = \int_{(A_i)} (f_i) d\alpha$, for every $(A_i) \in X \Sigma_i$) if and only if the following assertions hold:

(4.1) $\|\gamma\| \ll \hat{\alpha}$ (that is, $\lim \|\gamma(A_1, \ldots, A_d)\| = 0$ as $\hat{\alpha}(A_1, \ldots, A_d) \to 0$, $(A_i) \in \Sigma_i$).

(4.2) There exists a consistent sequence $\{(A_i^n)\}_{n\in\mathbb{N}} \subseteq (X \Sigma_i)^+$ such that $|||\alpha||| (\Omega_1 - \bigcup_{n\in\mathbb{N}} A_1^n, \ldots, \Omega_d - \bigcup_{n\in\mathbb{N}} A_d^n) = 0.$

PROOF. Suppose that there exists a Radon-Nikodým derivative (f_1, \ldots, f_d) of γ with respect to α . Since (4.1) follows immediately from the properties of the integral, let us prove (4.2). In fact, since (f_1, \ldots, f_d) is α -measurable, there exists $(B_i^n) \in X \Sigma_i, n \in \mathbb{N}$, such that

$$\||\alpha|\|(\Omega_1 - B_1^n, \ldots, \Omega_d - B_d^n) < \frac{|\alpha|(\Omega_1, \ldots, \Omega_d)}{1+n}$$

and $(f_i \chi_{B_i^n}) \in X U_i$. If $A_i^n = \bigcup_{1 \le m \le n} B_i^m$ for every $n \in \mathbb{N}$ and every i = 1, ..., d, then

$$|\alpha|(A_1^n,\ldots,A_d^n) \ge |\alpha|(B_1^1,\ldots,B_d^1) > \frac{1}{2}|\alpha|(\Omega_1,\ldots,\Omega_d) > 0$$

and $\{(A_i^n)\}_{n\in\mathbb{N}}\subseteq (X\Sigma_i)^+$.

Furthermore,

$$\|\|\alpha\|\|\left(\Omega_1-\bigcup_{n\in\mathbb{N}}A_1^n,\ldots,\Omega_d-\bigcup_{n\in\mathbb{N}}A_d^n\right)\leq \|\|\alpha\|\|\left(\Omega_1-B_1^m,\ldots,\Omega_d-B_d^m\right)\\\leq \frac{|\alpha|(\Omega_1,\ldots,\Omega_d)}{1+m}$$

for every $m \in \mathbb{N}$, and therefore,

$$|||\alpha|||\left(\Omega_1-\bigcup_{n\in\mathbb{N}}A_1^n,\ldots,\Omega_d-\bigcup_{n\in\mathbb{N}}A_d^n\right)=0.$$

Thus we have only to prove that the increasing sequence $\{(A_i^n)\}_{n\in\mathbb{N}}$ is consistent. Let us prove first that (A_1^n, \ldots, A_d^n) is localized for every $n \in \mathbb{N}$. In fact, since $(f_i\chi_{A_i^n}) \in X U_i$ (and therefore, $||f_i||_{A_i^n} < +\infty$, for $i = 1, \ldots, d$), for every $\varepsilon > 0$ there exists $(g_i^{n,\varepsilon}) \in X S_i(A_i^n)$ such that

$$\|f_{i}\chi_{A_{i}^{n}}-g_{i}^{n,\varepsilon}\|_{A_{i}^{n}}\leq\min\left[1,\varepsilon/\left[2d\left(1+\max_{1\leq i\leq d}\|f_{i}\|_{A_{i}^{n}}\right)^{d}(1+\hat{\alpha}(A_{1},\ldots,A_{d}))\right]\right]$$

for every i = 1, ..., d. Let $\varphi_n : (0, +\infty) \to X S_i(A_i^n)$ be the function defined by $\varphi_n(\varepsilon) = (g_1^{n,\varepsilon}, ..., g_d^{n,\varepsilon})$ for every $\varepsilon > 0$.

If $(B_i) \in X \Sigma_i$ verify that $(B_i) \subseteq (A_i^n)$, then

$$\left\| \gamma(B_1,\ldots,B_d) - \int_{(B_i)} \varphi_n(\varepsilon) \, d\alpha \right\|$$
$$= \left\| \int_{(B_i)} (f_i) \, d\alpha - \int_{(B_i)} (g_i^{n,\varepsilon}) \, d\alpha \right\|$$

F. J. Fernández, P. Jiménez Guerra and M. T. Ulecia

$$\leq \left\| \int_{(B_i)} (f_{1-}g_1^{n,\varepsilon}, f_2, \dots, f_d) \, d\alpha \right\|$$

+ \dots + $\left\| \int_{(B_i)} (g_1^{n,\varepsilon}, \dots, g_{d-1}^{n,\varepsilon}, f_d - g_d^{n,\varepsilon}) \, d\alpha \right\|$
$$\leq \frac{d \left(\prod_{i=1}^d (1 + \|f_i\|_{A_i^n}) \right) \varepsilon \widehat{\alpha}(B_1, \dots, B_d)}{2d \left(1 + \max_{1 \leq i \leq d} \|f_i\|_{A_i^n} \right)^d (1 + \widehat{\alpha}(A_1, \dots, A_d))}$$

< \varepsilon.

Furthermore, for every $0 < \varepsilon' < \varepsilon$, $n, m \in \mathbb{N}$ with n < m and $i = 1, \dots, d$, we have

$$\left\|g_{i}^{n,\varepsilon}-g_{i}^{n,\varepsilon'}\right\|_{A_{i}^{n}}\leq\left\|g_{i}^{n,\varepsilon}-f_{i}\right\|_{A_{i}^{n}}+\left\|f_{i}-g_{i}^{n,\varepsilon'}\right\|_{A_{i}^{n}}<\varepsilon$$

and

$$\left\|g_{i}^{m,\varepsilon}-g_{i}^{n,\varepsilon}\right\|_{A_{i}^{n}}\leq\left\|g_{i}^{m,\varepsilon}-f_{i}\right\|_{A_{i}^{m}}+\left\|f_{i}-g_{i}^{n,\varepsilon}\right\|_{A_{i}^{n}}\leq\varepsilon.$$

Therefore (4.2) holds.

Conversely, assume that (4.1) and (4.2) are verified. Let $\{(A_i^n)\}_{n \in \mathbb{N}} \subseteq (X \Sigma_i)^+$ be a consistent sequence verifying that

$$\|\!|\!| \alpha \|\!|\!| \left(\Omega_1 - \bigcup_{n \in \mathbb{N}} A_1^n, \dots, \Omega_d - \bigcup_{n \in \mathbb{N}} A_d^n \right) = 0$$

For every $n \in \mathbb{N}$, let $\varphi_n : (0, +\infty) \to X S_i(A_i^n)$ be a localization for (A_i^n) such that φ_n and φ_m are consistent for all $m, n \in \mathbb{N}$ with n < m. Let us set $\varphi_n(1/m) = (g_1^{n,m}, \ldots, g_d^{n,m}) \in X S_i(A_i^n)$. Since $||g_i^{n,m}(t) - g_i^{n,p}(t)|| \le 1/m$ for every $m, n, p \in \mathbb{N}$ with $m \le p$ and every $t \in A_i^n$, it follows that $(g_i^{n,m}(t))_{m \in \mathbb{N}}$ is a Cauchy sequence for every $t \in A_i^n$. Let

$$g_i^n(t) = \lim_m g_i^{n,m}(t)$$

for every $t \in A_i^n$. The above limit is uniform on A_i^n , and thus the function $g_i^n : A_i^n \to X_i$ is *u*-simple. Furthermore, $g_i^m \mid_{A_i^n} = g_i^n$ for all $m, n \in \mathbb{N}$ with m > n, because

$$\begin{aligned} \left\|g_{i}^{n}(t) - g_{i}^{m}(t)\right\| &\leq \left\|g_{i}^{n}(t) - g_{i}^{n,p}(t)\right\| + \left\|g_{i}^{n,p}(t) - g_{i}^{m,p}(t)\right\| + \left\|g_{i}^{m,p}(t) - g_{i}^{m}(t)\right\| \\ &\leq 3/p \end{aligned}$$

for every $p \in \mathbb{N}$.

194

If $n \in \mathbb{N}$, $(E_i) \in X \Sigma_i$ and $(E_i) \subseteq (A_i)$, then

$$\left\|\gamma(E_1,\ldots,E_d)-\int_{(E_i)}(g_i^n)\,d\alpha\right\|=\lim_m\left\|\gamma(E_1,\ldots,E_d)-\int_{(E_i)}(g_i^{n,m})\,d\alpha\right\|$$
$$\leq \lim_m\left(\frac{1}{m}\right)=0,$$

and therefore,

(4.3)
$$\gamma(E_1,\ldots,E_d) = \int_{(E_i)} (g_i^n) \, d\alpha$$

For every i = 1, ..., d, consider the function $f_i : \Omega_i \to X_i$ defined by

$$f_i(t) = \begin{cases} g_i^n(t), & \text{if there exists } n \in \mathbb{N} \text{ such that } t \in A_i^n \\ 0, & \text{if } t \in \Omega_i - \bigcup_{n \in \mathbb{N}} A_i^n. \end{cases}$$

Let us prove that (f_1, \ldots, f_d) is α -measurable. In fact, since

$$\|\!|\!|\!| \alpha \|\!|\!|\!| \left(\Omega_1 - \bigcup_{n \in \mathbb{N}} A_1^n, \dots, \Omega_d - \bigcup_{n \in \mathbb{N}} A_d^n\right) = 0$$

and $|\alpha|$ is a positive *d*-polymeasure, for every $\varepsilon > 0$ there exist $r_1, \ldots, r_d \in \mathbb{N}$ verifying that

$$|\alpha|(\Omega_1,\ldots,\Omega_i-A_i^{r_i},\ldots,\Omega_d)=|\alpha|\left(\Omega_1,\ldots,\left(\bigcup_{n\in\mathbb{N}}A_i^n\right)-A_i^{r_i},\ldots,\Omega_d\right)<\frac{\varepsilon}{d}$$

Thus setting $r = \max \{r_1, \ldots, r_d\}$ we have

$$\|\| \alpha \| \| \left(\Omega_1 - A_1^r, \ldots, \Omega_d - A_d^r \right) < \varepsilon$$

and the function $f_i |_{A_i} = g_i^r$ is *u*-simple, for i = 1, ..., d.

Let us prove now that (f_1, \ldots, f_d) is α -integrable. Let $\varepsilon > 0$. Since $\|\gamma\| \ll \hat{\alpha}$, there exists $\delta > 0$ such that $\|\gamma(B_1, \ldots, B_d)\| < \varepsilon/2$ for every $(B_i) \in X \Sigma_i$ with $\hat{\alpha}(B_1, \ldots, B_d) \le \delta$. Let $(E_i) \in (X \Sigma_i)$ be such that $\hat{\alpha}(E_1, \ldots, E_d) \le \delta$ and $(f_1\chi_{A_1}, \ldots, f_d\chi_{A_d}) \in X U_i$. Then, there exists K > 0 such that $\|f_i\|_{E_i} \le K$ for all $i = 1, \ldots, d$. Proceeding as before, we can find $m \in \mathbb{N}$ such that

$$\|\!|\!| \alpha \|\!|\!| \left(\Omega_1 - A_1^m, \ldots, \Omega_d - A_d^m\right) < \frac{\varepsilon}{2K^d}.$$

[7]

Therefore,

$$\begin{split} \left\| \int_{(E_{i})} (f_{i}) \, d\alpha \right\| \\ &\leq \left\| \int_{(E_{1} - A_{1}^{m}, E_{2}, \dots, E_{d})} (f_{i}) \, d\alpha \right\| + \left\| \int_{(E_{1} \cap A_{1}^{m}, E_{2} - A_{2}^{m}, E_{3}, \dots, E_{d})} (f_{i}) \, d\alpha \right\| \\ &+ \dots + \left\| \int_{(E_{1} \cap A_{1}^{m}, \dots, E_{d-1} \cap A_{d-1}^{m}, E_{d} - A_{d}^{m})} (f_{i}) \, d\alpha \right\| + \left\| \int_{(E_{1} \cap A_{1}^{m}, \dots, E_{d} \cap A_{d}^{m})} (f_{i}) \, d\alpha \right\| \\ &\leq \| f_{1} \|_{E_{1}} \cdots \| f_{d} \|_{E_{d}} [\hat{\alpha}(E_{1} - A_{1}^{m}, E_{2}, \dots, E_{d}) \\ &+ \hat{\alpha}(E_{1} \cap A_{1}^{m}, E_{2} - A_{2}^{m}, E_{3}, \dots, E_{d}) \\ &+ \dots + \hat{\alpha}(E_{1} \cap A_{1}^{m}, \dots, E_{d-1} \cap A_{d-1}^{m}, E_{d} - A_{d}^{m})] \\ &+ \left\| \int_{(E_{1} \cap A_{1}^{m}, \dots, E_{d} \cap A_{d}^{m})} (g_{1}^{m}) \, d\alpha \right\| \\ &\leq K^{d} \left(\| \| \alpha \| \| \left(\Omega_{1} - A_{1}^{m}, \dots, \Omega_{d} - A_{d}^{m} \right) \right) \\ &+ \| \gamma \left(E_{1} \cap A_{1}^{m}, E_{2} \cap A_{2}^{m}, \dots, E_{d} \cap A_{d}^{m} \right) \| \\ &\leq K^{d} (\varepsilon/2K^{d}) + (\varepsilon/2) \\ &= \varepsilon \end{split}$$

and the *d*-tuple (f_1, \ldots, f_d) is α -integrable.

Let us see now that (f_1, \ldots, f_d) is a Radon-Nikodým derivative of γ with respect to α . In fact, since $\| \alpha \| (\Omega_1 - \bigcup_{n \in \mathbb{N}} A_1^n, \ldots, \Omega_d - \bigcup_{n \in \mathbb{N}} A_d^n) = 0$, we have that

$$\sum_{i=1}^{d} \hat{\alpha} \left(\Omega_{1}, \ldots, \Omega_{i} - \bigcup_{n \in \mathbb{N}} A_{i}^{n}, \ldots, \Omega_{d} \right) = 0.$$

And having in mind that $\|\gamma\| \ll \hat{\alpha}$, we obtain that

$$\left\| \gamma \right\| \left(\Omega_1 - \bigcup_{n \in \mathbb{N}} A_1^n, \dots, \Omega_d - \bigcup_{n \in \mathbb{N}} A_d^n \right) = 0.$$

Therefore, for every $(E_1, \ldots, E_d) \in X \Sigma_i$ and $m \in \mathbb{N}$ we have

$$\|\gamma \left(E_1, \ldots, E_d\right) - \gamma \left(E_1 \cap A_1^m, \ldots, E_d \cap A_d^m\right)\|$$

$$\leq \|\|\gamma\| (\Omega_1 - A_1^m, \ldots, \Omega_d - A_d^m)$$

A Radon-Nikodým theorem for vector polymeasures

$$= ||| \gamma ||| \left(\Omega_1 - \bigcup_{n \in \mathbb{N}} A_1^n, \dots, \Omega_d - \bigcup_{n \in \mathbb{N}} A_d^n \right) + ||| \gamma ||| \left(\bigcup_{n \in \mathbb{N}} A_1^n - A_1^m, \dots, \bigcup_{n \in \mathbb{N}} A_d^n - A_d^m \right) = ||| \gamma ||| \left(\bigcup_{n \in \mathbb{N}} A_1^n - A_1^m, \dots, \bigcup_{n \in \mathbb{N}} A_d^n - A_d^m \right).$$

Since the sequence $(|||\gamma||| (\bigcup_{n \in \mathbb{N}} A_1^n - A_1^m, \dots, \bigcup_{n \in \mathbb{N}} A_d^n - A_d^m))_{m \in \mathbb{N}}$ is convergent to zero (because the variation $|\gamma|$ of γ is a positive polymeasure), it follows that

(4.4)
$$\gamma(E_1,\ldots,E_d) = \lim_{m \to +\infty} \gamma\left(E_1 \cap A_1^m,\ldots,E_d \cap A_d^m\right)$$

for every $(E_i) \in X \Sigma_i$.

Furthermore, for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\left\|\int_{(L_1,\ldots,L_d)} (f_i) \, d\alpha\right\| < \frac{\varepsilon}{d}$$

for every $(L_i) \in X \Sigma_i$ verifying that $\hat{\alpha}(L_1, \ldots, L_d) \leq \delta$. Then, noting that the sequence $\left(\sum_{i=1}^d \hat{\alpha}(\Omega_1, \ldots, \Omega_i - A_i^m, \ldots, \Omega_d)\right)_{m \in \mathbb{N}}$ converges to zero (because $\left(\|\|\alpha\|\|(\Omega_1 - A_1^m, \ldots, \Omega_d - A_d^m)\right)_{m \in \mathbb{N}}$ is convergent to zero), it results the existence of $n_0 \in \mathbb{N}$ such that

$$\sum_{i=1}^{d} \hat{\alpha}(\Omega_1, \ldots, \Omega_i - A_i^n, \ldots, \Omega_d) < \delta$$

for every $n \ge n_0$. Therefore, for every $(E_i) \in X \Sigma_i$ we have

$$\begin{split} \left\| \int_{(E_1,\ldots,E_d)} (f_i) \, d\alpha - \int_{(E_1 \cap A_1^n,\ldots,E_d \cap A_d^n)} (f_i) \, d\alpha \right\| \\ & \leq \left\| \int_{(E_1 - A_1^n,E_2,\ldots,E_d)} (f_i) \, d\alpha \right\| + \left\| \int_{(E_1 \cap A_1^n,E_2 - A_2^n,E_3,\ldots,E_d)} (f_i) \, d\alpha \right\| \\ & + \cdots + \left\| \int_{(E_1 \cap A_1^n,\ldots,E_{d-1} \cap A_{d-1}^n,E_d - A_d^n)} (f_i) \, d\alpha \right\| \\ & \leq d\frac{\varepsilon}{d} = \varepsilon, \end{split}$$

and consequently,

(4.5)
$$\int_{(E_i)} (f_i) d\alpha = \lim_{n \to +\infty} \int_{(E_i \cap A_1^n, \dots, E_d \cap A_d^n)} (f_i) d\alpha.$$

Now it follows from (4.5), (4.3) and (4.4) that

$$\int_{(E_1,\dots,E_d)} (f_i) \, d\alpha = \lim_{n \to +\infty} \int_{(E_1 \cap A_1^n,\dots,E_d \cap A_d^n)} (f_i) \, d\alpha$$
$$= \lim_{n \to +\infty} \int_{(E_1 \cap A_1^n,\dots,E_d \cap A_d^n)} (g_i^n) \, d\alpha$$
$$= \lim_{n \to +\infty} \gamma (E_1 \cap A_1^n,\dots,E_d \cap A_d^n)$$
$$= \gamma (E_1,\dots,E_d)$$

for every $(E_i) \in X \Sigma_i$. Consequently, the *d*-tuple (f_i) is a Radon-Nikodým derivative of the polymeasure γ with respect to the polymeasure α .

REMARK 5. In view of condition (iii) of [9, Theorem 2.1] and Remark 3, it is natural to consider the possibility of replacing condition (4.2) in Theorem 4 by the following:

(4.6) For every $(A_i) \in (X \Sigma_i)^+$, there exists a localized *d*-tuple $(B_i) \in (X \Sigma_i)^+$ such that $(B_i) \subseteq (A_i)$.

Conditions (4.2) and (4.6) are equivalent if d = 1, but the following example shows that it is not possible, in general, to replace (4.2) by (4.6) in Theorem 4 when $d \ge 2$.

EXAMPLE 6. Let us consider $\Omega_i = [-1, 1]$, Σ_i the Borel σ -algebra on [-1, 1], $i = 1, 2, X_1 = X_2 = Y = Z = \mathbb{R}, \phi : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ the ordinary product of scalars and $\alpha : \Sigma_1 \times \Sigma_2 \to \mathbb{R}$ the restriction to $\Sigma_1 \times \Sigma_2$ of the Lebesgue measure α_1 on Bor $(\Omega_1 \times \Omega_2)$.

Let γ_1 be the measure defined on the Borel σ -algebra of $\Omega_1 \times \Omega_2$, by

$$\gamma_1(B)=\int_B f\ d\alpha_1,$$

where $f = 1 - \chi_{[0,1] \times [0,1]}$.

If γ denotes the restriction of γ_1 to $\Sigma_1 \times \Sigma_2$, then it is easily proved that γ is a bimeasure verifying (4.1) and (4.6).

Let us prove that γ has no Radon-Nikodým derivative with respect to α . In fact, if there exists an α -integrable 2-tuple (f_1, f_2) such that

$$\gamma(A_1, A_2) = \int_{(A_1, A_2)} (f_1, f_2) \, d\alpha$$

for every $(A_1, A_2) \in \Sigma_1 \times \Sigma_2$, then $f_1 f_2$ is α_1 -integrable and

$$\int_{A\times B} f \ d\alpha_1 = \int_{A\times B} (f_1 f_2) \ d\alpha_1$$

for every $(A, B) \in \Sigma_1 \times \Sigma_2$.

[11]

It follows now from the Fubini theorem that there exists $D \in \Sigma_1$ such that $\lambda(D) = 0$, where λ denotes the Lebesgue measure on [-1, 1], $f_1(x)f_2$ is α -integrable for every $x \in \Omega_1 \setminus D$ and

$$\int_{B} (f(x, \cdot) - f_1(x)f_2) dy = 0$$

for every $B \in \Sigma_2$ and every $x \in \Omega_1 \setminus D$. Therefore, there exists $E \in \Sigma_2$ such that $\lambda(E) = 0$ and $f(x, y) = f_1(x)f_2(y)$ for every $(x, y) \in (\Omega_1 \times \Omega_2) \setminus (D \times E)$.

Since $\lambda(D) = \lambda(E) = 0$, there exists $x_1 \in [0, 1] \setminus D$, $y_1 \in [0, 1] \setminus E$, $x_2 \in [-1, 0] \setminus D$ and $y_2 \in [-1, 0] \setminus E$, verifying that

$$f_1(x_1)f_2(y_2) = f(x_1, y_2) = 1 = f(x_2, y_1) = f_1(x_2)f_2(y_1).$$

Therefore, $f_1(x_1) \neq 0 \neq f_2(y_1)$, and we have a contradiction because

$$f_1(x_1)f_2(y_1) = f(x_1, y_1) = 0.$$

R	ef	er	eı	ıc	es
-	~	~-	~		~

- D. R. Brilleriger, 'Bounded polymeasures and associated translation commutative operators', Proc. Amer. Math. Soc. 18 (1967), 487–491.
- [2] I. Dobrakov, 'On integration in Banach spaces VIII (polymeasures)', Czechoslovak Math. J. 37 (1987), 487-506.
- [3] ——, 'On integration in Banach spaces IX (integration with respect to polymeasures)', Czechoslovak Math. J. 38 (1988), 589–601.
- [4] F. J. Fernández y Fernández-Arroyo, M. L. López García and M. V. Martín del Ama, 'Una integración general en espacios localmente convexos', *Rev. Roumaine Math. Pures Appl.* 40 (1995), 593–597.
- [5] B. Jefferies, 'Radon polymeasures', Bull. Austral. Math. Soc. 32 (1985), 207-215.
- [6] B. Jefferies and W. J. Ricker, 'Integration with respect to vector valued Radon polymeasures', J. Austral. Math. Soc. (Series A) 56 (1994), 17–40.
- [7] I. Kluvánek, 'Remark on bimeasures', Proc. Amer. Math. Soc. 81 (1981), 233-239.
- [8] ——, 'Vector-valued polymeasures and perturbations of semigroups of operators', in: Proc. Miniconference on partial differential equations (Canberra, 1981) (Proc. Centre Math. Anal. Austral. Nat. Univ., 1, Canberra, 1982) pp. 118–123.
- [9] H. D. Maynard, 'A Radon-Nikodým theorem for operator valued measures', *Trans. Amer. Math. Soc.* 173 (1972), 449–463.
- [10] K. Ylinen, 'On vector bimeasures', Ann. Mat. Pura Appl. 117 (1978), 115-138.

F. J. Fernández, P. Jiménez Guerra and M. T. Ulecia

Departamento de Matemáticas Fundamentales Facultad de Ciencias, UNED Senda del Rey s/n 28040 Madrid Spain e-mail: ffernan@mat.uned.es, pjimenez@mat.uned.es, tulecia@mat.uned.es

200